
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization

Sushant Dinesh

Purdue University

Nathan Burow

Purdue University

Dongyan Xu

Purdue University

Mathias Payer

EPFL

Abstract—Analyzing the security of closed source binaries is
currently impractical for end-users, or even developers who rely
on third-party libraries. Such analysis relies on automatic vulner-
ability discovery techniques, most notably fuzzing with sanitizers
enabled. The current state of the art for applying fuzzing or
sanitization to binaries is dynamic binary translation, which has
prohibitive performance overhead. The alternate technique, static
binary rewriting, cannot fully recover symbolization information
and hence has difficulty modifying binaries to track code coverage
for fuzzing or to add security checks for sanitizers.

The ideal solution for binary security analysis would be a static
rewriter that can intelligently add the required instrumentation
as if it were inserted at compile time. Such instrumentation
requires an analysis to statically disambiguate between references
and scalars, a problem known to be undecidable in the general
case. We show that recovering this information is possible in
practice for the most common class of software and libraries:
64-bit, position independent code. Based on this observation,
we develop RetroWrite, a binary-rewriting instrumentation
to support American Fuzzy Lop (AFL) and Address Sanitizer
(ASan), and show that it can achieve compiler-level perfor-
mance while retaining precision. Binaries rewritten for coverage-
guided fuzzing using RetroWrite are identical in performance
to compiler-instrumented binaries and outperform the default
QEMU-based instrumentation by 4.5x while triggering more
bugs. Our implementation of binary-only Address Sanitizer is 3x
faster than Valgrind’s memcheck, the state-of-the-art binary-only
memory checker, and detects 80% more bugs in our evaluation.

I. INTRODUCTION

Most software for commodity systems is closed source, and

even developers for such systems frequently rely on closed

source libraries. Even on Linux, widely used applications such

as Skype, the Google Hangouts plugin, or video codecs are

closed source. Consequently, users (and even developers) are

at the mercy of third-parties to detect and patch the inevitable

security issues. While mitigations such as ASLR [1], DEP [2],

Stack Canaries [3], or CFI [4], [5] protect against exploitation,

they cannot pinpoint the underlying vulnerability.

To discover memory errors during testing, best practices

combine a feedback-guided fuzzer with sanitization. Both re-

quire information about the execution of the test cases. Fuzzers

such as AFL [6] leverage coverage to guide exploration while

tools such as Address Sanitizer (ASan) [7] check memory

accesses for possible violations. These tools are implemented

as compiler-passes to instrument the code during compilation,

resulting in low runtime overhead. Existing approaches for bi-

nary software testing either: (i) resort to blackbox fuzzing [8],

resulting in shallow coverage close to the provided test cases,

(ii) rely on dynamic binary translation [9], [10] to instrument

the binary at prohibitively high runtime cost (e.g., 10x to 100x

for AFL fuzzing in QEMU mode on LAVA-M [11]), or (iii)

use unsound static rewriting based on heuristics [12], [13].

The fundamental difficulty for static rewriting techniques

is disambiguating reference and scalar constants, so that a

program can be “reflowed”, i.e., having its code and data

pointers adjusted according to the inserted instrumentation and

data section changes. During assembly, labels are translated

into relative offsets or relocation entries. A static binary

rewriter must recover all these offsets correctly. There are

three fundamental techniques to rewrite binaries: (i) recompi-

lation [14], which attempts to lift the code to an intermediate

representation; (ii) trampolines [15], [16], which relies on indi-

rection to insert new code segments without changing the size

of basic blocks; and (iii) reassembleable assembly [12], [13],

which creates an assembly file equivalent to what a compiler

would emit, i.e., with relocation symbols for the linker to

resolve. Lifting code to IR for recompilation requires correctly

recovering type information from binaries, which remains an

open problem. Trampolines may significantly increase code

size, and the extra level of indirection increases performance

overhead. Consequently, we believe that resymbolizing bina-

ries for reassembleable assembly is one the most promising

technique for static binary rewriting.

In this paper, we show that static binary rewriting, lever-

aging reassembleable assembly, can produce sound and effi-

cient code for an important class of binaries: 64-bit position-
independent code (PIC). Notably, such binaries include third

party shared libraries, the analysis of which is the most

pressing use-case for such a rewriter. Our rewriting technique,

called RetroWrite, leverages relocation information which

is required for position independent code, and produces assem-

bly files that can be reassembled into binaries. To show the

versatility of RetroWrite, we present case studies where

we perform instrumentation for AFL and ASan on binaries.

We identify two key requirements for fuzzing binaries:

(i) To maximize fuzzer throughput, we need a mechanism

to generate instrumented binaries that are as performant as

binaries instrumented at compile-time, and (ii) such rewrit-

ing should be sound (binaries still behave as expected) and

scalable to support real-world use cases. Attempts to statically

instrument binaries using DynInst [17] are not widely adopted

as they do not satisfy the second criteria (in our evaluation

afl-dyninst is ineffective in finding bugs despite its high

throughput, we hypothesize that the instrumentation incor-

rectly tracks coverage). Our afl-retrowrite pass stati-

cally instruments binaries that are just as performant as their
compiler instrumented counterparts. As RetroWrite is fun-

damentally sound in rewriting the binaries it supports, it can be

widely adopted as a replacement to the current QEMU-based

instrumentation when fuzzing position-independent code.

Our evaluation of afl-retrowrite focuses on fuzzing

1497

2020 IEEE Symposium on Security and Privacy

© 2020, Sushant Dinesh. Under license to IEEE.
DOI 10.1109/SP40000.2020.00009

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

throughput and effectiveness on seven real-world applica-

tions: readelf, bzip2, file, bsdtar, pngfix,
tiff2rgba, and tcpdump, and on the LAVA-M bench-

marks. afl-retrowrite has 4.2x and 5.6x higher fuzzing
throughput compared to QEMU-based AFL instrumentation

on real-world benchmarks and LAVA-M respectively. On the

LAVA-M benchmarks, afl-retrowrite finds more bugs

than binary-based solution and is on par with compiler-based

counterparts.

Fuzzers depend on program crashes to detect and report

bugs. Consequently, bugs that do not trigger crashes are

not caught through fuzzing. ASan is the most widely used

memory checker that detects memory corruption bugs when

they are executed (instead of silently corrupting some mem-

ory region). ASan is implemented as a compiler pass that

adds tripwires to detect memory corruption. The availability

of source information allows ASan to be far superior in

terms of performance and bug detection rate when compared

to existing binary-only solutions [18], [10]. Valgrind mem-

check, the state-of-the-art binary-only memory checker, relies

on dynamic binary translation (DBT) to instrument binaries

at runtime. Valgrind’s overhead (about 2x - 20x) due to

DBT and heavyweight instrumentation makes it unsuitable

for fuzzing. To the best of our knowledge, there are no

lightweight alternatives to fuzz binaries with Valgrind mem-

check. We develop ASan-retrowrite, a Binary Address

Sanitizer as a RetroWrite instrumentation pass to retrofit

binaries with memory checks. ASan-retrowrite is both

lightweight and finds more bugs when compared to Valgrind

memcheck. Additionally, ASan-retrowrite is compatible

with ASan, thereby enabling blackbox components of soft-

ware, e.g., closed-source or legacy libraries, to be rewritten

by ASan-retrowrite while compiling the rest of the

(source) code with ASan. Compared to Valgrind memcheck,

our ASan-retrowrite has a 3x speedup and is only 0.65x
slower than ASan (due to the lack of compiler optimization

and register pressure) on SPEC CPU2006 C benchmarks.

Using RetroWrite passes for AFL and ASan instru-

mentation is significantly better than state-of-the-art tools for

fuzzing binaries in terms of performance and compatibil-

ity, integrate with source-based tools, and viable as drop-in

replacements. RetroWrite is available as open-source at

https://github.com/HexHive/retrowrite. Our contributions are:

• A static binary rewriting framework that allows sound,

efficient rewriting of 64-bit PIC binaries (§ III;

• An instrumentation pass] that allows binaries to be run

with AFL with the same performance as compiler-based

AFL instrumentation (§ V);

• An instrumentation pass] that retrofits binaries with

ASAN checks, increasing by 3x orders of magnitude the

efficiency of memory safety analysis for binaries (§ IV);

• A comprehensive evaluation of ASan and AFL instrumen-

tation (§ VI) on benchmarks and real-world applications,

followed by a discussion of limitations (§ VII).

II. BACKGROUND

Here we offer a summary of the building blocks of binary

analysis and binary rewriting to ensure common background

and terminology along with outstanding research questions

addressed by RetroWrite.

a) Disassembly: Disassembly is the first step in binary

rewriting, and is used to recover the existing instructions for

analysis or modification. Disassembling a binary compiled for

a variable length instruction set architecture is hard as the

disassembler has to identify the length for each instruction.

With an architecture as extensive as x86, nearly every sequence

of bytes can be disassembled to some valid instruction. To

counter this problem, the established strategies for disas-

sembling binaries are linear sweep and recursive descent,

which are discussed extensively by Schwarz et al., [19].

Linear sweep goes through the entire .text section top-

down and eventually disassembles the entire binary while

recursive descent follows the control flow of the program and

disassembles all reachable code in the binary. IDA Pro [20]

has been the industry standard for disassembling and reverse

engineering, but there are other viable contenders such as

radare2 [21], Binary Ninja [22], and static binary analysis

frameworks such as angr [23]. All these tools use recursive

descent to disassemble binaries.

Beyond instruction length, many ISAs intermix code and

data, making it hard to distinguish between these sections.

