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Abstract—The goal of a decision-based adversarial attack on a
trained model is to generate adversarial examples based solely
on observing output labels returned by the targeted model. We
develop HopSkipJumpAttack, a family of algorithms based on
a novel estimate of the gradient direction using binary infor-
mation at the decision boundary. The proposed family includes
both untargeted and targeted attacks optimized for �2 and �∞
similarity metrics respectively. Theoretical analysis is provided
for the proposed algorithms and the gradient direction estimate.
Experiments show HopSkipJumpAttack requires significantly
fewer model queries than several state-of-the-art decision-based
adversarial attacks. It also achieves competitive performance in
attacking several widely-used defense mechanisms.

I. INTRODUCTION

Although deep neural networks have achieved state-of-the-art

performance on a variety of tasks, they have been shown to

be vulnerable to adversarial examples—that is, maliciously

perturbed examples that are almost identical to original sam-

ples in human perception, but cause models to make in-

correct decisions [1]. The vulnerability of neural networks

to adversarial examples implies a security risk in applica-

tions with real-world consequences, such as self-driving cars,

robotics, financial services, and criminal justice; in addition,

it highlights fundamental differences between human learning

and existing machine-based systems. The study of adversarial

examples is thus necessary to identify the limitation of current

machine learning algorithms, provide a metric for robustness,

investigate the potential risk, and suggest ways to improve the

robustness of models.

Recent years have witnessed a flurry of research on the design

of new algorithms for generating adversarial examples [1–16].

Adversarial examples can be categorized according to at least

three different criteria: the similarity metric, the attack goal,

and the threat model. Commonly used similarity metrics are

�p-distances between adversarial and original examples with

p ∈ {0, 2,∞}. The goal of attack is either untargeted or

targeted. The goal of an untargeted attack is to perturb the

input so as to cause any type of misclassification, whereas the

goal of a targeted attack is to alter the decision of the model to

a pre-specific target class. Changing the loss function allows

for switching between two types of attacks [3, 5, 6].

Perhaps the most important criterion in practice is the threat

Figure 1: An illustration of accessible components of the target

model for each of the three threat models. A white-box threat

model assumes access to the whole model; a score-based threat

model assumes access to the output layer; a decision-based

threat model assumes access to the predicted label alone.

model, of which there are two primary types: white-box and

black-box. In the white-box setting, an attacker has complete

access to the model, including its structure and weights. Under

this setting, the generation of adversarial examples is often

formulated as an optimization problem, which is solved either

via treating misclassification loss as a regularization [1, 6] or

via tackling the dual as a constrained optimization problem

[2, 3, 7]. In the black-box setting, an attacker can only

access outputs of the target model. Based on whether one has

access to the full probability or the label of a given input,

black-box attacks are further divided into score-based and

decision-based. See Figure 1 for an illustration of accessible

components of the target model for each of the three threat

models. Chen et al. [8] and Ilyas et al. [9, 10] introduced

score-based methods using zeroth-order gradient estimation to

craft adversarial examples.

The most practical threat model is that in which an attacker

has access to decisions alone. A widely studied type of the

decision-based attack is transfer-based attack. Liu et al. [11]

showed that adversarial examples generated on an ensemble

of deep neural networks from a white-box attack can be

transferred to an unseen neural network. Papernot et al.

[12, 13] proposed to train a substitute model by querying

the target model. However, transfer-based attack often re-

quires a carefully-designed substitute model, or even access

to part of the training data. Moreover, they can be defended

against via training on a data set augmented by adversarial

examples from multiple static pre-trained models [17]. In
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recent work, Brendel et al. [14] proposed Boundary Attack,

which generates adversarial examples via rejection sampling.

While relying neither on training data nor on the assumption

of transferability, this attack method achieves comparable

performance with state-of-the-art white-box attacks such as

C&W attack [6]. One limitation of Boundary Attack, however,

is that it was formulated only for �2-distance. Moreover, it

requires a relatively large number of model queries, rendering

it impractical for real-world applications.

It is more realistic to evaluate the vulnerability of a machine

learning system under the decision-based attack with a limited

budget of model queries. Online image classification platforms

often set a limit on the allowed number of queries within

a certain time period. For example, the cloud vision API

from Google currently allow 1,800 requests per minute. Query

inefficiency thus leads to clock-time inefficiency and prevents

an attacker from carrying out large-scale attacks. A system

may also be set to recognize the behavior of feeding a large

number of similar queries within a small amount of time as

a fraud, which will automatically filter out query-inefficient

decision-based attacks. Last but not least, a smaller query

budget directly implies less cost in evaluation and research.

Query-efficient algorithms help save the cost of evaluating the

robustness of public platforms, which incur a cost for each

query made by the attacker. It also helps facilitate research

in adversarial vulnerability, as such a decision-based attack

which does not require access to model details may be used

as a simple and efficient first step in evaluating new defense

mechanisms, as we will see in Section V-B and Appendix C.

In this paper, we study decision-based attacks under an opti-

mization framework, and propose a novel family of algorithms

for generating both targeted and untargeted adversarial exam-

ples that are optimized for minimum distance with respect to

either the �2-distance or �∞ distance. The family of algorithms

is iterative in nature, with each iteration involving three steps:

estimation of the gradient direction, step-size search via geo-

metric progression, and Boundary search via a binary search.

Theoretical analysis has been carried out for the optimization

framework and the gradient direction estimate, which not

only provides insights for choosing hyperparamters, but also

motivating essential steps in the proposed algorithms. We

refer to the algorithm as HopSkipJumpAttack1. In summary,

our contributions are the following:

• We propose a novel unbiased estimate of gradient direction

at the decision boundary based solely on access to model

decisions, and propose ways to control the error from

deviation from the boundary.

• We design a family of algorithms, HopSkipJumpAttack,

based on the proposed estimate and our analysis, which

is hyperparameter-free, query-efficient and equipped with a

1A hop, skip, and a jump originally referred to an exercise or game
involving these movements dating from the early 1700s, but by the mid-1800s
it was also being used figuratively for the short distance so covered.

convergence analysis.

• We demonstrate the superior efficiency of our algorithm

over several state-of-the-art decision-based attacks through

extensive experiments.

• Through the evaluation of several defense mechanisms such

as defensive distillation, region-based classification, adver-

sarial training and input binarization, we suggest our attack

can be used as a simple and efficient first step for researchers

to evaluate new defense mechanisms.

Roadmap. In Section II, we describe previous work on

decision-based adversarial attacks and their relationship to our

algorithm. We also discuss the connection of our algorithm

to zeroth-order optimization. In Section III, we propose and

analyze a novel iterative algorithm which requires access to

the gradient information. Each step carries out a gradient

update from the boundary, and then projects back to the

boundary again. In Section IV, we introduce a novel asymp-

totically unbiased gradient-direction estimate at the boundary,

and a binary-search procedure to approach the boundary. We

also discuss how to control errors with deviation from the

boundary. The analysis motivates a decision-based algorithm,

HopSkipJumpAttack (Algorithm 2). Experimental results are

provided in Section V. We conclude in Section VI with a

discussion of future work.

II. RELATED WORK

A. Decision-based attacks

Most related to our work is the Boundary Attack method

introduced by Brendel et al. [14]. Boundary Attack is an

iterative algorithm based on rejective sampling, initialized

at an image that lies in the target class. At each step, a

perturbation is sampled from a proposal distribution, which

reduces the distance of the perturbed image towards the

original input. If the perturbed image still lies in the target

class, the perturbation is kept. Otherwise, the perturbation is

dropped. Boundary Attack achieves performance comparable

to state-of-the-art white-box attacks on deep neural networks

for image classification. The key obstacle to its practical

application is, however, the demand for a large number of

model queries. In practice, the required number of model

queries for crafting an adversarial example directly determines

the level of the threat imposed by a decision-based attack.

One source of inefficiency in Boundary Attack is the rejection

of perturbations which deviate from the target class. In our

algorithm, the perturbations are used for estimation of a

gradient direction.

Several other decision-based attacks have been proposed to

improve efficiency. Brunner et al. [15] introduced Biased

Boundary Attack, which biases the sampling procedure by

combining low-frequency random noise with the gradient
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from a substitute model. Biased Boundary Attack is able to

significantly reduce the number of model queries. However,

it relies on the transferability between the substitute model

and the target model, as with other transfer-based attacks.

