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ABSTRACT Low spatial resolution is a well-known problem for depth maps captured by low-cost consumer
depth cameras. Depth map super-resolution (SR) can be used to enhance the resolution and improve the
quality of depth maps. In this paper, we propose a recumbent Y network (RYNet) to integrate the depth
information and intensity information for depth map SR. Specifically, we introduce two weight-shared
encoders to respectively learn multi-scale depth and intensity features, and a single decoder to gradually fuse
depth information and intensity information for reconstruction. We also design a residual channel attention
based atrous spatial pyramid pooling structure to further enrich the feature’s scale diversity and exploit the
correlations between multi-scale feature channels. Furthermore, the violations of co-occurrence assumption
between depth discontinuities and intensity edges will generate texture-transfer and depth-bleeding artifacts.
Thus, we propose a spatial attention mechanism to mitigate the artifacts by adaptively learning the spatial
relevance between intensity features and depth features and reweighting the intensity features before fusion.
Experimental results demonstrate the superiority of the proposed RYNet over several state-of-the-art depth
map SR methods.

INDEX TERMS Depth map super-resolution, convolutional neural network, UNet network, atrous spatial
pyramid pooling, attention mechanism.

I. INTRODUCTION
Depth map has many applications in practice, such as
autonomous driving, virtual reality, 3D reconstruction.
Recent consumer depth cameras have provided a convenient
way to acquire depth maps. However, the depth maps cap-
tured by these cameras usually suffer from low spatial res-
olution. For instance, the resolution of the depth map taken
by Kinect v2 is only 512 × 424. In order to solve this issue,
depth map super-resolution (SR) is developed to enhance the
resolution of depth maps.

Depth map SR aims to reconstruct a high-resolution
(HR) depth map from its low-resolution (LR) counterpart.
It has inherent ill-posedness, since there may exist multiple
HR depth maps that can produce an identical LR depth
map after degradation. Numerous depth map SR methods
have been proposed to alleviate the ill-posedness, includ-
ing filter-based methods, optimization-based methods, and
learning-based methods. Considering recent RGB-D cameras
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can simultaneously capture an LR depthmap and an HR color
image, some of the depth map SR methods employ the HR
color image or intensity image as guidance to enhance the
quality of depth map, based on the co-occurrence assumption
between depth discontinuities and intensity edges.

The idea of the filter-based methods is to use the neigh-
boring LR depth values to estimate the HR pixel value in
a filtering manner. The most representative work is joint
bilateral up-sampling (JBU) [1] where bilateral weights are
determined based on the guidance color image. The main
advantages of the filter-based methods are simple and low
computational complexity. However, they often tend to yield
blur artifacts along depth discontinuities.

The key idea of optimization-basedmethods is to formulate
depth map SR as an objective function minimization which
generally consists of a data fidelity term and powerful depth
map priors. For instance, Dong et al. [2] incorporate joint
local and nonlocal regularization priors into a unified depth
SR framework. Although such optimization-based methods
are able to produce high quality HR depth maps, they often
involve a time-consuming minimization process. Moreover,
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their performance may degrade quickly when the test depth
statistics are diverse from the adopted depth prior.

Another research direction is the development of
learning-based methods, which learn a nonlinear relationship
between LR and HR depth maps. A pioneer work in [3] is
to co-train three dictionaries (namely, LR depth dictionary,
HR depth dictionary, and HR color dictionary) to imply the
nonlinear relationship. In recent years, due to the outstanding
performance of deep convolutional neural network (DCNN)
in various computer vision tasks, a great deal of attention has
been shifted to deep learning-based depth map SR methods.
For example, Hui et al. [4] propose a deep MSG-Net which
learns HR intensity features to complement the LR depth
features.

Although considerable progress has been achieved in deep
learning-based depth map SR methods, there still exist some
aspects which need to be further considered. (1) It is well
known that multi-scale network structure can extract and
take full advantage of different-level information, including
low-level local fine information and high-level global seman-
tic information. However, to design an effective multi-scale
network for depth map SR task is still an open problem.
(2) Existing networks usually directly use the intensity
guidance but ignoring the depth-intensity spatial relevance.
It would result in texture-transfer and depth-bleeding artifacts
when the co-occurrence assumption between depth disconti-
nuities and intensity edges does not hold.