In general, deciding whether bytes represent code or data is

undecidable [24]. However, as pointed out by Andriesse et

al. [25], the undecidability is driven by corner cases and disas-

sembling executables generated by mainstream compilers, e.g.,

gcc, clang, and Visual Studio, is possible with high accuracy

(nearly 100%), even when compiled with high optimization.

b) Binary Rewriting: Techniques can be broadly classi-

fied into two categories based on when they instrument:

• Dynamic Binary Translation (DBT). DBT translates

the binary while being executed. Consequently, they

leverage runtime information and do not depend on

complex static analysis that may not scale. This makes

them an attractive solution to rewriting large software.

Several off-the-shelf solutions for DBT exist, including

Intel PIN [26], DynamoRIO [27], [28], QEMU [29],

DynInst [15], libdetox [30], and Valgrind [10]. The most

lightweight DBT techniques, i.e., Intel PIN, libdetox, and

DynamoRIO, have anywhere between ∼10% to ∼20%

rewriting overhead, i.e., with no instrumentation.

• Static Binary Rewriting. Static rewriting translates the

binary before it is executed. Since the instrumentation

is performed offline, the rewriter can utilize complex

analysis and optimize the memory and runtime overhead,

similar to compiler optimizations for source code. No off-

the-shelf tool exists to rewrite arbitrary code. However,

static rewriting is an active area of research with several

research prototypes [14], [16], [31], [12], [13], [32]. Ex-

isting prototypes vary by runtime and memory overheads

and the characteristics of rewritten binaries.

1498

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

No existing rewriter meets our design criteria for a secu-

rity oriented rewriter: DBT suffers from prohibitive runtime

overhead and hence reduces efficacy of software testing prac-

tices, e.g., fuzzing. Though optimizations such as inlining can

reduce the overall instrumentation overhead, DBT remains

prohibitively expensive, and cannot compete with static rewrit-

ing techniques which optimize instrumentation offline. Static

rewriting suffers from its reliance on static analyses, which

adds both imprecision and complexity. Consequently, existing

static techniques do not scale. A solution that combines

the scalability of DBT with the low (runtime) overhead of

static rewriting that remains sufficiently precise to support

security instrumentation is highly desirable. We will show that

reassembleable assembly is such a solution.

c) Reassembly: The key observation of reassembleable

assembly is that assembly files produced by disassemblers

have a rigid structure, i.e., code and data are pinned to their

original locations and cannot be moved. Moving code or data

breaks all references in the binary, which were hard-coded

from labels to specific addresses by the assembler. In contrast,

a compiler-generated assembly file maintains some of the

source-level abstractions, such as variable names, in the form

of assembler labels. These files usually do not have hard-coded

addresses as those are assigned at link time.

Reassembleable assembly creates assembly files that appear

to be compiler-generated, i.e., they do not contain hard-

coded values but instead assembly labels. The core process

of generating reassembleable assembly is thus symbolization:

converting reference constants into assembler labels. Sym-

bolizing the assembly allows security-oriented rewriters to

directly modify binaries, much like editing compiler-generated

assembly files. Once modified, the symbolized assembly files

can be assembled using any off-the-shelf assembler to generate

an instrumented binary.

Reassembly was first introduced in Uroboros [13]. Wang et

al. developed a set of heuristics based on common compiler

idioms to classify constants as reference or scalars and symbol-

ize reference constants into assembler labels. ramblr [12] then

advanced the state-of-the-art for reassembleable assembly by

identifying several simplifying assumptions in Uroboros that

led to non-functional binaries, and developed static analyses to

improve symbolization accuracy. Despite this, ramblr acknowl-

edges that their rewriting strategy is unsound and develop

heuristics to abort the reassembly when rewriting correctness

cannot be guaranteed.

We believe that reassembly is a promising rewriting tech-

nique for our requirements: instrumentation can be inlined

thereby reducing the overall overhead, while still maintaining

original program characteristics in terms of control flow,

instruction selection, and register and memory access patterns.

As an additional benefit, reassembly allows post-processing

on symbolized assembly files. Consequently, using a security

rewriter built on reassembleable assembly is inherently mod-

ular. Once the framework exists for producing the reassem-

bleable assembly, security transformations can be added as

modules to transform the assembly files before they are finally

reassembled to produce the instrumented binary.

However, the main drawback of reassembly-based tech-

niques is the requirement of completeness: no constant can

be misclassified as a reference or a scalar. Without being

complete, there is no guarantee that the reassembled binary

will function correctly. However, it has been shown that

statically determining whether a constant represents a scalar

or a reference is infeasible [33]. Therefore, existing techniques

are empirical and use heuristics to approximate a sound static

analysis. While they work in many cases, they are gener-

ally insufficient to rewrite real-world binaries. For example,

ramblr (representing state-of-the-art) reports false negatives

in identifying references on coreutils built for x86-64. With

larger, real-world applications, we expect a large number of

misclassifications, which would prevent a binary from being

rewritten correctly. Fortunately, while this restriction holds

for the general case, there is hope for position-independent

binaries.

d) Position-Independent Code (PIC): Executables com-

piled to be position-independent may be loaded at any virtual

address by the loader. PIC is required both for ASLR and for

shared libraries. Shared objects, such as libraries, are position-

independent out of necessity: different processes may have

different address space layouts and libraries need to be loaded

at arbitrary addresses. Traditionally, executables are compiled

to be loaded at a fixed address, because PIC introduces

overhead by requiring offsets to be calculated at runtime rather

than compile time. However, recent architectural features, e.g,

the ability to reference relative to the instruction pointer (rip)

on x86 64, have made this overhead negligible. Dynamic

linkers are now smarter and have additional relocations to fur-

ther reduce this overhead, making their performance identical

to non-PIC while improving security.

All major Linux distributions such as Ubuntu, Fedora,

and Gentoo [34], [35], [36], have switched to compiling

and shipping binaries as PIC by default. In the smartphone

ecosystem, Android has removed support for non-PIC linking

and compiled binaries have to be PIC since Lollipop [37].

Though iOS does not forbid non-PIC binaries, it strongly en-

courages PIC and emits warnings for non-PIC binaries [38]. As

PIC improves security guarantees with minimal performance

impact, we anticipate PIC to be the de-facto standard on all

platforms in the future. Therefore, we focus our efforts on

developing principled techniques to rewrite PIC binaries by

leveraging their relocation information for symbolization.

III. RETROWRITE

Binary rewriting allows for post-compilation modification

of binaries. In particular, instructions can be added or deleted

to enforce new security properties or remove unwanted func-

tionality, while still maintaining an executable binary. Conse-

quently, binary rewriting can be an incredibly powerful mecha-

nism for increasing security by enabling, e.g., coverage-guided

greybox fuzzing, and memory checkers with near source-based

performance on binaries. However, rewriting binaries is not

as straightforward as editing source code, mainly due to the

1499

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

10
01

Preprocessing

Symbolization

Reassembleable
Assembly

Optimizations
11
01

Instrumentation

Passes

1
2

3

4 5

Binary Instrumented
Binary

Figure 1: Overview of RetroWrite. Taking a binary as input, RetroWrite produces an instrumented version of the binary.

fact that binaries lack source-like abstractions. Binaries lack

type information, and data-structure abstractions are flattened

to raw memory accesses. Worse yet, the symbol information

used to link the location of, e.g., functions and basic blocks to

calls and jumps is lost. Adding or deleting code causes these

addresses to change, breaking binaries. Using binary rewriting

for security auditing therefore faces many reverse engineering

challenges to recover sufficient information about the binary

to enforce the desired security properties. The ideal rewriter,

for security and fuzzing applications, should:

(R1) Have low runtime and memory overhead when the binary

is recompiled with instrumentation (Performance).

(R2) Preserve the original program characteristics (barring

changes made by the instrumentation). This, e.g., ensures

that any discovered bugs directly translate to the original

binary (Correctness).

(R3) Scale to real-world software (Scalability).

Existing DBT-based techniques do not satisfy our perfor-

mance criteria (R1) while existing work on static binary

rewriting does not satisfy at either the correctness (R2) or the

scalability (R3) criteria, see § VIII for a detailed discussion

of prior techniques.

A. RetroWrite Design

RetroWrite implements static rewriting through re-

assembleable assembly. The core operation to generate re-

assembleable assembly is symbolization, i.e., statically dis-

ambiguating between reference and scalar type for constants

and replacing references with appropriate assembler labels.

For PIC, we adopt a principled symbolization strategy without

heuristics. RetroWrite leverages the relocation information

in PIC binaries to reconstruct all labels that the compiler

previously emitted before a binary was assembled.

RetroWrite is designed as a framework, with the re-

assembleable assembly-based rewriter at its core. Other mod-

ules can be added to the framework that instrument the gener-

ated assembly files to, e.g., track coverage for greybox fuzzers

or add redzone for ASAN. Figure 1 shows an overview of

the RetroWrite framework. RetroWrite takes as input

a binary and produces an instrumented version, through a five

step process. Specifically, RetroWrite’s steps are:

1) Preprocessing. The first step is to load sections of the

binary required for reassembly, namely the text and the

data sections. RetroWrite also loads auxiliary infor-

mation, such as symbols and relocations from the binary.

This step also includes disassembling using linear-sweep

and recovering a best-effort control flow graph (CFG):

identifying and adding edges for direct control-flow

transfers. RetroWrite does not require heavyweight

analyses to infer indirect control-flow targets, limiting

analysis time and scaling to larger binaries.

2) Symbolization. Symbolization is the core of

RetroWrite’s rewriting procedure. RetroWrite
uses relocation information from the loading phase

and the recovered control-flow graph to identify

symbolizable constants, in both the data and code

sections, and convert them to assembler labels.

RetroWrite outputs reassembleable assembly at the

end of this step. The reassembleable assembly may

be further processed by other tools or instrumentation

passes developed in RetroWrite.