Our algorithm does not rely on the additional assumption of

transferability. Instead, it achieves a significant improvement

over Boundary Attack through the exploitation of discarded

information into the gradient-direction estimation. Ilyas et al.

[9] proposed Limited attack in the label-only setting, which

directly performs projected gradient descent by estimating

gradients based on novel proxy scores. Cheng et al. [16]

introduced Opt attack, which transforms the original prob-

lem to a continuous version, and solves the new problem

via randomized zeroth-order gradient update. Our algorithm

approaches the original problem directly via a novel gradient-

direction estimate, leading to improved query efficiency over

both Limited Attack and Opt Attack. The majority of model

queries in HopSkipJumpAttack come in mini-batches, which

also leads to improved clock-time efficiency over Boundary

Attack.

B. Zeroth-order optimization

Zeroth-order optimization refers to the problem of optimizing

a function f based only on access to function values f(x),
as opposed to gradient values ∇f(x). Such problems have

been extensively studied in the convex optimization and bandit

literatures. Flaxman et al. [18] studied one-point randomized

estimate of gradient for bandit convex optimization. Agarwal

et al. [19] and Nesterov and Spokoiny [20] demonstrated that

faster convergence can be achieved by using two function

evaluations for estimating the gradient. Duchi et al. [21]

established optimal rates of convex zeroth-order optimization

via mirror descent with two-point gradient estimates. Zeroth-

order algorithms have been applied to the generation of ad-

versarial examples under the score-based threat model [8–10].

Subsequent work [22] proposed and analyzed an algorithm

based on variance-reduced stochastic gradient estimates.

We formulate decision-based attack as an optimization prob-

lem. A core component of our proposed algorithm is a

gradient-direction estimate, the design of which is moti-

vated by zeroth-order optimization. However, the problem

of decision-based attack is more challenging than zeroth-

order optimization, essentially because we only have binary

information from output labels of the target model, rather than

function values.

III. AN OPTIMIZATION FRAMEWORK

In this section, we describe an optimization framework for

finding adversarial instances for an m-ary classification model

of the following type. The first component is a discriminant
function F : Rd → R

m that accepts an input x ∈ [0, 1]d and

produces an output y ∈ Δm := {y ∈ [0, 1]m | ∑m
c=1 yc = 1}.

The output vector y = (F1(x), . . . , Fm(x)) can be viewed as

a probability distribution over the label set [m] = {1, . . . ,m}.

Based on the function F , the classifier C : Rd → [m] assigns

input x to the class with maximum probability—that is,

C(x) := arg max
c∈[m]

Fc(x).

We study adversaries of both the untargeted and targeted

varieties. Given some input x�, the goal of an untargeted attack
is to change the original classifier decision c� := C(x�) to

any c ∈ [m]\{c�}, whereas the goal of a targeted attack is

to change the decision to some pre-specified c† ∈ [m]\{c�}.

Formally, if we define the function Sx� : Rd → R via

Sx�(x′) :=

⎧⎨⎩max
c �=c�

Fc(x
′)− Fc�(x

′) (Untargeted)

Fc†(x
′)−max

c �=c†
Fc(x

′) (Targeted)
(1)

then a perturbed image x′ is a successful attack if and

only if Sx�(x′) > 0. The boundary between successful and

unsuccessful perturbed images is

bd(Sx�) :=
{
z ∈ [0, 1]d | Sx�(z) = 0

}
.

As an indicator of successful perturbation, we introduce the

Boolean-valued function φx� : [0, 1]d → {−1, 1} via

φx�(x′) := sign (Sx�(x′)) =

{
1 if Sx�(x′) > 0,

−1 otherwise.

This function is accessible in the decision-based setting, as it

can be computed by querying the classifier C alone. The goal

of an adversarial attack is to generate a perturbed sample x′

such that φx�(x′) = 1, while keeping x′ close to the original

sample x�. This can be formulated as the optimization problem

min
x′

d(x′, x�) such that φx�(x′) = 1, (2)

where d is a distance function that quantifies similarity.

Standard choices of d studied in past work [2, 5, 6] include

the usual �p-norms, for p ∈ {0, 2,∞}.

A. An iterative algorithm for �2 distance

Consider the case of the optimization problem (2) with the

�2-norm d(x, x�) = ‖x − x�‖2. We first specify an iterative

algorithm that is given access to the gradient ∇Sx� . Given an

initial vector x0 such that Sx�(x0) > 0 and a stepsize sequence

{ξt}t≥0, it performs the update

xt+1 = αtx
� + (1− αt)

{
xt + ξt

∇Sx�(xt)

‖∇Sx�(xt)‖2

}
, (3)

where ξt is a positive step size. Here the line search parameter

αt ∈ [0, 1] is chosen such that Sx�(xt+1) = 0—that is, so that

the next iterate xt+1 lies on the boundary. The motivation for

this choice is that our gradient-direction estimate in Section IV

is only valid near the boundary.
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We now analyze this algorithm with the assumption that we

have access to the gradient of Sx� in the setting of binary clas-

sification. Assume that the function Sx� is twice differentiable

with a locally Lipschitz gradient, meaning that there exists

L > 0 such that for all x, y ∈ {z : ‖z − x�‖2 ≤ ‖x0 − x�‖2},

we have

‖∇Sx�(x)−∇Sx�(y)‖2 ≤ L‖x− y‖2, (4)

In addition, we assume the gradient is bounded away from

zero on the boundary: there exists a positive C̃ > 0 such that

‖∇Sx�(z)‖ > C̃ for any z ∈ bd(Sx�).

We analyze the behavior of the updates (3) in terms of the

angular measure

r(xt, x
�) := cos∠ (xt − x�,∇Sx�(xt))

=

〈
xt − x�, ∇Sx�(xt)

〉
‖xt − x�‖2‖∇Sx�(xt)‖2 ,

corresponding to the cosine of the angle between xt −x� and

the gradient ∇Sx�(xt). Note that the condition r(x, x�) = 1
holds if and only if x is a stationary point of the optimiza-

tion (2). The following theorem guarantees that, with a suitable

step size, the updates converge to such a stationary point:

Theorem 1. Under the previously stated conditions on Sx� ,
suppose that we compute the updates (3) with step size
ξt = ‖xt − x�‖2t−q for some q ∈ (

1
2 , 1

)
. Then there is a

universal constant c such that

0 ≤ 1− r(xt, x
�) ≤ c tq−1 for t = 1, 2, . . .. (5)

In particular, the algorithm converges to a stationary point of
problem (2).

Theorem 1 suggests a scheme for choosing the step size

in the algorithm that we present in the next section. An

experimental evaluation of the proposed scheme is carried

out in Appendix B. The proof of the theorem is constructed

by establishing the relationship between the objective value

d(xt, x
�) and r(xt, x

�), with a second-order Taylor approxi-

mation to the boundary. See Appendix A-A for details.

B. Extension to �∞-distance

We now describe how to extend these updates so as to

minimize the �∞-distance. Consider the �2-projection of a

point x onto the sphere of radius αt centered at x�:

Π2
x�,αt

(x) := argmin
‖y−x�‖2≤αt

‖y − x‖2 = αtx
� + (1− αt)x. (6)

In terms of this operator, our �2-based update (3) can be

rewritten in the equivalent form

xt+1 = Π2
x�,αt

(
xt + ξt

∇Sx�(xt)

‖∇Sx�(xt)‖2

)
. (7)

This perspective allows us to extend the algorithm to other

�p-norms for p �= 2. For instance, in the case p = ∞, we can

define the �∞-projection operator Π∞
x�,α. It performs a per-

pixel clip within a neighborhood of x�, such that the ith entry

of Π∞
x�,α(x) is

Π∞
x�,α(x)i := max {min{x�

i , x
�
i + c} , xi − c},

where c := α‖x − x�‖∞. We propose the �∞-version of our

algorithm by carrying out the following update iteratively:

xt+1 = Π∞
x�,αt

(
xt + ξtsign(∇Sx�(xt))

)
, (8)

where αt is chosen such that Sx�(xt+1) = 0, and “sign”

returns the element-wise sign of a vector. We use the sign

of the gradient for faster convergence in practice, similar to

previous work [2, 3, 7].