To address the aforementioned problems, we propose a
recumbent Y network (RYNet) for depth map SR. Specif-
ically, our RYNet adopts an encoders-decoder architecture
endowed with an effective multi-scale structure. Given an
interpolated LR depth map and an HR intensity image
as inputs, two weight-shared depth encoder and intensity
encoder are used to generate multi-scale depth features and
intensity features, respectively. Then, we employ a junction
module to connect the encoders with the unified decoder.
In junction module, we design residual channel attention
based atrous spatial pyramid pooling (RCA-ASPP) blocks
to further extract multi-scale atrous convolved depth features
and intensity features for subsequent fusion. In the decoder
part, we apply spatial attention mechanism to learn the spatial
relevance between the depth encoder features and intensity
encoder features passed from the same hierarchical encoder
level by skip connection. The intensity encoder features are
then adaptively reweighted to improve the accuracy of inten-
sity guidance. Next, at each scale level of the decoder, we con-
catenate for fusion the corresponding depth encoder features,
the reweighted intensity encoder features, and the decoder
features from the preceding scale level, and then perform
reconstruction.

In summary, our main contributions are listed as follows:
(1) We propose a RYNet for depth map SR by using a

multi-scale encoders-decoder architecture.
(2) We develop an effective RCA-ASPP block to further

increase the feature’s scale diversity and explore multi-scale
feature correlations.

(3) We introduce a spatial attention mechanism with the
ability of learning depth-intensity spatial relevance to handle
depth-intensity feature fusion. The proposed spatial atten-
tion based feature fusion block can effectively suppress
texture-transfer and depth-bleeding artifacts.

Experimental results demonstrate the superior perfor-
mance of the proposed RYNet.

II. RELATED WORK
A. DEEP LEARNING-BASED SINGLE COLOR IMAGE
SUPER-RESOLUTION
Since Dong et al. firstly introduce SRCNN [5] which demon-
strates that DCNN can be used to learn the mapping function
between LR and HR spaces, deep learning has been suc-
cessfully applied to single color image SR tasks. The deep
learning-based single color image SR methods benefit from
their novel network architectures and appropriate learning
principles. For example, residual connections [6] and dense
connections [7] are applied to enhance the network learning
capability for color image SR. The adoption of adversar-
ial loss in SRGAN [8] and ESRGAN [9] bring significant
gains in perceptual SR quality. The attention mechanisms,
such as channel attention [10], [11], non-local attention [12],
and color attention [13], are used to exploit the inherent
feature correlations in color image SR networks. The feed-
back mechanism in DBPN [14] and SRFBN [15] work in
a top-down manner, feeding high-level information back to
refine low-level information. When retrained with depth map
datasets, these deep learning-based methods can be general-
ized to deal with depth map SR problem.

B. DEPTH MAP SUPER-RESOLUTION
1) SINGLE DEPTH MAP SUPER-RESOLUTION
Plenty of single depth map SR methods have been devel-
oped to obtain an HR depth map from a single LR depth
map. Single depth map SR is challenging due to its severely
undetermined nature. Many filter-based methods have been
proposed to explore structural characteristics of depth maps.
For example, Hornacek et al. [16] exploit 3D patch-wise self-
similarity across depth according to rigid body transforma-
tion. Lei et al. [17] design a depth map up-sampling filter
by considering depth smoothness, texture similarity and view
synthesis quality.

Optimization-based methods attempt to alleviate the
ill-posedness of single depth map SR by employing effective
optimization models. Aodha et al. [18] search in the range
image database to find appropriate HR candidate patches for
each LR input depth patch, and then formulate the selection
of right candidate as a Markov Random Field (MRF) labeling
problem. Xie et al. [19] propose an edge-guided single depth
map SR method, which constructs the HR edge map from the
LR depth edges through an MRF optimization.

The leaning-based single depth map SR methods usually
fall into two categories: sparse representation-based and deep
learning-based. In the former category, Ferstl et al. [20]
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estimate edge priors by sparse coding with an external dictio-
nary, and then merge the edge priors into a variational energy
minimization using a Total Generalized Variation (TGV) reg-
ularization. Mandal et al. [21] construct sub-dictionaries of
exemplars to restore HR depth map. In the latter category,
Riegler et al. [22] integrate an anisotropic TGV regulariza-
tion term on top of a deep network to construct an end-to-
end ATGV-Net for depth SR. Song et al. [23] represent the
single depth map SR task as a series of novel view synthesis
sub-tasks, each of which can be solved by end-to-end deep
learning. Huang et al. [24] propose a pyramid-structured
DCNN with dense-residual connection to progressively gen-
erate depth maps of various levels.

Due to the limitation of insufficient available information,
single depth map SR methods can only perform well in the
case of small scaling factors. Their performance will deterio-
rate as the scaling factor increases.

2) COLOR GUIDED DEPTH MAP SUPER-RESOLUTION
A large number of color guided depth map SR methods
have emerged in the literature. Methods in this category are
generally based on the co-occurrence assumption between
depth discontinuities and the corresponding intensity edges.
Compared to single depth map SR, color guided depth map
SR is more reliable and robust by introducing additional
guidance information from the aligned HR color image.