3) Instrumentation Passes. Instrumentation passes operate

on the reassembleable assembly to instrument and mod-

ify the target binary. The rewriting API is both flexible

and expressive to perform heavyweight transformations

on binary-code. We show the power of instrumentation

passes in two case studies for AFL and ASan.

4) Instrumentation Optimization. RetroWrite ana-

lyzes the instrumentation to determine the required

number of registers and side-effects. The results of

these analyses are then used to: (i) selectively save

(and restore) state changes, e.g., conditional flags, before

(and after) every instrumentation site, and (ii) allocate

registers for instrumentation.

5) Reassembly (ASM). As the final step, RetroWrite
produces an instrumented assembler file. This may fur-

ther be processed by other tools that operate on compiler

generated assembly files before being assembled to a

working binary using any off-the-shelf assemblers.

One advantage of our technique is that we do not need

to lift assembly to a higher-level intermediate language, a

process that requires precise modeling of the instruction set

architecture (ISA). Capturing instruction semantics to lift from

disassembly to an intermediate language is hard, must be

implemented on a per-architecture basis, and is known to be

error-prone. RetroWrite is lightweight and works directly

on disassembly generated from any off-the-shelf disassembler.

1500

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

Consequently, our design makes it straightforward to extend

our rewriting framework to support multiple architectures.

Symbolization. Our symbolization procedures runs in three

different phases, corresponding to symbolizing different types

of references between code and data:

1) Control Flow Symbolization. Operands to control-

flow instructions, i.e., calls and jumps, are converted to

assembler labels, providing code-to-code references.

2) PC-relative Addressing. As position-independent code

cannot reference fixed addresses, references are calcu-

lated relative to the program counter (on x86-64, this

is rip). We adjust the operand of instructions that

compute PC-relative addresses to use an assembler label

instead. Then, at the location referenced by the instruc-

tion (calculated statically) the corresponding assembler

label is defined. Such labels encompass both code-to-
code and code-to-data references. This implicitly covers

cases of indirect jumps and calls as function references

are symbolized at the point where the address is taken,

thereby concretizing the (until now imprecise) CFG.

3) Data Relocations. Lastly, we handle data references.

In essence, we mimic the dynamic linker/loader in

performing the relocations: at the offset pointed to by the

relocation entry, we replace the bytes by an assembler

label. The corresponding label is then defined at the

address pointed to by the relocation (exact formula

depends on the type of relocation). This process handles

both data-to-data and data-to-code references.

Note that our approach to symbolization is fundamentally

different from existing work: rather than using heuristics and

analyses to categorize a constant as a scalar or a reference, we

use relocations, PC-relative addressing, and recovered control

flow to determine reference constants and symbolize them.

Therefore, our approach is sound by construction and has zero

false positives and false negatives. This means our approach

is generic, and applicable to any real-world PIC binary.

B. Implementation

Our current implementation supports Linux x86-64 PIC

binaries. It is implemented in about 2,000 lines of Python code

and uses Capstone (a disassembly framework with support

for multiple ISAs) to disassemble raw bytes into x86-64

instructions. RetroWrite uses pyelftools, an ELF parsing

library to load ELF files and parse relocation information.

The disassembly and relocation information are given to our

symbolization analysis, which then synthesizes reassembleable

assembly. Though our current implementation is restricted

to the x86-64 architecture, other architectures supported by

Capstone can be added with small engineering effort.

Generating reassembleable assembly is the first step towards

rewriting binaries. Once reassembleable assembly is generated,

writing instrumentation passes to safely instrument binaries at

low-overhead requires three things: (i) a logical abstraction for

analysis and instrumentation passes to operate on, e.g., mod-

ules, functions, or basic block level granularity, (ii) working

around the ABI to ensure the instrumentation does not break

the binary, and (iii) automatic register allocation to achieve

compiler-like overhead.

a) Function Identification: Our reassembly step does not

strictly need function start and size information. However,

the rewriter and the instrumentation API greatly benefit from

function information as it provides a natural way to struc-

ture analysis and instrumentation at function granularity. Our

implementation uses the symbol table to identify function

start and sizes. To support stripped binaries, users may reuse

function identification as provided in commercial tools such

as IDA Pro, or open source frameworks such as radare2, as a

part of a pre-processing step. An alternative is to use other ex-

isting research in function identification [39], [40], [41], [42].

Note that the symbol information, when available, is strictly

provided as a convenience to the instrumentation API, and

not required by the symbolization step. Additionally, libraries

contain exported symbol information even when stripped.

b) ABI Dependencies: The instrumentation API must

also be aware of the ABI limitations to ensure the binary is

instrumented as intended. For example, the System V ABI for

x86-64 (the default ABI on Linux) specifies that leaf functions

(functions that do not call other functions) may use 128-bytes

below the stack-pointer as an implicit stack, without allocating

it explicitly. This means that pushing or popping from the

stack to save state before and after instrumentation would com-

promise stack-local variables, resulting in incorrect execution.

To work around this limitation, RetroWrite discovers leaf

functions through a static analysis. The instrumentation API is

aware of the ABI and maintains a separate stack to save and

restore state when instrumenting leaf functions. Other ABI

dependencies include the calling convention, which influences

the register allocation analysis as arguments may be passed in

registers, and registers are used for the return value.

c) Register Allocation: Unlike a compiler-based instru-

mentation, binary-only tools do not have the luxury of rely-

ing on virtual registers and allowing the compiler to assign

physical ones, but must choose their own physical registers.

The instrumentation cannot clobber any program state, i.e.,

registers, conditional flags, program stack, or global state, as

this can have unintended side-effects, leading to crashes or

inconsistencies that are hard to debug. Therefore, the safest

option is to save all state before entering instrumented code,

and restore the saved state before exiting. However, this is

prohibitively expensive hence undesirable.

To reduce overhead from saving program state,

RetroWrite performs a conservative (over-approximate)

intra-function liveness analysis to find all registers (and flags)

that are live at instrumentation sites. In short, our liveness

analysis is equivalent to a compiler-based liveness analysis

with variables replaced by registers. As the analysis relies

on the control-flow graph, which is incomplete (imprecise),

the analysis has to over-approximate the set of live registers:

we can tolerate false positives (register belongs to live set

according to the analysis, but is not actually live) but not

false negatives. False positives translate to fewer registers

available for allocation and hence greater number of register

1501

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

spills for instrumentation while false negatives lead to

clobbering a register in use and consequently errors during

execution. To reduce overall overhead, the instrumentation

API ensures that non-live registers are allocated first before

allocating live registers. Any live register that is allocated

is also automatically saved before and restored after the

instrumentation. Similarly, if the instrumentation clobbers

conditional flags, these are detected, saved, and restored

automatically as a part of the API.

IV. BINARY ADDRESS SANITIZER

To demonstrate the potential security benefits of static

binary rewriting, we first develop a memory checker plugin for

the RetroWrite framework. Software written in low-level

languages, i.e., languages without memory-safety guarantees,

such as C and C++, is susceptible to memory corruption bugs.

These bugs are the root cause of 70% of vulnerabilities in

Microsoft code [43], and are frequently exploited by attackers

to gain arbitrary code execution capabilities. Efforts to enforce

full runtime memory safety (spatial and temporal) have been

prohibitively expensive [44], [45] as they require every mem-

ory access to be checked in addition to tracking allocation

information for every memory object. An alternate approach

is to catch these bugs during software testing. However, these

bugs may be subtle and not detectable through a crash. Even

if the software crashes, isolating the root cause is usually non-

trivial. Memory checkers [10], [18], [7] are a class of software

testing tools that detect memory corruption bugs. They also

provide a detailed backtrace of execution prior to the crash,

making bug isolation and patching easier.

Valgrind is a popular dynamic binary instrumentation (DBI)

framework that provides a state-of-the-art memory checker,

appropriately named “memcheck”. Valgrind provides an effi-

cient mechanism for dynamic analyses to associate and track

metadata to every register and memory value, i.e., shadow

values. Memcheck uses Valgrind’s shadow value capability

to detect accesses to undefined memory locations, e.g., either

uninitialized variables or out-of-bound accesses for buffers,

by tracking undefined bit values. However, this is expensive,

incurring anywhere from 2x to 300x overhead, making mem-

check infeasible for use with frequent execution during testing,

and in particular fuzzing, where higher throughput directly

correlates to higher bug-finding probability.

A. Address Sanitizer Semantics

Address Sanitizer (ASan) [7] is a tripwire-based approach

to detect memory corruption. In short, ASan modifies the

memory allocation of an application to surround every memory

object with a redzone, a forbidden region of memory whose

access triggers a crash. Then, ASan instruments every memory

access to check if it is an access to an allowed address, i.e., not

a redzone. ASan provides probabilistic guarantees in detecting

spatial and temporal memory safety violations: it increases the

probability that a memory corruption triggers a crash close to

the location of the bug, but is not guaranteed to detect every

instance of memory corruption. ASan is implemented as a

compiler pass in gcc and clang.

ASan utilizes shadow memory to keep track of allocated

bytes of memory. As tracking allocation status for every single

byte of memory in an application is prohibitively expensive,

ASan maps eight bytes of memory to a single byte of

shadow memory. The shadow byte value represents the state of

memory. If an access to a memory location is forbidden, e.g.,

because it is deallocated or a redzone, then the corresponding

shadow byte is poisoned, i.e., stores the value 0xff. ASan

uses two kinds of instrumentation: (i) ASan allocation to pad

all allocations with redzones, and (ii) ASan memory check to

terminate if an access is illegal.