IV. A DECISION-BASED ALGORITHM BASED ON A NOVEL

GRADIENT ESTIMATE

We now extend our procedures to the decision-based setting,

in which we have access only to the Boolean-valued function

φx�(x) = sign(Sx�(x))—that is, the method cannot observe

the underlying discriminant function F or its gradient. In this

section, we introduce a gradient-direction estimate based on

φx� when xt ∈ bd(Sx�) (so that Sx�(xt) = 0 by definition).

We proceed to discuss how to approach the boundary. Then

we discuss how to control the error of our estimate with a

deviation from the boundary. We will summarize the analysis

with a decision-based algorithm.

A. At the boundary

Given an iterate xt ∈ bd(Sx�) we propose to approximate

the direction of the gradient ∇Sx�(xt) via the Monte Carlo

estimate

∇̃S(xt, δ) :=
1

B

B∑
b=1

φx�(xt + δub)ub, (9)

where {ub}Bb=1 are i.i.d. draws from the uniform distribution

over the d-dimensional sphere, and δ is small positive param-

eter. (The dependence of this estimator on the fixed centering

point x� is omitted for notational simplicity.)

The perturbation parameter δ is necessary, but introduces a

form of bias in the estimate. Our first result controls this

bias, and shows that ∇̃S(xt, δ) is asymptotically unbiased as

δ → 0+.

Theorem 2. For a boundary point xt, suppose that Sx� has
L-Lipschitz gradients in a neighborhood of xt. Then the cosine
of the angle between ∇̃S(xt, δ) and ∇Sx�(xt) is bounded as

cos∠
(
E[∇̃S(xt, δ)],∇Sx�(xt)

)
≥ 1− 9L2δ2d2

8‖∇S(xt)‖22
. (10)
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In particular, we have

lim
δ→0

cos∠
(
E[∇̃S(xt, δ)],∇Sx�(xt)

)
= 1, (11)

showing that the estimate is asymptotically unbiased as an
estimate of direction.

We remark that Theorem 2 only establishes the asymptotic

behavior of the proposed estiamte at the boundary. This also

motivates the boundary search step in our algorithm to be

discussed in Seciton IV-B. The proof of Theorem 2 starts

from dividing the unit sphere into three components: the upper

cap along the direction of gradient, the lower cap opposite to

the direction of gradient, and the annulus in between. The

error from the annulus can be bounded when δ is small. See

Appendix A-B for the proof of this theorem. As will be seen

in the sequel, the size of perturbation δ should be chosen

proportionally to d−1; see Section IV-C for details.

B. Approaching the boundary

The proposed estimate (9) is only valid at the boundary. We

now describe how we approach the boundary via a binary

search. Let x̃t denote the updated sample before the operator

Πp
x,αt

is applied:

x̃t := xt + ξtvt(xt, δt), such that (12)

vt(xt, δt) =

{
∇̂S(xt, δt)/‖∇̂S(xt, δt)‖2, if p = 2,

sign(∇̂S(xt, δt)), if p = ∞,

where ∇̂S will be introduced later in equation (16), as a

variance-reduced version of ∇̃S, and δt is the size of per-

turbation at the t-th step.

We hope x̃t is at the opposite side of the boundary to x
so that the binary search can be carried out. Therefore, we

initialize at x̃0 at the target side with φx�(x̃0) = 1, and set

x0 := Πp
x,α0

(x̃0), where α0 is chosen via a binary search

between 0 and 1 to approach the boundary, stopped at x0 lying

on the target side with φx�(x0) = 1. At the t-th iteration, we

start at xt lying at the target side φx�(xt) = 1. The step size

is initialized as

ξt := ‖xt − x�‖p/
√
t, (13)

as suggested by Theorem 1 in the �2 case, and is decreased by

half until φx�(x̃t) = 1, which we call geometric progression of

ξt. Having found an appropriate x̃t, we choose the projection

radius αt via a binary search between 0 and 1 to approach

the boundary, which stops at xt+1 with φx�(xt+1) = 1. See

Algorithm 1 for the complete binary search, where the binary

search threshold θ is set to be some small constant.

Figure 2: Intuitive explanation of HopSkipJumpAttack. (a)

Perform a binary search to find the boundary, and then update

x̃t → xt. (b) Estimate the gradient at the boundary point xt.

(c) Geometric progression and then update xt → x̃t+1. (d)

Perform a binary search, and then update x̃t+1 → xt+1.

Algorithm 1 Bin-Search

Require: Samples x′, x, with a binary function φ, such that

φ(x′) = 1, φ(x) = 0, threshold θ, constraint �p.

Ensure: A sample x′′ near the boundary.

Set αl = 0 and αu = 1.

while |αl − αu| > θ do
Set αm ← αl+αu

2 .

if φ(Πx,αm
(x′)) = 1 then

Set αu ← αm.

else
Set αl ← αm.

end if
end while
Output x′′ = Πx,αu

(x′).

C. Controlling errors of deviations from the boundary

Binary search never places xt+1 exactly onto the boundary.

We analyze the error of the gradient-direction estimate, and

propose two approaches for reducing the error.

a) Appropriate choice of the size of random perturbation:
First, the size of random perturbation δt for estimating the

gradient direction is chosen as a function of image size d and

the binary search threshold θ. This is different from numerical

differentiation, where the optimal choice of δt is at the scale of

round-off errors (e.g., [23]). Below we characterize the error

incurred by a large δt as a function of distance between x̃t

and the boundary, and derive the appropriate choice of ξt and

δt. In fact, with a Taylor approximation of Sx� at xt, we have

Sx�(xt + δtu) = Sx�(xt) + δt
〈∇Sx�(xt), u

〉
+O(δ2t ).

At the boundary Sx�(xt) = 0, the error of gradient approxi-

mation scales at O(δ2t ), which is minimized by reducing δt to

the scale of rooted round-off error. However, the outcome xt

of a finite-step binary search lies close to, but not exactly on

the boundary.

When δt is small enough such that second-order terms can

be omitted, the first-order Taylor approximation implies that
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φx�(xt+δtu) = −1 if and only if xt+δtu lies on the spherical

cap C, with

C :=
{
u |

〈 ∇Sx�(xt)

‖∇Sx�(xt)‖2 , u
〉
< −δ−1

t

Sx�(xt)

‖∇Sx�(xt)‖2
}
.

On the other hand, the probability mass of u concentrates on

the equator in a high-dimensional sphere, which is character-

ized by the following inequality [24]:

P(u ∈ C) ≤ 2

c
exp{−c2

2
},where c =

√
d− 2Sx�(xt)

δt‖∇Sx�(xt)‖2 . (14)

A Taylor expansion of xt at x′
t := Π2

∂(xt) yields

Sx�(xt) = ∇Sx�(x′
t)

T (xt − x′
t) +O(‖xt − x′

t‖22)
= ∇Sx�(xt)

T (xt − x′
t) +O(‖xt − x′

t‖22).
By the Cauchy-Schwarz inequality and the definition of �2-

projection, we have

|∇Sx�(xt)
T (xt − x′

t)|
≤ ‖∇Sx�(xt)‖2‖xt −Π2

∂(xt)‖2

≤
{
‖∇Sx�(xt)‖2θ‖x̃t−1 − x�‖p, if p = 2,

‖∇Sx�(xt)‖2θ‖x̃t−1 − x�‖p
√
d, if p = ∞.

This yields

c = O(
dqθ‖x̃t−1 − x�‖p

δt
),

where q = 1 − (1/p) is the dual exponent. In order to avoid

a loss of accuracy from concentration of measure, we let

δt = dqθ‖x̃t−1 − x�‖2. To make the approximation error

independent of dimension d, we set θ at the scale of d−q−1,

so that δt is proportional to d−1, as suggested by Theorem 2.

This leads to a logarithmic dependence on dimension for the

number of model queries. In practice, we set

θ = d−q−1; δt = d−1‖x̃t−1 − x�‖p. (15)

b) A baseline for variance reduction in gradient-direction
estimation: Another source of error comes from the variance

of the estimate, where we characterize variance of a random

vector v ∈ R
d by the trace of its covariance operator:

Var(v) :=
∑d

i=1 Var(vi). When xt deviates from the boundary

and δt is not exactly zero, there is an uneven distribution of

perturbed samples at the two sides of the boundary:

|E[φx�(xt + δtu)]| > 0,

as we can see from Equation (14). To attempt to control the

variance, we introduce a baseline φx� into the estimate:

φx� :=
1

B

B∑
b=1

φx�(xt + δub),

which yields the following estimate:

∇̂S(xt, δ) :=
1

B − 1

B∑
b=1

(φx�(xt + δub)− φx�)ub. (16)

Algorithm 2 HopSkipJumpAttack

Require: Classifier C, a sample x, constraint �p, initial batch

size B0, iterations T .