The filter-basedmethods design local filters whoseweights
are determined by the affinity measure based on RGB-D
image pairs. For instance, Liu et al. [25] use geodesic dis-
tances inferred from an aligned HR color image to upsample
an LR depth map. He et al. [26] propose a local linear
edge-preserving filter called guided image filter to perform
guided upsampling. Lo et al. [27] present a joint trilateral
filtering algorithm that exploits spatial distance, color differ-
ence, and local depth gradient for depth map SR.

The optimization-based methods exploit various optimiza-
tion models for color guided SR, including MRF [28],
[29], auto-regressive (AR) model [30], [31], weighted least
squares (WLS) [32]–[34], total variation (TV) [35], [36],
and graph signal model [37]. Specifically, Diebel et al. [28]
design a MRF framework, which contains a pairwise depth
measurement potential and an image guided depth smooth-
ness prior potential. Zhou et al. [34] propose alternately
guided depth SR using WLS and zero-order reverse filter-
ing. Jiang et al. [36] propose a unified depth SR model with
transform domain regularization and spatial multi-directional
TV prior. Liu et al. [37] design a depth SR optimiza-
tion framework by combining both internal graph-signal
smoothness prior and external depth-color gradient consis-
tency. Yu et al. [38] propose color guided depth up-sampling
based on edge sparsity and super-weighted L0 gradient
minimization.

At an early stage, the leaning-based methods mainly
benefit from the adoption of sparse representation.
Kiechle et al. [39] train a bimodal co-sparse analysis model
to capture the interdependency across the RGB-D pair.

Tosic et al. [40] present a method for learning joint depth
and intensity sparse generative models and use joint basic
pursuit to infer sparse coefficients. Motivated by the success
of DCNN, deep learning-based methods [41]–[47] are also
developed. The complete deep primal-dual network in [41]
contains a fully convolutional network for an initial HR depth
estimation, and a non-local variational primal-dual network
for HR depth refinement. A joint image filter based on
convolutional neural network (CNN) is introduced in [43] to
selectively transfer salient structures from guidance image to
the target depth. A cascade coarse-to-fine CNN is proposed
in [44] to learn data-driven filters for color guided depth SR
problem. The local and global residual learning is adopted
in [45] to learn the frequency-dependent mapping function
for coarse-to-fine depth reconstruction. A residual UNet deep
network named DepthSR-Net is presented in [46] to infer HR
depth map by hierarchical features driven residual learning.
A deep edge-aware learning framework in [47] is used to
estimate depth edges as reconstruction cues and then two
depth restoration modules are used to recover HR depth map.
The proposed method in this paper also belongs to the deep
learning-based SR category with color guidance.

C. UNet AND YNet
The UNet network [48] and its variations, which are repre-
sentative encoder-decoder architectures, have attracted exten-
sive interest in many computer vision tasks, including image
segmentation [49]–[51], image SR [52], [53], image gen-
eration [54], [55], and object detection [56]. Typically,
the UNet network is composed of a contracting path in
encoder, an expanding path in decoder, and some skip con-
nections between two paths. The contracting path gradu-
ally reduces the spatial dimensions of feature maps and
captures higher-level contextual information. The expanding
path gradually recovers the spatial details. And the skip con-
nections are added between layers at the same hierarchical
level in encoder and decoder, merging lower layer features
with higher layer features to enhance networks’ learning
ability.

The most relevant work to ours is YNet in [57], which gen-
eralizes UNet for joint segmentation and classification tasks.
It has one encoder and two decoders, where one decoder
branch works for segmentation and the other for classifica-
tion. In contrast, to solve depth map SR task, we elaborately
design a RYNet structure which has two encoders (depth
encoder and intensity encoder) and one decoder, resembling
a recumbent Y. The RYNet can make full use of the depth
information and intensity guidance information with the two
encoders, and combine them in the decoder to recover a
high-quality HR depth map. In addition, we introduce resid-
ual channel attention based atrous spatial pyramid pooling
(RCA-ASPP) in the central junction of RYNet to further
extract expressive multi-scale features and achieve efficient
feature fusion. Meanwhile, the feature fusion from each skip
connection pair is guided by a spatial attention mechanism,
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FIGURE 1. Framework of the proposed Recumbent Y Network (RYNet). Kernel size (k), number of output feature maps (n), and stride (s) are indicated for
each convolutional layer. For simplicity, the default s = 1 is omitted.

designed to exploit spatial correlations between depth fea-
tures and intensity features,