B. Design

Our goal is to implement a binary version of ASan in

RetroWrite that closely resembles and integrates seam-

lessly with the source-based sanitizer. ASan-retrowrite
works with source-based solutions to instrument parts of an

application where source code is unavailable, e.g., when link-

ing against closed-source or legacy libraries, while applying

existing compiler-based instrumentation where source code is

available. The main difficulty in porting source ASan directly

to binaries, even with a rewriting framework, is the lack of

abstractions: binaries do not have any information about vari-

ables, types, or buffer bounds as these are stripped away during

compilation. Recovering some of this information is possible

through static analysis. But these analyses are expensive and

impact scalability of systems that build on them. As our focus

is on building a practical binary equivalent of ASan to aid the

fuzzer in finding bugs, we trade some precision to scale to

real-world software (see Table I for a policy comparison).
a) Stack: ASan-retrowrite instruments stack-

objects at a stack frame granularity. Therefore, our

instrumentation may miss bugs when the overflow is

contained within the stack frame. This limitation is common

to all binary-only tools as they do not have access to

variable scope and type information. Several techniques have

been proposed in the context of decompilation to recover

this information [46], [47], [48], [49]. However, they are

over-approximate which leads to false positives, limiting their

usefulness in a fuzzing scenario. Adding redzones at stack

frame granularity allows us to catch overflows on the stack

without introducing false positives.

As an optimization, ASan-retrowrite does not redzone

stack frames for every function. During compilation, the com-

piler performs a conservative analysis to identify functions that

Table I: Overview of redzone policy as implemented in ASan and
ASan-retrowrite. ASan-retrowrite is equivalent to ASan
on the heap, instruments at a stack frame granularity on the stack,
and does not redzone global memory objects.

Memory Object ASan ASan-retrowrite

Heap Individual Individual
Stack Individual; 32-byte (default) Stack-frame; 8-byte
Global Individual; Padded to 64-byte No redzone

1502

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

// Foo is a global buffer
int i = 0;
while(i < 32) {

// Access to global Foo
Foo[i] = <expr>;
i += 1;

}

(a)

1 lea 0x40000(%rip), %rbx
2 lea 0x40100(%rip), %r15
3 .loop:
4 # loop body
5 addq 0x10, %rbx
6 cmp %rbx, %r15
7 jle .loop

(b)

.Foo allocated @ 0x40000
Compiler-ASM
lea .Foo(%rip), %rbx
lea .Foo+0x100(%rip), %r15
Reassembly
lea .LC40000(%rip), %rbx
lea .LC40100(%rip), %r15

(c)

Figure 2: Code snippets to illustrate difficulty in modifying global data section. (a) Source code (simplified) provided for clarity, (b) Shows
disassembly when the binary is compiled with optimization (-O2), (c) Compares a compiler generated assembly file which has the correct
semantic connection between the two labels, while the reassembly misses this connection, and treats them as two independent labels. Making
this semantic connection is in general undecidable, but a requirement for modifying the layout of global data.

have a potential stack-based buffer overflow, and selectively

adds stack-canaries to protect the saved return address. We

leverage this observation to our advantage and redzone only

stack frames that have such canaries; as other functions are

proved to be free from stack-based overflows at compile-time.

Additionally, rather than enlarging the stack frame by adding

new bytes for the redzone, we reuse the slot occupied by the

canary and poison the corresponding byte in shadow memory

to disallow access to it. This is equivalent to adding additional

bytes in terms of detection capabilities while not incurring the

memory overhead.
Lastly, as the stack frame is implicitly freed on function

return and may be reused by the next function call, we identify

every function exit, and unpoison the redzone before exiting

from the function. Mechanisms that unwind the stack frame,

such as longjmp, require us to unpoison all the stack frames

that are unwound. To handle this case, we add additional

instrumentation to iteratively unpoison every byte from the

current stack top to the saved stack pointer (saved during the

corresponding call to setjmp).
b) Global: ASan-retrowrite does not redzone glob-

als. Symbolizing the disassembly is insufficient to perform

arbitrary transformations on data section layouts and requires

recovery of semantic information lost during compilation. To

illustrate this problem, Figure 2 shows a snippet of disassem-

bly alongside the source code, compiler generated assembly,

and the reassembly. The access to the global buffer Foo is

converted into an access through a pointer in the compiled

code, where %rbx is the iterator and %r15 is the bounds

for the loop. As these addresses are symbolized to assembler

labels independently, i.e., without understanding the semantic

connection between labels, the generated reassembly has two

independent labels that point to the beginning and end of Foo
respectively. This is the cause of the problem: if we add bytes

below Foo for the purposes of a redzone, the above label

will no longer point to the semantic end of object Foo, and

therefore the loop bounds will be incorrect. In general, if there

is an object below Foo, we cannot know if the instruction

references the beginning of the next object or the end of Foo.

This is a semantic difference that the reassembleable assembly

fails to capture. More generally, for every two adjacent globals,

there are two labels, separating them. One for the first object’s

end, the other for the second object’s beginning. These two

labels are collapsed into a single indistinguishable offset.

Unfortunately, this is a common code pattern. Any binary

rewriting tool that tries to modify the data layout must

disambiguate the semantic meaning of such references. We

could design an analysis to track pointer capabilities (track

base pointers for every derived pointer), and propagate this

information at every pointer operation involving two refer-

ence operands, e.g., subtraction to find length or comparison

to check for bounds. This would allow us to semantically

disambiguate the meaning of a reference use, i.e., is the

address used to refer to the start of an object or is it used

to denote the end of the previous object, by checking the

pointer base. However, to precisely track pointer capabilities

statically on a language that allows arbitrary pointers (such

as assembly) we need precise alias information, which is

undecidable to compute statically [50]. Alternatively, this

information can be recovered through heuristics, but would

hurt ASan-retrowrite’s soundness and introduce false

positives. Therefore, we leave such efforts to future work.

While we acknowledge this limitation, note that the number

of global objects in an application is fixed and relatively small

when compared to the number of allocations on the heap or

stack. Therefore, compared to ASan, ASan-retrowrite
may miss a fixed number of overflows between global objects.

Other binary-only tools, such as Valgrind memcheck, also

suffer from the same limitations.

C. Binary Address Sanitizer Implementation

ASan-retrowrite is implemented on top of

RetroWrite. We use the disassembly from RetroWrite
to identify all memory accesses and instrument them

with memcheck instructions. The memcheck instructions

themselves are written in assembly with actual registers

replaced by symbolic register names. This allows us to

leverage the register allocation capabilities of RetroWrite
to reduce the overhead. We identify functions that use stack-

canaries, and instrument the stack frames of such functions

with redzones as described earlier. For each redzoned function,

we identify all exits (including longjmp), and unpoison the

stack before the exit. ASan initialization and de-initialization

functions are registered as new entries in .init array and

.fini array respectively. Finally, RetroWrite emits

the instrumented reassembly file, which is then compiled and

1503

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

linked against the ASan runtime library, libasan.so, to

produce the ASan-retrowrite instrumented executable.

Note that this allows interaction with other code that may

already have been instrumented with ASan. Our experience

in implementing ASan-retrowrite in RetroWrite
suggests that other source-based sanitizers can be ported to

support binaries with minimal engineering effort.

V. AFL COVERAGE INSTRUMENTATION

We now present an instrumentation pass for binary fuzzing.

At its core, fuzzing is a form of random software testing where

an application is run with random (potentially malformed)

inputs while monitoring the runtime for unexpected behaviors,

e.g., crashes, memory exhaustion, or infinite loops. However,

blackbox fuzzing, i.e., fuzzing with no knowledge about the

target application, may not be effective in most cases as a

majority of inputs are likely to explore very shallow code

paths. This severely limits a fuzzer’s ability to uncover bugs

in deep parts of code. Coverage-guided fuzzing tackles this

problem by using program traces generated by the inputs as a

feedback mechanism to tailor future inputs to the fuzz target.

a) AFL: AFL is one of the most popular and effective

fuzzers in research and practice. To mitigate the cost of

collecting and analyzing full program traces, AFL takes a

more practical approach by tracking edge-coverage as an

approximation of a program trace. AFL maintains a constant-

size bitmap in shared memory to keep track of edge hit

statistics during a run of the application. At compile time,

every basic block start in the CFG is instrumented to collect

edge coverage statistics. Statically, each basic block is assigned

a key and the bitmap index Ie for an edge e is computed

dynamically as: Ie = cur⊕(prev >> 1), where cur and prev
correspond to keys of the current and predecessor basic blocks

respectively. AFL instruments applications during compilation,

either through afl-gcc or through the more optimized llvm-

mode, afl-clang-fast.

For uninstrumented binaries, AFL resorts to QEMU to

instrument binaries dynamically at runtime. However, this

has a significant overhead (∼10x) compared to the source-

based solution, reducing the fuzzer’s throughput. Another

significant drawback of using QEMU is its inability to support

sanitizers, such as ASan, severely limiting AFL’s bug detection

capabilities. Recent advances in fuzzing, such as QSYM [51]

or Angora [52], extend AFL. If they target binary-only code,

these AFL extensions further extend AFL-qemu or angr-afl.

Therefore, improving binary AFL-based fuzzing throughput

immediately improves the effectiveness of these newer fuzzing

techniques.

b) Binary AFL: Implementing binary-level coverage in-

strumentation on RetroWrite requires CFG recovery and

instrumenting basic blocks starts with coverage instrumenta-

tion: calculating edge index and updating bitmap state. The

CFG is implicitly recovered as a part of RetroWrite’s

symbolization procedure. However, the original AFL imple-

mentation instruments the application at the assembly level,

i.e., afl-gcc (a utility packaged with AFL) parses and

instruments assembly files during compilation to generate an

instrumented application. Since the assembly files generated

by RetroWrite closely resemble those generated by a

compiler, afl-gcc works out-of-the-box to generate AFL

instrumented binaries, with no additional effort. This high-

lights a powerful feature of RetroWrite: the reassembly

it produces is compatible with existing tools that operate on

assembly, readily extending the tools’ capabilities to support

binary-only applications.