Ensure: Perturbed image xt.

Set θ (Equation (15)).

Initialize at x̃0 with φx�(x̃0) = 1.

Compute d0 = ‖x̃0 − x�‖p.

for t in 1, 2, . . . , T − 1 do
(Boundary search)

xt = BIN-SEARCH(x̃t−1, x, θ, φx� , p)
(Gradient-direction estimation)

Sample Bt = B0

√
t unit vectors u1, . . . , uBt

.

Set δt (Equation (15)).

Compute vt(xt, δt) (Equation (12)).

(Step size search)

Initialize step size ξt = ‖xt − x�‖p/
√
t.

while φx�(xt + εtvt) = 0 do
ξt ← ξt/2.

end while
Set x̃t = xt + ξtvt.
Compute dt = ‖x̃t − x�‖p.

end for
Output xt = BIN-SEARCH(x̃t−1, x, θ, φx� , p).

It can be easily observed that this estimate is equal to the

previous estimate in expectation, and thus still asymptotically

unbiased at the boundary: When xt ∈ bd(Sx�), we have

cos∠
(
E[∇̂S(xt, δ)],∇Sx�(xt)

)
≥ 1− 9L2δ2d2

8‖∇S(xt)‖22
,

lim
δ→0

cos∠
(
E[∇̂S(xt, δ)],∇Sx�(xt)

)
= 1.

Moreover, the introduction of the baseline reduces the variance

when E[φx�(xt + δu)] deviates from zero. In particular, the

following theorem shows that whenever |E[φx�(xt + δu)]| =
Ω(B− 1

2 ), the introduction of a baseline reduces the variance.

Theorem 3. Defining σ2 := Var(φx�(xt + δu)u) as the
variance of one-point estimate, we have

Var(∇̂S(xt, δ)) < Var(∇̃S(xt, δ))(1− ψ),

where

ψ =
2

σ2(B − 1)

(
2BE[φx�(xt + δu)]2 − 1

)− 2B − 1

(B − 1)2
.

See Appendix A-C for the proof. We also present an experi-

mental evaluation of our gradient-direction estimate when the

sample deviates from the boundary in Appendix B, where

we show our proposed choice of δt and the introduction of

baseline yield a performance gain in estimating gradient.

D. HopSkipJumpAttack

We now combine the above analysis into an iterative algorithm,

HopSkipJumpAttack. It is initialized with a sample in the
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Table I: Median distance at various model queries. The smaller median distance at a given model query is bold-faced. BA and

HSJA stand for Boundary Attack and HopSkipJumpAttack respectively.

Distance Data Model Objective
Model Queries

1K 5K 20K
BA Opt HSJA BA Opt HSJA BA Opt HSJA

�2

MNIST CNN
Untargeted 6.14 6.79 2.46 5.45 3.76 1.67 1.50 2.07 1.48
Targeted 5.41 4.84 3.26 5.38 3.90 2.24 1.98 2.49 1.96

CIFAR10
ResNet

Untargeted 2.78 2.07 0.56 2.34 0.77 0.21 0.27 0.29 0.13
Targeted 7.83 8.21 2.53 5.91 4.76 0.41 0.59 1.06 0.21

DenseNet
Untargeted 2.57 1.78 0.48 2.12 0.67 0.18 0.21 0.28 0.12
Targeted 7.70 7.65 1.75 5.33 3.47 0.34 0.35 0.78 0.19

CIFAR100
ResNet

Untargeted 1.34 1.20 0.20 1.12 0.41 0.08 0.10 0.14 0.06
Targeted 9.30 12.43 6.12 7.40 8.34 0.92 1.61 4.06 0.29

DenseNet
Untargeted 1.47 1.22 0.25 1.23 0.34 0.11 0.12 0.13 0.08
Targeted 8.83 11.72 5.10 6.76 8.22 0.75 0.91 2.89 0.26

ImageNet ResNet
Untargeted 36.86 33.60 9.75 31.95 13.91 2.30 2.71 5.26 0.84
Targeted 87.49 84.38 71.99 82.91 71.83 38.79 40.92 53.78 10.95

�∞

MNIST CNN
Untargeted 0.788 0.641 0.235 0.700 0.587 0.167 0.243 0.545 0.136
Targeted 0.567 0.630 0.298 0.564 0.514 0.211 0.347 0.325 0.175

CIFAR10
ResNet

Untargeted 0.127 0.128 0.023 0.105 0.096 0.008 0.019 0.073 0.005
Targeted 0.379 0.613 0.134 0.289 0.353 0.028 0.038 0.339 0.010

DenseNet
Untargeted 0.114 0.119 0.017 0.095 0.078 0.007 0.017 0.063 0.004
Targeted 0.365 0.629 0.130 0.249 0.359 0.022 0.025 0.338 0.008

CIFAR100
ResNet

Untargeted 0.061 0.077 0.009 0.051 0.055 0.004 0.008 0.040 0.002
Targeted 0.409 0.773 0.242 0.371 0.472 0.124 0.079 0.415 0.019

DenseNet
Untargeted 0.065 0.076 0.010 0.055 0.038 0.005 0.010 0.030 0.003
Targeted 0.388 0.750 0.248 0.314 0.521 0.096 0.051 0.474 0.017

ImageNet ResNet
Untargeted 0.262 0.287 0.057 0.234 0.271 0.017 0.030 0.248 0.007
Targeted 0.615 0.872 0.329 0.596 0.615 0.219 0.326 0.486 0.091

target class for untargeted attack, and with a sample blended

with uniform noise that is misclassified for targeted attack.

Each iteration of the algorithm has three components. First,

the iterate from the last iteration is pushed towards the bound-

ary via a binary search (Algorithm 1). Second, the gradient

direction is estimated via Equation (16). Third, the updating

step size along the gradient direction is initialized as Equa-

tion (13) based on Theorem 1, and is decreased via geometric

progression until perturbation becomes successful. The next

iteration starts with projecting the perturbed sample back to

the boundary again. The complete procedure is summarized

in Algorithm 2. Figure 2 provides an intuitive visualization

of the three steps in �2. For all experiments, we initialize the

batch size at 100 and increase it with
√
t linearly, so that

the variance of the estimate reduces with t. When the input

domain is bounded in practice, a clip is performed at each step

by default.

V. EXPERIMENTS

In this section, we carry out experimental analysis of

HopSkipJumpAttack. We compare the efficiency of Hop-

SkipJumpAttack with several previously proposed decision-

based attacks on image classification tasks. In addition, we

evaluate the robustness of three defense mechanisms under

our attack method. All experiments were carried out on a Tesla

K80 GPU, with code available online.2 Our algorithm is also

2See https://github.com/Jianbo-Lab/HSJA/.

available on CleverHans [25] and Foolbox [26], which are

two popular Python packages to craft adversarial examples

for machine learning models.

A. Efficiency evaluation

a) Baselines: We compare HopSkipJumpAttack with three

state-of-the-art decision-based attacks: Boundary Attack [14],

Limited Attack [9] and Opt Attack [16]. We use the imple-

mentation of the three algorithms with the suggested hyper-

parameters from the publicly available source code online.

Limited Attack is only included under the targeted �∞ setting,

as in Ilyas et al. [9].

b) Data and models: For a comprehensive evaluation of

HopSkipJumpAttack, we use a wide range of data and models,

with varied image dimensions, data set sizes, complexity levels

of task and model structures.

The experiments are carried out over four image data sets:

MNIST, CIFAR-10 [27], CIFAR-100 [27], and ImageNet [28]

with the standard train/test split [29]. The four data sets have

varied image dimensions and class numbers. MNIST contains

70K 28 × 28 gray-scale images of handwritten digits in the

range 0-9. CIFAR-10 and CIFAR-100 are both composed of

32×32×3 images. CIFAR-10 has 10 classes, with 6K images

per class, while CIFAR-100 has 100 classes, with 600 images

per class. ImageNet has 1, 000 classes. Images in ImageNet

are rescaled to 224 × 224 × 3. For MNIST, CIFAR-10 and
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Figure 3: Median distance versus number of model queries on MNIST with CNN, and CIFAR-10 with ResNet and DenseNet

from top to bottom rows. 1st column: untargeted �2. 2nd col.: targeted �2. 3rd col.: untargeted �∞. 4th col.: targeted �∞.

CIFAR-100, 1, 000 correctly classified test images are used,

which are randomly drawn from the test data set, and evenly

distributed across classes. For ImageNet, we use 100 correctly

classified test images, evenly distributed among 10 randomly

selected classes. The selection scheme follows Metzen et al.

[30] for reproducibility.

We also use models of varied structure, from simple to

complex. For MNIST, we use a simple convolutional network

composed of two convolutional layers followed by a hidden

dense layer with 1024 units. Two convolutional layers have

32, 64 filters respectively, each of which is followed by a

max-pooling layer. For both CIFAR-10 and CIFAR-100, we

train a 20-layer ResNet [31] and 121-layer DenseNet [32]

respectively, with the canonical network structure [29]. For

ImageNet, we use a pre-trained 50-layer ResNet [31]. All mod-

els achieve close to state-of-the-art accuracy on the respective

data set. All pixels are scaled to be in the range [0, 1]. For

all experiments, we clip the perturbed image into the input

domain [0, 1] for all algorithms by default.

c) Initialization: For untargeted attack, we initialize all at-

tacks by blending an original image with uniform random

noise, and increasing the weight of uniform noise gradually

until it is misclassified, a procedure which is available on

Foolbox [26], as the default initialization of Boundary Attack.

For targeted attack, the target class is sampled uniformly

among the incorrect labels. An image belonging to the target

class is randomly sampled from the test set as the initialization.

The same target class and a common initialization image are

used for all attacks.

d) Metrics: The first metric is the median �p distance between

perturbed and original samples over a subset of test images,

which was commonly used in previous work, such as Carlini

and Wagner [6]. A version normalized by image dimension

was employed by Brendel et al. [14] for evaluating Boundary

Attack. The �2 distance can be interpreted in the following

way: Given a byte image of size h×w×3, perturbation of size

d in �2 distance on the rescaled input image amounts to per-

turbation on the original image of �d/√h× w × 3 ∗ 255� bits

per pixel on average, in the range [0, 255]. The perturbation

of size d in �∞ distance amounts to a maximum perturbation

of �255 · d� bits across all pixels on the raw image.

As an alternative metric, we also plot the success rate at

various distance thresholds for both algorithms given a limited

budget of model queries. An adversarial example is defined a

success if the size of perturbation does not exceed a given

distance threshold. The success rate can be directly related

to the accuracy of a model on perturbed data under a given
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Figure 4: Median distance versus number of model queries on CIFAR-100 with ResNet, DenseNet, and ImageNet with ResNet

from top to bottom rows. 1st column: untargeted �2. 2nd col.: targeted �2. 3rd col.: untargeted �∞. 4th col.: targeted �∞.

distance threshold:

perturbed acc. = original acc. × (1− success rate). (17)

Throughout the experiments, we limit the maximum budget of

queries per image to 25,000, the setting of practical interest,

due to limited computational resources.

e) Results: Figure 3 and 4 show the median distance (on a

log scale) against the queries, with the first and third quartiles

used as lower and upper error bars. For Boundary, Opt and

HopSkipJumpAttack, Table I summarizes the median distance

when the number of queries is fixed at 1,000, 5,000, and

20,000 across all distance types, data, models and objectives.

Figure 5 and 6 show the success rate against the distance

threshold. Figure 3 and 5 contain results on MNIST with CNN,

and CIFAR-10 with ResNet, Denset, subsequently from the

top row to the bottom row. Figure 4 and 6 contain results on

CIFAR-100 with ResNet and DenseNet, and ImageNet with

ResNet, subsequently from the top row to the bottom row. The

four columns are for untargeted �2, targeted �2, untargeted �∞
and targeted �∞ attacks respectively.

With a limited number of queries, HopSkipJumpAttack is

able to craft adversarial examples of a significantly smaller

distance with the corresponding original examples across all

data sets, followed by Boundary Attack and Opt Attack. As a

concrete example, Table I shows that untargeted �2-optimized

HopSkipJumpAttack achieves a median distance of 0.559 on

CIFAR-10 with a ResNet model at 1, 000 queries, which

amounts to below 3/255 per pixel on average. At the same

budget of queries, Boundary Attack and Opt Attack only

achieve median �2-distances of 2.78 and 2.07 respectively.

The difference in efficiency becomes more significant for

�∞ attacks. As shown in Figure 5, under an untargeted �∞-

optimized HopSkipJumpAttack with 1,000 queries, all pixels

are within an 8/255-neighborhood of the original image for

around 70% of adversarial examples, a success rate achieved

by Boundary Attack only after 20,000 queries.

By comparing the odd and even columns of Figure 3-6,

we can find that targeted HopSkipJumpAttack takes more

queries than the untargeted one to achieve a comparable

distance. This phenomenon becomes more explicit on CIFAR-

100 and ImageNet, which have more classes. With the same

number of queries, there is an order-of-magnitude difference

in median distance between untargeted and targeted attacks

(Figure 3 and 4). For �2-optimized HopSkipJumpAttack, while

the untargeted version is able to craft adversarial images by

perturbing 4 bits per pixel on average within 1,000 queries

for 70% − 90% of images in CIFAR-10 and CIFAR-100,

the targeted counterpart takes 2,000-5,000 queries. The other

attacks fail to achieve a comparable performance even with
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Figure 5: Success rate versus distance threshold for MNIST with CNN, and CIFAR-10 with ResNet, DenseNet from top to

bottom rows. 1st column: untargeted �2. 2nd column: targeted �2. 3rd column: untargeted �∞. 4th column: targeted �∞.

25,000 queries. On ImageNet, untargeted �2-optimized Hop-

SkipJumpAttack is able to fool the model with a perturbation

of size 6 bits per pixel on average for close to 50% of

images with 1, 000 queries; untargeted �∞-optimized Hop-

SkipJumpAttack controls the maximum perturbation across all

pixels within 16 bits for 50% images within 1, 000 queries.

The targeted Boundary Attack is not able to control the

perturbation size to such a small scale until after around

25, 000 queries. On the one hand, the larger query budget

requirement results from a strictly more powerful formulation

of targeted attack than untargeted attack. On the other hand,

this is also because we initialize targeted HopSkipJumpAttack

from an arbitrary image in the target class. The algorithm may

be trapped in a bad local minimum with such an initialization.

Future work can address systematic approaches to better

initialization.

As a comparison between data sets and models, we see

that adversarial images often have a larger distance to their

corresponding original images on MNIST than on CIFAR-10

and CIFAR-100, which has also been observed in previous

work (e.g., [6]). This might be because it is more difficult

to fool a model on simpler tasks. On the other hand, Hop-

SkipJumpAttack also converges in a fewer number of queries

on MNIST, as is shown in Figure 3. It does not converge even

after 25, 000 queries on ImageNet. We conjecture the query

budget is related to the input dimension, and the smoothness of

decision boundary. We also observe the difference in model

structure does not have a large influence on decision-based

algorithms, if the training algorithm and the data set keep the

same. For ResNet and DenseNet trained on a common data set,

a decision-based algorithm achieves comparable performance

in crafting adversarial examples, although DenseNet has a

more complex structure than ResNet.

As a comparison with state-of-the-art white-box targeted at-

tacks, C&W attack [6] achieves an average �2-distance of

0.33 on CIFAR-10, and BIM [3] achieves an average �∞-

distance of 0.014 on CIFAR-10. Targeted HopSkipJumpAttack

achieves a comparable distance with 5K-10K model queries

on CIFAR-10, without access to model details. On ImageNet,

targeted C&W attack and BIM achieve an �2-distance of

0.96 and an �∞-distance of 0.01 respectively. Untargeted

HopSkipJumpAttack achieves a comparable performance with

10, 000− 15, 000 queries. The targeted version is not able to

perform comparably as targeted white-box attacks when the

budget of queries is limited within 25, 000.