VI. EVALUATION

Our evaluation is guided by the following research questions

that directly support our earlier claims:

RQ1: Does RetroWrite scale to large real binaries?

RQ2: Have we significantly improved state-of-the-art

binary-only memory checkers in terms of: (a) runtime over-
head, and (b) coverage, i.e., bug detection rate?

RQ3: Are we competitive with source-based memory cor-

ruption detectors, such as Address Sanitizer, in terms of: (a)

runtime overhead, and (b) coverage, i.e., bug detection rate?

RQ4: How does our coverage instrumentation compare to

source-based AFL instrumentation? Is our solution a viable
alternative to using QEMU-based instrumentation of AFL?

To validate our earlier claims and answer our research

questions, we perform the following experiments:

1) Rewrite 12 real-world binaries that are 2.7x larger than

those tested for scalability by prior art (RQ1);
2) Performance evaluation of ASan-retrowrite on

SPEC CPU2006 comparing: baseline benchmarks (no

instrumentation), ASan, ASan-retrowrite, and Val-

grind memcheck (the most popular off-the-shelf binary-

only memory checker) (RQ2.a, RQ3.a);
3) Comparative security evaluation of the above targets

on the Juliet testsuite on CWEs related to memory

corruption (RQ2.b, RQ3.b); and

4) Evaluation of RetroWrite for coverage guided

fuzzing with AFL, comparing source-based AFL instru-

mentation, binary-only AFL-instrumentation (our imple-

mentation), and QEMU mode for AFL. We compare: (i)

Fuzzer throughput, and (ii) their effectiveness in finding

bugs in LAVA-M testsuite (RQ4).
Hardware and Environment All our evaluations were per-

formed on a desktop equipped with Intel(R) Core(TM)
i7-6700K CPU @ 4.00GHz processor and 32 GiB of

memory running Ubuntu 18.04. All the results and evalu-

ation presented in this paper can reproduced using the docker

image and instructions in the open-source repository1.

A. Scalability

Table II shows a list of all successfully rewritten binaries

and their sizes as part of the evaluation, demonstrating the

scalability of RetroWrite (RQ1). Prior work on reassem-

bleable assembly uses coreutils to evaluate scalability to real

world software, which have a median size of 394KB and a

1Docker Image: https://github.com/HexHive/retrowrite/tree/master/docker.

1504

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

Binary Test Suite Size

bzip2 SPEC CPU2006 256K
gcc SPEC CPU2006 12M
gobmk SPEC CPU2006 7.0M
h264ref SPEC CPU2006 1.9M
hmmer SPEC CPU2006 1.2M
lbm SPEC CPU2006 48K
libquantum SPEC CPU2006 176K
mcf SPEC CPU2006 76K
milc SPEC CPU2006 532K
perlbench SPEC CPU2006 4.0M
sjeng SPEC CPU2006 424K
sphinx livepretend SPEC CPU2006 804K

base64 LAVA-M 64K
md5sum LAVA-M 76K
uniq LAVA-M 64K
who LAVA-M 576K

Juliet-CWE121 Juliet 12M
Juliet-CWE122 Juliet 7.6M
Juliet-CWE124 Juliet 3.5M
Juliet-CWE126 Juliet 2.7M
Juliet-CWE127 Juliet 3.4M

readelf Real-world 2.2M
bzip2 Real-world 312K
file Real-world 668K
bsdtar Real-world 3.5M
pngfix Real-world 984K
tiff2rgba Real-world 1.4M
tcpdump Real-world 5.0M

Table II: Overview of binaries rewritten by RetroWrite.

maximum size of 1.3MB. As Table II shows, we evaluate on

12 binaries that are larger than a megabyte, with a median

size of 1.09MB (2.7x larger) and maximum size of 12MB (9.2x
larger). Consequently, we are confident that RetroWrite can

rewrite arbitrary C binaries.

B. Memory Checker — Performance

We evaluate the performance of ASan-retrowrite
on the SPEC CPU2006 C benchmarks. Since the orig-

inal benchmarks exhibit some memory safety violations,

we applied patches provided in Google’s Address Sani-

tizer repository [53]. The Google patch blacklists instru-

mentation of certain functions in perlbench, e.g., char

*move no asan, as they cause violations. Our initial eval-

uation of ASan-retrowrite reported a use-after-free in

the above function, after which we manually removed ASan

checks from the same function for evaluation. All code was

compiled with options: -O2 -std=gnu89 and gcc-5.4.0
and flags to produce position-independent executables. Val-

grind was configured to track the same set of features as ASan.

Our evaluation indicates that on an average we are about

300% better than Valgrind, and 65% slower than ASan.

We present a detailed view of our results in Figure 3.

The main reason for ASan’s low-overhead when compared

to other memory checkers is its highly optimized memory

check instrumentation. Therefore, any additional overhead is

clearly visible in long-running benchmarks. We identified the

following as causes for the overhead of ASan-retrowrite
when compared to ASan:

Figure 3: Evaluation on SPEC CPU2006 C Benchmarks.
Mean Runtime (in s) for baseline (no instrumentation), ASan,
ASan-retrowrite (our implementation), and Valgrind memcheck
(state-of-the-art binary-only memory checker). Lower numbers
indicate better performance.

1) Instrumentation Locations. ASan-retrowrite in-

struments more locations than source ASan. The

compiler-based instrumentation removes some checks if

it can prove accesses are safe.

2) Register Spills. As register allocation happens late

during code generation, the compiler considers both

the original code and the instrumentation, thereby

generating better register allocation with fewer spills.

ASan-retrowrite is limited to a conservative reg-

ister liveness analysis and opportunistically uses dead

registers to reduce register spills, but cannot change the

register allocation scheme as a whole.

3) Optimized Checks Placement. To reduce register pres-

sure, or flag recomputations, source-based ASan is free

to move the memory check instrumentation (according

to language semantics). However, our binary ASan can-

not do this as hoisting checks is not always safe and

needs more principled compiler-like analysis.

4) Loop Hoisting. Checking contiguous memory accesses

in hot loops can be expensive. As a part of the op-

timization pipeline, a compiler may choose to hoist

such checks out of the loop and perform a single

check to reduce the overall overhead. Though possible,

implementing such loop-hoisting mechanisms are a lot

harder, mainly due to lack of abstractions such as loops

in the binary level.

C. Memory Checker — Coverage

We compare our implementation of ASan-retrowrite
against ASan and Valgrind on the Juliet test suite, a collection

of test cases containing common vulnerabilities. Each test

case has two variants: a good variant that does not contain a

vulnerability and a bad variant that does. Tools are evaluated

based on their capability to report errors on the bad cases

while not flagging errors on the good ones. A false positive
is when a tool reports a vulnerability on a good case. A false

1505

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

Table III: Overview of Bug Detection Rate on Juliet on CWEs related
to memory corruption. False postive is when a system reports a bug
in a testcase with no bug. False negative is when a system reports
no bug in a testcase with a bug. Timeout is when the testcase fails
to terminate in 3 seconds.

ASan BASan Valgrind Memcheck

Total 11,828 11,828 11,828
True Positive 4,489 3,257 1,785
True Negative 5,914 5,912 5,914
False Positive 0 0 0
False Negative 1,382 2,614 4,086
Timeout Vuln 43 43 43
Timeout Safe 0 0 0

Figure 4: Clusters comparing false negatives on Juliet for the three
systems: ASan, ASan-retrowrite, and Valgrind memcheck. X
and Y axes are categorical and represent CWEs. Numbers next to
points denote the number of FN of system that belong the cluster.
Explanation of CWEs are provided in Table IV

Table IV: CWE Descriptions

CWE-ID Description

CWE-121 Stack-based Buffer Overflow
CWE-122 Heap-based Buffer Overflow
CWE-124 Buffer Underwrite (’Buffer Underflow’)
CWE-126 Buffer Over-read
CWE-127 Buffer Under-read
CWE-129 Improper Validation of Array Index
CWE-131 Incorrect Calculation of Buffer Size
CWE-135 Incorrect Calculation of Multi-Byte String Length
CWE-170 Improper Null Termination
CWE-193 Off-by-one Error
CWE-805 Buffer Access with Incorrect Length Value
CWE-806 Buffer Access Using Size of Source Buffer
CWE-839 Numeric Range Comparison Without Minimum Check

negative is when a tool misses an error on the bad case. Test

cases are organized based on Common Weakness Enumeration

(CWE), an ID that indicates the kind of vulnerability that the

test case represents. We selected CWEs that represent mem-

ory corruption bugs, namely CWE121, CWE122, CWE124,

CWE126, and CWE127, and compiled them with source

ASan, ASan-retrowrite, and without any instrumentation

for Valgrind memcheck. We run Valgrind memcheck with the

same parameters as we did for the performance evaluation,

i.e., disabling leak and uninitialized checks.

An overview of the accuracy of the three systems is

shown in Table III. All three systems perform equally well

identifying true negatives and have 0 false positives, i.e.,

they do not report errors on any of the safe variants in

the Juliet test suite. In terms of detecting vulnerable cases,

ASan has the highest detection rate at 4,489/5,914, fol-

lowed by ASan-retrowrite with 3,257/5,914, and fi-

nally Valgrind memcheck with 1,785/5,914. This reflects the

trade-off made in adapting source ASan to a binary-only

ASan-retrowrite. However, ASan-retrowrite is far

more effective than Valgrind memcheck which is the state-

of-the-art binary-only memory checker, making it a viable

alternative to Valgrind memcheck for binary-only applications.