Visualized trajectories of HopSkipJumpAttack optimized for

�2 distances along varied queries on CIFAR10 and ImageNet

can be found in Figure 7. On CIFAR-10, we observe untar-

geted adversarial examples can be crafted within around 500
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Figure 6: Success rate versus distance threshold for CIFAR-100 with ResNet, DenseNet, and ImageNet with ResNet from top

to bottom rows. 1st column: untargeted �2. 2nd column: targeted �2. 3rd column: untargeted �∞. 4th column: targeted �∞.

queries; targeted HopSkipJumpAttack is capable of crafting

human indistinguishable targeted adversarial examples within

around 1, 000 − 2, 000 queries. On ImageNet, untargeted

HopSkipJumpAttack is able to craft good adversarial examples

with 1, 000 queries, while targeted HopSkipJumpAttack takes

10, 000− 20, 000 queries.

B. Defense mechanisms under decision-based attacks

We investigate the robustness of various defense mechanisms

under decision-based attacks.

a) Defense mechanisms: Three defense mechanisms are eval-

uated: defensive distillation, region-based classification, and

adversarial training. Defensive distillation [33], a form of

gradient masking [13], trains a second model to predict the

output probabilities of an existing model of the same structure.

We use the implementaion provided by Carlini and Wagner [6]

for defensive distillation. The second defense, region-based

classification, belongs to a wide family of mechanisms which

add test-time randomness to the inputs or the model, causing

the gradients to be randomized [34]. Multiple variants have

been proposed to randomize the gradients [35–39]. We adopt

the implementation in Cao and Gong [35] with suggested noise

levels. Given a trained base model, region-based classification

samples points from the hypercube centered at the input image,

predicts the label for each sampled point with the base model,

and then takes a majority vote to output the label. Adversarial

training [2, 3, 7, 17] is known to be one of the most effective

defense mechanisms against adversarial perturbation [34, 40].

We evaluate a publicly available model trained through a

robust optimization method proposed by Madry et al. [7].

We further evaluate our attack method by constructing a

non-differentiable model via input binarization followed by

a random forest in Appendix C. The evaluation is carried out

on MNIST, where defense mechanisms such as adversarial

training work most effectively.

b) Baselines: We compare our algorithm with state-of-the-art

attack algorithms that require access to gradients, including

C&W Attack [6], DeepFool [4] for minimizing �2-distance,

and FGSM [2], and BIM [7, 41] for minimizing �∞-distance.

For region-based classification, the gradient of the base clas-

sifier is taken with respect to the original input.

We further include methods designed specifically for the

defense mechanisms under threat. For defensive distillation,

we include the �∞-optimized C&W Attack [6]. For region-

based classification, we include backward pass differentiable

approximation (BPDA) [34], which calculates the gradient of

the model at a randomized input to replace the gradient at the

original input in C&W Attack and BIM. All of these methods
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Untargeted �2 Attack Targeted �2 Attack
Trajectories on CIFAR-10

Untargeted �2 Attack Targeted �2 Attack
Trajectories on ImageNet

Figure 7: Visualized trajectories of HopSkipJumpAttack for optimizing �2 distance on randomly selected images in CIFAR-10

and ImageNet. 1st column: initialization (after blended with original images). 2nd-9th columns: images at 100, 200, 500, 1K,

2K, 5K, 10K, 25K model queries. 10th column: original images.

assume access to model details or even defense mechanisms,

which is a stronger threat model than the one required for

decision-based attacks. We also include Boundary Attack as a

decision-based baseline.

For HopSkipJumpAttack and Boundary Attack, we include

the success rate at three different scales of query budget:

2K, 10K and 50K, so as to evaluate our method both with

limited queries and a sufficient number of queries. We find

the convergence of HopSkipJumpAttack becomes unstable

on region-based classification, resulting from the difficulty

of locating the boundary in the binary search step when

uncertainty is increased near the boundary. Thus, we increase

the binary search threshold to 0.01 to resolve this issue.

c) Results: Figure 8 shows the success rate of various at-

tacks at different distance thresholds for the three defense

mechanisms. On all of the three defenses, HopSkipJumpAt-

tack demonstrates similar or superior performance compared

to state-of-the-art white-box attacks with sufficient model

queries. Even with only 1K-2K model queries, it also achieves

acceptable performance, although worse than the best white-

box attacks. With sufficient queries, Boundary Attack achieves

a comparable performance under the �2-distance metric. But

it is not able to generate any adversarial examples when the

number of queries is limited to 1, 000. We think this is because

the strength of our batch gradient direction estimate over the

random walk step in Boundary Attack becomes more explicit

when there is uncertainty or non-smoothness near the decision

boundary. We also observe that Boundary Attack does not

work in optimizing the �∞-distance metric for adversarial

examples, making it difficult to evaluate defenses designed for

�∞ distance, such as adversarial training proposed by Madry

et al. [7].

On a distilled model, when the �∞-distance is thresholded

at 0.3, a perturbation size proposed by Madry et al. [7] to

measure adversarial robustness, HopSkipJumpAttack achieves

success rates of 86% and 99% with 1K and 50K queries

respectively. At an �2-distance of 3.0, the success rate is 91%
with 2K queries. HopSkipJumpAttack achieves a comparable

performance with C&W attack under both distance metrics

with 10K-50K queries. Also, gradient masking [13] by defen-

sive distillation does not have a large influence on the query

efficiency of HopSkipJumpAttack, indicating that the gradient

direction estimate is robust under the setting where the model

does not have useful gradients for certain white-box attacks.

On region-based classification, with 2K queries, Hop-

SkipJumpAttack achieves success rates of 82% and 93%
at the same �∞- and �2-distance thresholds respectively.

With 10K-50K queries, it is able to achieve a comparable

performance to BPDA, a white-box attack tailored to such

defense mechanisms. On the other hand, we observe that Hop-

SkipJumpAttack converges slightly slower on region-based

classification than itself on ordinary models, which is because

stochasticity near the boundary may prevent binary search in

HopSkipJumpAttack from locating the boundary accurately.

On an adversarially trained model, HopSkipJumpAttack

achieves a success rate of 11.0% with 50K queries when

the �∞-distance is thresholded at 0.3. As a comparison, BIM
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Figure 8: Success rate versus distance threshold for a distilled model, a region-based classifier and an adversarially trained

model on MNIST. Blue, magenta, cyan and orange lines are used for HopSkipJumpAttack and Boundary Attack at the budget

of 1K, 2K, 10K and 50K respectively. Different attacks are plotted with different line styles. An amplified figure is included

near the critical �∞-distance of 0.3 for adversarial training.

has a success rate of 7.4% at the given distance threshold.

The success rate of �∞-HopSkipJumpAttack transfers to an

accuracy of 87.58% on adversarially perturbed data, close

to the state-of-the-art performance achieved by white-box

attacks.3 With 1K queries, HopSkipJumpAttack also achieves

comparable performance to BIM and C&W attack.

VI. DISCUSSION

We have proposed a family of query-efficient algorithms based

on a novel gradient-direction estimate, HopSkipJumpAttack,

for decision-based generation of adversarial examples, which

is capable of optimizing �2 and �∞-distances for both targeted

and untargeted attacks. Convergence analysis has been carried

out given access to the gradient. We have also provided

analysis for the error of our Monte Carlo estimate of gra-

dient direction, which comes from three sources: bias at the

boundary for a nonzero perturbation size, bias of deviation

from the boundary, and variance. Theoretical analysis has

provided insights for selecting the step size and the pertur-

bation size, which leads to a hyperparameter-free algorithm.

We have also carried out extensive experiments, showing

HopSkipJumpAttack compares favorably to Boundary Attack

in query efficiency, and achieves competitive performance on

several defense mechanisms.

3See https://github.com/MadryLab/mnist challenge.

Given the fact that HopSkipJumpAttack is able to craft a

human-indistinguishable adversarial example within a realistic

budget of queries, it becomes important for the community

to consider the real-world impact of decision-based threat

models. We have also demonstrated that HopSkipJumpAt-

tack is able to achieve comparable or even superior perfor-

mance to state-of-the-art white-box attacks on several de-

fense mechanisms, under a much weaker threat model. In

particular, masked gradients, stochastic gradients, and non-

differentiability are not barriers to our algorithm. Because

of its effectiveness, efficiency, and applicability to non-

differentiable models, we suggest future research on adver-

sarial defenses may evaluate the designed mechanism against

HopSkipJumpAttack as a first step.

One limitation of all existing decision-based algorithms, in-

cluding HopSkipJumpAttack, is that they require evaluation

of the target model near the boundary. They may not work

effectively by limiting the queries near the boundary, or

by widening the decision boundary through insertion of an

additional “unknown” class for inputs with low confidence.

We have also observed that it still takes tens of thousands of

model queries for HopSkipJumpAttack to craft imperceptible

adversarial examples with a target class on ImageNet, which

has a relatively large image size. Future work may seek the

combination of HopSkipJumpAttack with transfer-based attack

to resolve these issues.
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APPENDIX A

PROOFS

For notational simplicity, we use the shorthand S ≡ Sx�

throughout the proofs.

A. Proof of Theorem 1

We denote τt := ξt/‖∇S(xt)‖2, so that the update (3) at

iterate t can be rewritten as

xt+1 = αtx
� + (1− αt)(xt + τt∇S(xt)). (18)

Let the step size choice ξt = ηt‖xt − x�‖ with ηt := t−q , we

have τt = ηt
‖xt−x�‖
‖∇S(xt)‖ .

The squared distance ratio is

‖xt+1 − x�‖22
‖xt − x�‖22

=
‖(1− α)(τt∇S(xt) + xt − x�)‖22

‖xt − x�‖22
. (19)

By a second-order Taylor series, we have

0 =
〈∇S(xt), xt+1 − xt

〉
+

1

2
(xt+1 − xt)

THt(xt+1 − xt),

(20)

where Ht = ∇2S(βxt+1 + (1 − β)xt) for some β ∈ [0, 1].
Plugging equation (18) into equation (20) yields〈∇S(xt), −αvt + τt∇S(xt)

〉
+

1

2
(−αvt + τt∇S(xt))

THt(−αvt + τt∇S(xt)) = 0, (21)

where we define vt := xt − x� + τt∇S(xt). This can be

rewritten as a quadratic equation with respect to α:

vTt Htvtα
2 − 2∇S(xt)

T (I + τtHt)vtα

+∇S(xt)
T (τ2t Ht + 2τtI)∇S(xt) = 0. (22)

Solving for α yields

α ≥ ∇S(xt)
T (τ2t Ht + 2τtI)∇S(xt)

2∇S(xt)T (I + τtHt)vt
. (23)

In order to simplify the notation, define ∇t := ∇S(xt) and

dt := xt − x�. Hence, we have

(1− α)2 ≤
( rt + ηt · 3

2L
‖dt‖2

‖∇t‖2

rt + ηt · (1 + 3
2L

‖dt‖2

‖∇t‖2
)

)2

,

where

rt =
〈xt − x�,∇S(xt)〉

‖xt − x�‖2‖∇S(xt)‖2 =
〈dt,∇t〉

‖dt‖2‖∇t‖2 . (24)

Let κt := 3
2L

‖dt‖2

‖∇t‖2
. Then κt is bounded when ‖∇t‖2 ≥ C̃

and q > 1
2 . Equation (19) and the bound on (1− α)2 yield

‖xt+1 − x�‖22
‖xt − x�‖22

≤
( rt + ηtκt

rt + ηt(1 + κt)

)2

· (η2t + 2ηtrt + 1).

(25)

Define θt :=
(

rt+ηtκt

rt+ηt(1+κt)

)2

· (η2t + 2ηtrt + 1). We analyze

θt in the following two different cases: rt < ηt and rt ≥ ηt.
In the first case, we have

θt ≤
( 1 + κt

1 + (1 + κt)

)2

· (η2t + 2η2t + 1). (26)

As long as ηt → 0 as t → ∞, there exists a positive constant

c2 > 0 such that θt < 1− c2 for t large enough.

In the second case, we have rt ≥ ηt. Define λt := ηt

rt
≤ 1.

We bound θt by

θt =
(1 + 2λtκt + λ2

tκ
2
t )(η

2
t + 2ηtrt + 1)

1 + 2λt(1 + κt) + λ2
t (1 + κt)2

≤ 1 + 2λtκt + λ2
tκ

2
t + 2λtr

2
t

1 + 2λtκt + λ2
tκ

2
t + 2λt

+

η2t (4κt + (1 + λtκt)
2 + 2λtκ

2
t )

≤ 1− 2λt(1− r2t )

1 + 2λtκt + λ2
tκ

2
t + 2λt

+ cη2t

≤ 1− c1λt(1− r2t ) + c2η
2
t ,

1291

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 04,2025 at 15:17:15 UTC from IEEE Xplore.  Restrictions apply. 



where c1, c2 are fixed constants. As the product of θt over t
is positive, we have

∞∑
t=1

log θt = logΠ∞
t=1θt > −∞. (27)

Then we have that there are at most a finite number of t that

falls in the first case, rt < ηt. In the second case, Equation (27)

is equivalent to

∞∑
t=1

c1ηt
1− r2t
rt

− c2η
2
t < ∞,

which implies c1ηt
1−r2t
rt

− c2η
2
t = o(t−1). When ηt = t−q for

some constant 1
2 < q < 1, we have

1− r2t
rt

= o(tq−1).

Hence we have 1− rt = o(tq−1).

B. Proof of Theorem 2

Let u be a random vector uniformly distributed on the sphere.

By Taylor’s theorem, for any δ ∈ (0, 1), we have

S(xt + δu) = δ∇S(xt)
Tu+

1

2
δ2uT∇2S(x′)u. (28)

for some x′ on the line between xt and xt + δu, where we

have made use of the fact that S(xt) = 0. As the function S
has Lipschitz gradients, we can bound the second-order term

as

|1
2
δ2uT∇2S(x′)u| ≤ 1

2
Lδ2. (29)

Let w := 1
2Lδ. By the Taylor expansion and the bound on the

second-order term by eigenvalues, when ∇S(xt)
Tu > w, we

have

S(xt + δu) ≥ δ∇S(xt)
Tu+

1

2
δ2uT∇2S(x′)u

≥ δ(∇S(xt)
Tu− 1

2
Lδ) > 0.

Similarly, we have S(xt + δu) < 0 when ∇S(xt)
Tu < −w.

Therefore, we have

φx(xt + δu) =

{
1 if ∇S(xt)

Tu > w,

−1 if ∇S(xt)
Tu < −w.

We expand the vector ∇S(xt) to an orthogonal bases in R
d:

v1 = ∇S(xt)/‖∇S(xt)‖2, v2, . . . , vd. The random vector u
can be expressed as u =

∑d
i=1 βivi, where β is uniformly

distributed on the sphere. Denote the upper cap as E1 :=
{∇S(xt)

Tu > w}, the annulus as E2 := {|∇S(xt)
Tu| <

w}, and the lower cap as E3 := {∇S(xt)
Tu < −w}. Let

p := P(E2) be the probability of event E2. Thus we have

P(E1) = P(E3) = (1 − p)/2. By symmetry, for any i �= 1,

we have

E[βi | E1] = E[βi | E3] = 0.

Therefore, the expected value of the estimator is

E[φx(xt + δu)u] = p · (E[φx(xt + δu)u | E2]

− 1

2
E[β1v1 | E1]− 1

2
E[−β1v1 | E3]

)
+ E[β1v1 | E1] + E[−β1v1 | E3]

Exploiting the above derivation, we can bound the difference

between E[|β1|v1] = E|β1|
‖∇S(xt)‖2

∇S(xt) and E[φx(xt + δu)u]:

‖E[φx(xt + δu)u]− E[|β1|v1]‖2 ≤ 2p+ p = 3p,

which yields

cos∠ (E[φx(xt + δu)u],∇S(xt)) ≥ 1− 1

2

( 3p

E|β1|
)2

. (30)

We can bound p by observing that 〈 ∇S(xt)
‖∇S(xt)‖2

, u〉2 is a Beta

distribution B( 12 , d−1
2 ):

p = P

(
〈 ∇S(xt)

‖∇S(xt)‖2 , u〉
2 ≤ w2

‖∇S(xt)‖22
)

≤ 2w

B( 12 , d−1
2 )‖∇S(xt)‖2

.

Plugging into Equation (30), we get

cos∠ (E[φx(xt + δu)u],∇S(xt))

≥ 1− 18w2

(E|β1|)2B( 12 , d−1
2 )2‖∇S(xt)‖22

= 1− 9L2δ2(d− 1)2

8‖∇S(xt)‖22
.

We also observe that

E∇̃S(xt, δ) = E[φx(xt + δu)u].

As a consequence, we have established

cos∠
(
E[∇̃S(xt, δ)],∇S(xt)

)
≥ 1− 9L2δ2(d− 1)2

8‖∇S(xt)‖22
.