Finally, we analyze the false negatives qualitatively to iden-

tify common trends and differences in the kind of bugs missed

by the three systems. Figure 4 clusters the false negatives based

on the types of bugs missed, identified by the CWE assigned

to the test cases. The descriptions of relevant CWE, taken from

MITRE CWE database [54], is summarized in Table IV. The

figure agrees with the general trend in accuracy of the three

systems: source ASan, followed by ASan-retrowrite, and

finally Valgrind memcheck. However, note the differences,

e.g., both source ASan and ASan-retrowrite miss 38

bugs related to Heap-based Buffer Overflow (CWE122) arising

due to Incorrect Calculation of Multi-Byte String Length

(CWE135) while Valgrind memcheck misses none. This result

is surprising as we do not expect a binary-only tool to

detect bugs that a source-based solution fails to. On further

inspection, we found that all the testcases in CWE135 trigger

an overflow in the destination buffer through a call to wcscpy
(the strcpy equivalent for wide-character strings), which is

not intercepted by the ASan runtime library and hence is not

instrumented. Adding support for this function allows ASan

to detect these violations. Similarly, both the binary-only tools

miss an equal number of Off-by-one Errors (CWE193) while

source ASan misses none when its on the heap (CWE122) and

misses far fewer when on the stack (CWE121). We attribute

this difference to more accurate object size information avail-

able in source code, empowering compiler-based tools.

On the heap (CWE122), ASan-retrowrite has more

false negatives than ASan, even though the redzone policy

is identical. This is because ASan-retrowrite misses

some checks on rep prefixed instructions, i.e., rep stos.

This is commonly used to implement operations that loop

over buffers, such as memcpy and memset. To guaran-

tee that an overflow due to such instruction is caught,

1506

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

ASan-retrowrite would need to check if any of the

accesses are in the redzone by, e.g., checking if the first and

last bytes accessed are within the allowed region. The current

implementation only checks the first access and therefore

misses some of the overflows that could otherwise be caught.

Implementing support for rep prefixes requires additional

engineering effort in our future work.

D. Fuzzer Evaluation

To evaluate the effectiveness of our binary-only coverage

instrumentation, we compare our approach against the current

alternatives for instrumenting code to collect coverage. To

summarize, we evaluate the following systems:

Figure 5: Box plot of fuzzing executions per second on LAVA-M
across five, 24 hour trials. Legend: CF=afl-clang-fast, DI=afl-dyninst,
G=afl-gcc, RW=afl-retrowrite (our solution), Q=QEMU. Higher num-
bers indicate better performance.

Figure 6: Box plot of fuzzing executions per second on real-world
targets across five, 24 hour trials. Legend: CF=afl-clang-fast, DI=afl-
dyninst, G=afl-gcc, RW=afl-retrowrite (our solution), Q=QEMU.
Higher numbers indicate better performance.

CF: Source code instrumentation at LLVM-IR level, through

afl-clang-fast,

G: Source code instrumentation at assembly level, through

afl-gcc,

Q: Runtime instrumentation through afl-qemu
DI: Static rewriting through trampolines, through

afl-dyninst, and

RW: Static rewriting through afl-retrowrite (our solu-

tion).

As discussed, the number of executions per second (the

fuzzer throughput) is important as exploring more inputs

directly correlates to larger probability of finding bugs through

fuzzing. The fuzzer throughput alone does not give us a

complete picture as a high throughput can be achieved by not

instrumenting the binary to collect coverage. Such a fuzzer

would achieve low coverage and hence discover fewer bugs.

Therefore we evaluate along two axes: (i) executions per

second, and (ii) number of unique bugs triggered, on the

LAVA-M benchmarks [11]. To compare real-world fuzzing

performance, we also evaluate the above systems on seven

different libraries: (i) readelf (binutils), (ii) bzip2, (iii) file,

(iv) bsdtar (libarchive), (v) pngfix (libpng), (vi) tiff2rgba

(libtiff), and (vii) tcpdump. All binaries are statically linked

against their respective libraries to ensure both the exe-

cutable and the library are instrumented to collect coverage.

We were unable to run the md5sum binary from LAVA-M

when compiled with afl-clang-fast: the resulting binary

crashes (segfaults) on any input. Hence, this result for

afl-clang-fast has been omitted.
Because of its randomness, a single fuzz trial does not give

us a complete picture. We follow guidelines for fuzzing as

presented in [55] and conduct five trials with a 24-hour timeout

per trial. For LAVA-M, the testcase included with the source

is used as the initial seed for fuzzing. For fuzzing real-world

applications, we used the testcases provided with the library

as the initial fuzz seed (tcpdump), and fuzzing seeds included

as a part of AFL for the other applications (readelf, bzip2, file,

bsdtar, pngfix, tiff2rgba). The box plot for fuzzing performance

across these trials is presented in Figure 5 and Figure 6. For

LAVA-M, the number of unique bugs found in each of the five

trials is presented in the Appendix in Table VI.
Our performance evaluation shows that afl-qemu is con-

sistently the slowest mechanism for coverage instrumenta-

tion. This is expected as afl-qemu instruments the bi-

nary at runtime, incurring a higher overhead when com-

pared to approaches that instrument statically. afl-dyninst
has the highest throughput among the systems that

we tested, outperforming compiler-based instrumentation,

afl-clang-fast, on targets such as bzip2. This is surpris-

ing as we do not expect a trampoline-based binary rewriting

solution to perform better than compiler-based instrumen-

tation. This is likely due to the coverage instrumentation

by afl-dyninst being ineffective at guiding the fuzzer

through deeper program paths, thereby achieving a shallow

coverage and a larger number of executions per second.

Our evaluation of discovered bugs indicates that this is in-

1507

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

Table V: Overview of p-values from Mann-Whitney U Test, com-
paring afl-retrowrite (RW) v/s afl-gcc (G), and afl-retrowrite (RW)
v/s afl-qemu (Q). p < 0.05 indicates the results are statistically
significant. Values rounded to third decimal place.

RW v/s Q RW v/s G

U-value Means U-value Means

binutils 0.006 2298.81 / 216.07 0.105 2298.81 / 1962.40
bzip2 0.010 104.91 / 48.65 0.018 104.91 / 172.52
file 0.006 568.46 / 58.26 0.417 568.46 / 539.57
libarchive 0.006 1124.81 / 353.22 0.265 1124.81 / 971.91
libpng 0.006 1783.53 / 285.75 0.417 1783.53 / 1759.76
libtiff 0.006 3775.38 / 1503.9 0.500 3775.38 / 3589.85
tcpdump 0.006 1498.07 / 131.35 0.417 1498.07 / 1525.01

base64 0.006 2456.39 / 429.99 0.071 2456.39 / 2764.03
md5sum 0.006 1486.15 / 258.69 0.338 1486.15 / 1379.45
uniq 0.006 1684.75 / 372.38 0.148 1684.75 / 1464.21
who 0.006 2895.17 / 445.28 0.047 2895.17 / 3067.26

deed the case: afl-dyninst fails to find bugs despite

having a high fuzzing throughput. The other three systems,

afl-clang-fast, afl-gcc, and afl-retrowrite
achieve similar throughputs across all runs.

Due to fuzzing randomness, we need a statistical test to

determine if the deviations in throughput values are statisti-

cally significant or just an artifact of the randomness. To do

so, we perform Mann-Whitney U test as suggested by Kless

et al. [55]. We compare afl-retrowrite v/s afl-qemu
and afl-gcc in Table V. All p-values comparing binary

AFL and QEMU are < 0.05 indicating that the difference

in performance is statistically significant, while p-values com-

paring binary and source AFL are > 0.05 indicating that the

differences in performance are likely due to the fuzzer’s ran-

domness. Consequently, we conclude that our binary version

improves over QEMU. Performance of afl-retrowrite is

within measurement noise of source AFL. Note the repeated

p-value of 0.006, which corresponds to the smallest achievable

value for tests with 5 runs, indicating that each single element

of array A is smaller than any element of array B.

The number of bugs discovered by AFL directly shows the

effectiveness of coverage instrumentation and fuzzer through-

put. Appendix Table VI shows that the QEMU-based instru-

mentation, afl-qemu, only finds two bugs in a single run

of uniq. The low throughput of afl-qemu prevents the fuzzer

from exploring a large input space and achieving high coverage

leading to lower number of bugs found. In contrast, afl-dyninst

has high throughput, but fails to find many bugs in our evalu-

ation: only finding a total of 3 bugs across all runs on base64.

This is likely due to ineffective (or incomplete) coverage

instrumentation, preventing the fuzzer from exploring deeper

paths. Finally, afl-retrowrite and the two source-based

solutions, afl-clang-fast and afl-gcc, discover a similar number

of unique bugs across all the runs and benchmarks (barring

the failed evaluation of afl-clang-fast on md5sum benchmark).

Our evaluation shows that our solution, afl-retrowrite,

is a viable alternative to afl-qemu for binary-only applications

and is identical to source-based solutions, both in terms of

performance and bug-finding capabilities.

VII. DISCUSSION

a) Support for C++ Binaries: The current implementa-

tion of RetroWrite cannot rewrite C++ binaries safely. This

is primarily due to missing symbolization for C++ exception

handlers. Information required to unwind stack-frames are

stored in compressed DWARF format [56] which contain code

references that we do not symbolize. This is in line with

previous work on reassembleable assembly and a limitation

shared by all current approaches. Theoretically, RetroWrite
does support C++ binaries that do not involve exception

handling. However, this has not been tested extensively. We

leave the engineering effort of adding support for exception

handling as future work.

b) Closing the Performance Gap: Although

ASan-retrowrite is significantly faster than Valgrind

memcheck, there is still a slowdown when compared to

ASan. Our current ASan-retrowrite instrumentation is

directly taken from assembly generated by the compiler for

instrumenting several crafted test cases. We did not invest

additional effort in hand-optimizing assembly. Therefore, our

current ASan-retrowrite instrumentation may not be

the most optimized version possible. Another opportunity to

reduce overhead is to remove unnecessary checks when a

memory access is known to be safe, e.g., accessing variables

on stack through constant offsets from the stack top. We

notice through a preliminary study that ASan-retrowrite
instruments about 50% - 70% more checks than ASan.

c) Limitations of ASan-retrowrite: The limitations

of ASan-retrowrite on stack and global sections are

fundamental to static binary rewriting. To improve precision on

stack and data sections, we may need to trade-off soundness

or scalability. Though the above holds for the general case,

a soundy analysis may work for most compiler generated

binaries, and it may still be possible to push towards higher

precision without introducing false positives. One attractive

option is to use local symbolic execution to track base-pointers

and disambiguate references. We leave this as an option for

future work.

d) Obfuscation: To protect intellectual property, some

vendors ship obfuscated binaries. Our framework does not

address obfuscation. Binary unpacking is usually specific to

the obfuscation scheme used; and an obfuscated binary may

be rewritten by RetroWrite, after it is pre-processed by

a de-obfuscation step [57], [58]. Similar to other efforts in

binary analysis, we do not consider adversarial binaries, i.e.,

binaries crafted to defeat rewriting efforts.

VIII. RELATED WORK

In this section we discuss related work that are both com-

plementary and orthogonal to our efforts in rewriting, fuzzing

instrumentation, and memory checker.

a) Fuzzing: RetroWrite allows seamless implemen-

tation of binary AFL without any changes being made to the

original AFL framework itself. This enables any advancements

made towards improving AFL to be integrated into our binary

1508

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

AFL solution without any additional effort. These advance-

ments could range from smarter seed selection [59], [60], [61]

to even transformational fuzzing [62].

b) Binary Rewriting: Several approaches to binary

rewriting have been proposed, these can be broadly divided

into two categories based on time of instrumentation: (a) Dy-

namic Binary Translation (DBT) based approaches [10], [26],

[63], [29], [30], [15] that instrument the binary at runtime,

and (b) Static binary rewriting based approaches [14], [16],

[31], [12], [13], [15], [32] that instrument binaries on disk.

While DBT-based approaches are scalable and widely used for

real-world rewriting, they have higher overhead making them

unsuitable for highly performant instrumentation. Static binary

rewriting approaches have been limited to smaller binaries,

have higher memory or runtime overhead, or are limited by

the types of transformations that they support.

c) Reassembleable Assembly: RetroWrite uses re-

assembleable assembly at its core to perform rewriting. Re-

assembleable assembly was first introduced by Uroboros [13]

and then improved upon by ramblr [12]. As noted by Wang

et al. [12] symbolizing a binary is undecidable in general

as it requires analysis to distinguish between scalars and

references statically, which was shown undecidable [33]. Our

work is inspired by these existing approaches, but we trade-off
generality for soundness and target position-independent code.

Consequently, while we are limited to position-independent

code, we ensure that RetroWrite is correct by construction,

not requiring any heuristics. Furthermore, our approach is

scalable to rewrite larger, real-world applications. Lastly, both

Uroboros and ramblr focus on rewriting x86 32-bit binaries

(and had symbolization false negatives on 64-bit binaries);

whereas RetroWrite focuses on x86-64 bit PIC binaries.

d) Disassembly and Control Flow Recovery: Most bi-

nary analyses use disassembly as a first step in the tool-chain.

For architectures that allow variable length instructions and

intermixing of code and data, disassembling an executable is

an undecidable problem as it requires analysis to make this

distinction between code and data. Two established techniques

in disassembly are linear sweep and recursive descent and are

discussed in depth by Schwarz et al. [19]. As pointed out

by Andriesse et al. [25], achieving high-level of disassembly

accuracy for mainstream compilers, such as clang, gcc, and

Visual Studio, is possible with techniques such as linear sweep

even when the binary is optimized. Surprisingly, their evalu-

ation shows that linear sweep as implemented in objdump
outperforms tools that use more sophisticated techniques.

Though our current implementation uses linear sweep and has

been sufficient for all our evaluations, we can reuse existing

tools [20], [21] to handle other edge-cases.

Control-flow recovery [64], [65], [66], [67], [68] improves

disassembly coverage and vice-versa, and therefore is imple-

mented as tightly coupled passes in angr [23]. RetroWrite
does not require precise recovery of the CFG as indirect

calls and jumps are symbolized at the program point where

the address is taken, rather than at the point of control-flow

transfer. However, the rewriter API can support a richer set of

transformations at basic block granularity with a more precise

CFG if the desired instrumentation requires it.

e) Function Identification: Modern approaches [39],

[40], [41], [42] use machine learning to detect function start

and sizes. Tools such as IDA [20] and radare [21] implement

architecture and compiler specific heuristics to detect function

boundaries. These techniques have different trade-offs in terms

of precision and accuracy. Any of these existing techniques

may be reused in our framework, as a pre-processing step,

to support instrumentation of stripped binaries. Note that the

accuracy of function identification does not affect our rewriting

correctness, but has implications on the instrumentation API,

e.g., a function level instrumentation pass may miss instru-

menting some functions if they are not identified.

f) Variable and Type Information Recovery: Recovering

types and variable information is an important step in de-

compilation as it leads to more natural looking code, and

hence much effort has been spent on this subject [46], [47],

[48], [49]. These techniques are inherently geared towards

readability and can tolerate some degree of unsoundness. Any

of these techniques can be used to identify stack variables and

instrument ASan-retrowrite checks at a finer-granularity.

However, this is a trade-off between precision and soundness

of error reporting. Any errors in variable recovery may lead

to false positives, which may or may not be desirable based

on an individual use-case.

IX. CONCLUSION

RetroWrite is a principled, zero-cost rewriter for

PIC binaries. To aid fuzzing blackbox binaries, we de-

velop two instrumentation passes in RetroWrite: (i)

ASan-retrowrite, a binary-only memory checker, based

on and compatible with ASan, and (ii) binary-AFL to

collect coverage for greybox fuzzing. We show that

ASan-retrowrite is significantly better than the cur-

rent state-of-the-art binary-only memory checker, Valgrind

memcheck, both in terms of performance and coverage.

ASan-retrowrite is compatible with ASan, thereby al-

lowing users to selectively rewrite closed-source parts of

code with ASan-retrowrite while compiling the rest

of the code with ASan. For coverage-guided fuzzing, our

binary-only AFL instrumentation is at least as good as the

source-based AFL instrumentation, and far better than the cur-

rent coverage collection for blackbox binaries using QEMU.

RetroWrite is open source: https://github.com/
HexHive/retrowrite/.

X. ACKNOWLEDGEMENTS

We thank our shepherd Brendan Dolan-Gavitt and the

anonymous reviewers for their insightful comments. This

research was supported by ONR award N00014-17-1-2513 and

by NSF CNS-1801601. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of our

sponsors.

1509

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits,”
in Proceedings of the 12th USENIX Security Symposium, Washington,
D.C., USA, August 4-8, 2003. USENIX Association, 2003.

[2] M. Corporation, “A detailed description of the data execution prevention
(dep) feature in windows xp service pack 2, windows xp tablet pc edition
2005, and windows server 2003,” https://support.microsoft.com/en-us/
kb/875352, 2013.

[3] C. Cowan, “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks,” in Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, USA, January 26-29, 1998, A. D. Rubin,
Ed. USENIX Association, 1998.

[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS 2005, Alexandria, VA, USA, November
7-11, 2005, V. Atluri, C. A. Meadows, and A. Juels, Eds. ACM, 2005,
pp. 340–353.

[5] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
CSUR, 2017.

[6] M. Zalewski, “american fuzzy lop,” 2017, [Online; accessed 1-
December-2018]. [Online]. Available: http://lcamtuf.coredump.cx/afl/

[7] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, G. Heiser
and W. C. Hsieh, Eds. USENIX Association, 2012, pp. 309–318.

[8] “Radamsa,” https://gitlab.com/akihe/radamsa, accessed: 2018-11-24.

[9] “Afl blackbox,” [Online; accessed 1-December-2018]. [Online].
Available: https://github.com/mirrorer/afl/tree/master/qemu mode

[10] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementa-
tion, San Diego, California, USA, June 10-13, 2007, J. Ferrante and
K. S. McKinley, Eds. ACM, 2007, pp. 89–100.

[11] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. K.
Robertson, F. Ulrich, and R. Whelan, “LAVA: large-scale automated
vulnerability addition,” in IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society,
2016, pp. 110–121.

[12] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” in 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017. The Internet Society, 2017.

[13] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in
24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015., J. Jung and T. Holz, Eds. USENIX
Association, 2015, pp. 627–642.

[14] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D.
Keromytis, “Retrofitting security in COTS software with binary rewrit-
ing,” in Future Challenges in Security and Privacy for Academia and In-
dustry - 26th IFIP TC 11 International Information Security Conference,
SEC 2011, Lucerne, Switzerland, June 7-9, 2011. Proceedings, ser. IFIP
Advances in Information and Communication Technology, J. Camenisch,
S. Fischer-Hübner, Y. Murayama, A. Portmann, and C. Rieder, Eds., vol.
354. Springer, 2011, pp. 154–172.

[15] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumen-
tation,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools, PASTE’11, Szeged, Hungary,
September 5-9, 2011, J. Foster and L. L. Pollock, Eds. ACM, 2011,
pp. 9–16.