Taking δ → 0, we get

lim
δ→0

cos∠
(
E[∇̃S(xt, δ)],∇S(xt)

)
= 1.

C. Proof of Theorem 3

Proof. For notational simplicity, we denote ξb := φx(xt +
δub), and ξ̄ = 1

B

∑B
b=1 ξb = φx. We use ξ, u to denote i.i.d.

copies of ξb and ub respectively. By exploiting independence
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of ua, ub and independence of ξaua, ξbub, the variance of the

estimate with the baseline can be expressed as

Var(∇̂S(xt, δ))

=
1

(B − 1)2

B∑
a=1

(
E

∥∥∥ξaua − E[ξu]
∥∥∥2
2
− 2E[ξ̄ξa]+

Eξ̄2 + (
2

B
− 1

B2
)‖E[ξu]‖2

)
+

‖Eξu‖22
B(B − 1)

=
B2Var(∇̃S(xt, δ))

(B − 1)2
− BE[ξ̄2]

(B − 1)2
+

(3B − 2)‖E[ξu]‖22
B(B − 1)2

≤ B2Var(∇̃S(xt, δ))

(B − 1)2
− BE[ξ̄2]

(B − 1)2
+

3B − 2

B(B − 1)2
. (31)

The middle term can be expanded as

− B

(B − 1)2
E[ξ̄2] = − 1

(B − 1)2
− 4

B − 1
(Eξ − 1

2
)2.

Plugging into Equation (31), we get

Var(∇̂S(xt, δ)) = Var(∇̃S(xt, δ))
{
1 +

2B − 1

(B − 1)2
−

2

σ2(B − 1)

(
2B(E[ξ]− 1

2
)2 − 1

)}
.

When E[ξ] satisfies (E[ξ]− 1
2 )

2 > 1
2B (1+ 2B−1

2B−2σ
2), we have

2B − 1

(B − 1)2
<

2

σ2(B − 1)
(2B(E[ξ]− 1

2
)2 − 1),

which implies Var(∇̂S(xt, δ)) < Var(∇̃S(xt, δ)).

APPENDIX B

SENSITIVITY ANALYSIS

In this section, we carry out experiments to evaluate the hyper-

parameters suggested by our theoretical analysis. We use a

20-layer ResNet [31] trained over CIFAR-10 [27]. We run the

�2-optimized HopSkipJumpAttack over a subset of randomly

sampled images.

a) Choice of step size: We compare several schemes of

choosing step size at each step. The first scheme is suggested

by Theorem 1: at the t-th step, we set ξt = ‖xt − x�‖2/
√
t,

which we call “Scale with Distance (Sqrt. Decay).” We include

the other two scales which scale with distance, “Scale with

Distance (Linear Decay)” with ξt = ‖xt − x�‖2/t and “Scale

with Distance (No Decay)” with ξt = ‖xt − x�‖2. We then

include “Grid Search,” which searchs step sizes over a log-

scale grid, and chooses the step size that best controls the

distance with the original sample after projecting the updated

sample back to the boundary via binary search. Finally, we

include constant stepsizes at ξt = 0.01, 0.1, 1.0. For all

schemes, we always use geometric progression to decrease

the step size by half until φx�(x̃t) = 1 before the next binary

search step.
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Number of Queries

10−2

10−1

100

101

� 2
D
is
ta
n
ce

Comparison of Step Size Schemes

Figure 9: Comparison of various choices of step size.

Figure 9 plots the median distance against the number of

queries for all schemes. We observe that the scheme sug-

gested by Theorem 1 achieves the best performance in this

experiment. Grid search costs extra query budget initially but

eventually achieves a comparable convergence rate. When the

step size scales with the distance but with inappropriately

chosen decay, the algorithm converges slightly slower. The

performance of the algorithm suffers from a constant step size.

b) Choice of perturbation size and introduction of baseline:
We now study the effectiveness of the proposed perturbation

size and baseline for estimating gradient direction when the

sample deviates from the boundary. In particular, we focus on

the choice of δt and the introduction of baseline analyzed in

Section IV. Gradient direction estimation is carried out at per-

turbed images at the ith iteration, for i = 10, 20, 30, 40, 50, 60.

We use the cosine of the angle between the gradient-direction

estimate and the truth gradient of the model as a metric.

Figure 10 shows the box plots of two gradient-direction

estimates as δt varies among 0.01δ∗t , 0.1δ
∗
t , δ

∗
t , 10δ

∗
t , 100δ

∗
t ,

where δ∗t = 10
√
dθ‖x̃t−1 − x�‖2 is our proposed choice. We

observe that our proposed choice of δt yields the highest cosine

of the angle on average. Also, the baseline in ∇̂S further

improves the performance, in particular when δt is not chosen

optimally so that there is severe unevenness in the distribution

of perturbed images.
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Figure 10: Box plots of the cosine of the angle between the

proposed estimates and the true gradient.

APPENDIX C

MODEL WITHOUT GRADIENTS

In this section, we evaluate HopSkipJumpAttack on a model

without gradients. We aim to show HopSkipJumpAttack is

able to craft adversarial examples under weaker conditions,

such as non-differentiable models, or even discontinuous input

transform.

Concretely, we implement input binarization followed by a

random forest on MNIST. Binarization transforms an input

image to an array of {0, 1}, but transforming all pixels larger

than a given threshold to 1, and all pixels smaller than the

threshold to 0. The algorithm for training random forests

applies bootstrap aggregating to tree learners. We implement

the random forest with default parameters in scikit-learn [42],

using the Gini impurity as split criterion. For each split,
√
d

randomly selected features are used, where d = 28 × 28
is the number of pixels. We evaluate two random forests

with different thresholds for binarization: 0.1 and 0.5. With

the first threshold, the model achieves the highest accuracy,

96%, on natural test data. The second threshold yields the

most robust performance under adversarial perturbation, with

accuracy 94.5% on natural test data.

For both Boundary Attack and HopSkipJumpAttack, we adopt

the same initialization and hyper-parameters as in Section V-A.

The original image (with real values) is used as input to both

attacks for model queries. When an image is fed into the

model by the attacker, the model processes the image with

binarization first, followed by the random forest. Such a design

preserves the black-box assumption for decision-based attacks.

We only focus on untargeted �2 attack here. Note that over

91% of the pixels on MNIST are either greater than 0.9 or less

than 0.1, and thus require a perturbation of size at least 0.4 to

change their outputs after being thresholded by 0.5. This fact

makes �∞ perturbation inappropriate for crafting adversarial

examples.
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Figure 11: Median �2 distance versus number of model queries

on MNIST with binarization + random forest. The threshold

of binarization is set to be 0.1 and 0.5 respectively.

0 2 4 6
�2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

1K

1K

2K

2K

10K 10K 25K 25K

Untargeted �2 (Binarization (≥ 0.1) + RF)

0 2 4 6
�2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

1K
1K

2K

2K

10
K

10K

25K

25K

Untargeted �2 (Binarization (≥ 0.5) + RF)

Figure 12: Success rate versus distance threshold on MNIST

with binarization + random forest. The threshold of binariza-

tion is set to be 0.1 and 0.5 respectively.

Figure 11 shows the median distance (on a log scale) against

the queries, with the first and third quartiles used as lower and

upper error bars. Figure 12 shows the success rate against the

distance threshold.

When the threshold is set to be 0.1, the random forest

with binarization becomes extremely vulnerable to adversarial

examples. Around 96% adversarial examples fall into the size-

3 �2-neighborhood of the respective original examples with

1K model queries of HopSkipJumpAttack. The vulnerability

is caused by the ease of activating pixels through increasing

the strength by 0.1. It also indicates HopSkipJumpAttack and

Boundary Attack are able to craft adversarial examples without

smooth decision boundaries.

When the threshold is set to be 0.5, we have a more

robust model. A median �2distance of 3 is achieved by

HopSkipJumpAttack through 3K model queries. It takes 25K

queries to achieve 99% success rate at an �2 distance of

3 for HopSkipJumpAttack. On the other hand, we observe

that Boundary Attack only achieves a median distance of 5
even with 25K model queries. This might result from the

inefficiency in spending queries on random walk instead of

“gradient direction” estimation step in HopSkipJumpAttack.

We remark that the concept of “gradient direction” requires

an alternative definition in the current setting, such as a

formulation via subgradients.
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