[16] Z. Deng, X. Zhang, and D. Xu, “BISTRO: binary component extraction
and embedding for software security applications,” in Computer Security
- ESORICS 2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, ser. Lecture
Notes in Computer Science, J. Crampton, S. Jajodia, and K. Mayes,
Eds., vol. 8134. Springer, 2013, pp. 200–218.

[17] “Afl dyninst,” [Online; accessed 1-December-2018]. [Online]. Available:
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst

[18] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in Proceedings of the 9th Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization, ser. CGO ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 213–223.

[19] B. Schwarz, S. K. Debray, and G. R. Andrews, “Disassembly of
executable code revisited,” in 9th Working Conference on Reverse
Engineering (WCRE 2002), 28 October - 1 November 2002, Richmond,
VA, USA, A. van Deursen and E. Burd, Eds. IEEE Computer Society,
2002, pp. 45–54.

[20] “Ida pro,” https://www.hex-rays.com/products/ida/, accessed: 2018-11-
24.

[21] “Radare,” http://rada.re/r/, accessed: 2018-11-24.

[22] V. 35, “binary.ninja : a reversing engineering platform,” https://binary.
ninja/, accessed: 2018-11-24.

[23] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016. IEEE Computer Society, 2016, pp. 138–157.

[24] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. M.
Thuraisingham, “Differentiating code from data in x86 binaries,” in
Machine Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD 2011, Athens, Greece, September 5-9,
2011, Proceedings, Part III, ser. Lecture Notes in Computer Science,
D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, Eds., vol.
6913. Springer, 2011, pp. 522–536.

[25] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 binaries,”
in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., T. Holz and S. Savage, Eds. USENIX
Association, 2016, pp. 583–600.

[26] H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large intel®
itanium® programs with dynamic instrumentation,” in 37th Annual
International Symposium on Microarchitecture (MICRO-37 2004), 4-8
December 2004, Portland, OR, USA. IEEE Computer Society, 2004,
pp. 81–92.

[27] D. Bruening, T. Garnett, and S. P. Amarasinghe, “An infrastructure
for adaptive dynamic optimization,” in 1st IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2003), 23-26
March 2003, San Francisco, CA, USA, R. Johnson, T. Conte, and W. W.
Hwu, Eds. IEEE Computer Society, 2003, pp. 265–275.

[28] B. Derek, G. AI, A.-J. Chris, G. E. Edmund, and Z. Kevin,
“Building dynammic tools with dynamorio on x86 and armv8,”
https://github.com/DynamoRIO/dynamorio/releases/download/release
7 0 0 rc1/DynamoRIO-tutorial-feb2017.pdf, 2018, [Online; accessed
28-Feb-2018].

[29] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the FREENIX Track: 2005 USENIX Annual Technical
Conference, April 10-15, 2005, Anaheim, CA, USA. USENIX, 2005,
pp. 41–46.

[30] M. Payer and T. R. Gross, “Fine-grained user-space security through
virtualization,” in ACM International Conference on Virtual Execution
Environments, 2011.

[31] M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua, “Static
binary rewriting without supplemental information: Overcoming the
tradeoff between coverage and correctness,” in 20th Working Conference
on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-
17, 2013, R. Lämmel, R. Oliveto, and R. Robbes, Eds. IEEE Computer
Society, 2013, pp. 52–61.

[32] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly: Statically
rewriting x86 binaries without heuristics,” in 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.

[33] R. N. Horspool and N. Marovac, “An approach to the problem of
detranslation of computer programs,” Comput. J., vol. 23, no. 3, pp.
223–229, 1980.

[34] “Ubuntu Newsletter,” https://lists.ubuntu.com/archives/ubuntu-devel/
2017-June/039816.html, accessed: 2018-11-24.

[35] “Fedora Harden All Packages,” https://fedoraproject.org/wiki/Changes/
Harden All Packages, accessed: 2018-11-24.

[36] “Gentoo Profiles 17.0,” https://www.gentoo.org/support/news-items/
2017-11-30-new-17-profiles.html, accessed: 2018-11-24.

[37] “Android Lollipop Security Enhancements,” https://source.android.com/
security/enhancements/enhancements50.html, accessed: 2018-11-24.

1510

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

[38] “iOS Building PIE,” https://developer.apple.com/library/archive/qa/
qa1788/ index.html, accessed: 2018-11-24.

[39] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt, “Learning to
analyze binary computer code,” in Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, D. Fox and C. P. Gomes, Eds. AAAI Press, 2008,
pp. 798–804.

[40] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
J. Jung and T. Holz, Eds. USENIX Association, 2015, pp. 611–626.

[41] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
learning to recognize functions in binary code,” in Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-
22, 2014., K. Fu and J. Jung, Eds. USENIX Association, 2014, pp.
845–860.

[42] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE,
2017, pp. 177–189.

[43] “Msrc - trends, challenges, and strategic shifts in the
software vulnerability mitgation landscape,” https://github.com/
Microsoft/MSRC-Security-Research/blob/master/presentations/
2019 02 BlueHatIL/2019 01-BlueHatIL-Trends,challenge,
andshiftsinsoftwarevulnerabilitymitigation.pdf, accessed: 2019-05-
01.

[44] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “Soft-
bound: highly compatible and complete spatial memory safety for c,” in
Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, Dublin, Ireland, June
15-21, 2009, M. Hind and A. Diwan, Eds. ACM, 2009, pp. 245–258.

[45] ——, “CETS: compiler enforced temporal safety for C,” in Proceedings
of the 9th International Symposium on Memory Management, ISMM
2010, Toronto, Ontario, Canada, June 5-6, 2010, J. Vitek and D. Lea,
Eds. ACM, 2010, pp. 31–40.

[46] G. Balakrishnan and T. W. Reps, “DIVINE: discovering variables IN
executables,” in Verification, Model Checking, and Abstract Interpreta-
tion, 8th International Conference, VMCAI 2007, Nice, France, January
14-16, 2007, Proceedings, 2007, pp. 1–28.

[47] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of
data structures from binary execution,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2010, San Diego,
California, USA, 28th February - 3rd March 2010, 2010.

[48] J. Lee, T. Avgerinos, and D. Brumley, “TIE: principled reverse
engineering of types in binary programs,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2011, San Diego,
California, USA, 6th February - 9th February 2011, 2011. [Online].
Available: http://www.isoc.org/isoc/conferences/ndss/11/pdf/5 3.pdf

[49] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for
machine code,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’16.
New York, NY, USA: ACM, 2016, pp. 27–41.

[50] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 5, pp. 1467–1471, 1994.

[51] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical
concolic execution engine tailored for hybrid fuzzing,” in USENIX
Security Symposium. USENIX Association, 2018, pp. 745–761.

[52] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in IEEE Symposium on Security and Privacy. IEEE Computer Society,
2018, pp. 711–725.

[53] “Asan patch for spec cpu2006,” [Online; accessed 1-December-
2018]. [Online]. Available: https://github.com/google/sanitizers/blob/
master/address-sanitizer/spec/spec2006-asan.patch

[54] “MITRE CWE Database,” https://cwe.mitre.org/, accessed: 2018-11-24.
[55] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating

fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. ACM, 2018, pp. 2123–2138.

[56] “Dwarf standard specification,” [Online; accessed 1-December-2018].
[Online]. Available: http://dwarfstd.org/Dwarf5Std.php

[57] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in NDSS, 2015.

[58] M. A. Ben Khadra, D. Stoffel, and W. Kunz, “Speculative disassembly
of binary code,” in Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, ser.
CASES ’16. New York, NY, USA: ACM, 2016, pp. 16:1–16:10.

[59] M. Böhme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 2329–2344.

[60] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds. ACM, 2016, pp. 1032–1043.

[61] C. Lemieux and K. Sen, “FairFuzz: Targeting Rare Branches to Rapidly
Increase Greybox Fuzz Testing Coverage,” ASE 2018- Proceedings of
the 33rd IEEE/ACM International Conference on Automated Software
Engineering, pp. 475–485, 2018.

[62] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA.
IEEE Computer Society, 2018, pp. 697–710.

[63] D. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2004.

[64] C. Cifuentes and M. V. Emmerik, “Recovery of jump table case
statements from binary code,” in 7th International Workshop on Program
Comprehension (IWPC ’99), May 5-7, 1999 - Pittsburgh, PA, USA.
IEEE Computer Society, 1999, pp. 192–199.

[65] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,”
SIGARCH Computer Architecture News, vol. 33, no. 5, pp. 63–68, 2005.

[66] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in Computer Aided Verification, 20th International Conference, CAV
2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, ser. Lecture
Notes in Computer Science, A. Gupta and S. Malik, Eds., vol. 5123.
Springer, 2008, pp. 423–427.

[67] C. Krügel, W. K. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, 2004, pp. 255–
270.

[68] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014., 2014, pp. 829–844.

APPENDIX

Table VI: Number of unique bugs found in five fuzzing trials. All
trials used input provided with the LAVA-M dataset as initial seeds.
Each trial was run for 24 hours. Legend. CF: afl-clang-fast, G: afl-
gcc, Q: afl-qemu, DI: afl-dyninst, RW: afl-retrowrite.

RW CF DI G Q

base64 [5, 2, 0, 6, 1] [4, 2, 2, 1, 2] [1, 2, 0, 0, 0] [2, 1, 2, 2, 3] [0, 0, 0, 0, 0]
md5sum [1, 0, 0, 1, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]
uniq [1, 1, 3, 2, 2] [1, 1, 3, 1, 2] [0, 0, 0, 0, 0] [1, 3, 1, 0, 0] [0, 0, 0, 0, 2]
who [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]

1511

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 01,2024 at 13:13:22 UTC from IEEE Xplore. Restrictions apply.