III. PROPOSED METHOD
A. RYNet ARCHITECTURE
As shown in Fig. 1 (please refer to the electronic version for
better visualization), the overall architecture of our RYNet
network consists of six parts: the shallow feature extraction,
the depth encoder, the intensity encoder, the junction module,
the decoder, and finally the reconstruction part. Instead of
directly taking LR depth map as input, we upscale it to the
desired solution using Bicubic interpolation in advance.DLR,
IHR, andDSR denote the input interpolated LR depth map, the
input HR color guidance image, and the reconstructed HR
depth output of RYNet, respectively. We use one convolu-
tional (Conv) layer to extract the shallow features F0

D and F0
I

from DLR and IHR, respectively, which can be formulated as

F0
D = fSF_D(DLR), F0

I = fSF_I (IHR), (1)

where fSF_D denotes the shallow depth feature extraction
function, and fSF_I the shallow intensity feature extraction
function. Note that the ReLU activation functions are omitted
for clarity unless specified.
F0
D and F0

I are fed into the depth encoder and the intensity
encoder as inputs, respectively. Both encoders contain L dif-
ferent scale levels (L= 4 in Fig. 1). In every scale level except
the 1st one, down-sampling operation is first performed by
using a Conv layer with stride 2 to enlarge receptive field and

deal with features in higher semantic level. Meanwhile the
number of feature channels is doubled. Then, inspired by the
success of RCAN in [10], we stack B residual channel atten-
tion blocks (RCAB for short) after each down-sampling Conv
layer. As shown in the top-left corner of Fig. 1, an RCAB
contains a residual block and a channel attention (CA) block,
which focuses on more informative components and pos-
sesses discriminative learning ability. A detailed structure of
CA block will be elaborated in Section III-B. To ensure the
consistency between depth features and intensity features to
enhance the subsequent feature fusion efficiency, the depth
encoder and intensity encoder share the same weights. Two
encoder branches are formulated as:

F lD = f lEnc(F
l−1
D ), F lI = f lEnc(F

l−1
I ), (2)

respectively, where f lEnc denotes the encoding function at the
l-th scale level integrating down-sampling and B RCABs,
l ∈ {1, . . . ,L}. F lD and F lI refer to the output of l-th depth
scale level and l-th intensity scale level, respectively. In this
way, two encoders gradually reduce the spatial resolution of
features maps and capture multi-level semantic features.

The RYNet junction module is used to connect the
encoders with the decoder. In RYNet junction, residual
channel attention based atrous spatial pyramid pooling
(RCA-ASPP) block is designed for further multi-scale feature
extraction. High-level depth features and intensity features
are also fused to be fed into the decoder. More details on the
RYNet junction are provided in the Section III-B.
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The decoder also consists of L scale levels, each of which
has the same spatial resolution as the corresponding encoder
scale level. We add skip connections between correspond-
ing scale levels to transfer lower level information from the
encoders to the decoder. The fusion of 3 feature maps is then
implemented using a spatial attention based feature fusion
block (SA-FFB) located at the head of each decoder scale
level. The SA-FFB in the l-th decoder scale level is formu-
lated as:

F̃ lR = f lSA−FFB(F
l
D,F

l
I ,F

l
R), (3)

where f lSA−FFB is the function of SA-FFB to generate the
output F̃ lR. The detailed network structure of SA-FFB is intro-
duced in Section III-C. The following B cascaded RCABs are
used to recover details. At the end of each decoder scale level
except the last one, a deconvolutional (Deconv) layer with
stride 2 is employed to handle spatial up-sampling and feature
channel compression. At last, an extra SA-FFB is inserted to
fuse F0

D, F
0
I , and F

0
R. The full decoder branch is formulated

as:

F l−1R = f lDec(F
l
D,F

l
I ,F

l
R),

and F̃0
R = f 0SA−FFB(F

0
D,F

0
I ,F

0
R), (4)

where f lDec refers to the decoding function at the l-th scale
level which produces F l−1R . And F̃0

R represents the output of
the whole decoder branch. The decoder gradually increases
the spatial resolution of features and recovers more depth
details.

Global residual learning is used for stable and fast training.
In the reconstruction part, we stack two Conv layers as well
as a ReLU activation layer between them to reconstruct the
residual depth map. And then we apply the element-wise
summation of the residual depth map and the interpolated LR
depth map DLR to obtain the final output DSR, which can be
expressed as

DSR = DLR + fREC (F̃0
R) (5)

where fREC refers to the reconstruction function consisting
two Conv layers and one ReLU layer in between. The overall
process of our RYNet is formulated as

DSR = fRYNet (DLR, IHR) (6)

where fRYNet denotes the function of RYNet.
Then RYNet is optimized with a loss function. We choose

L2 loss as most previous works do. Given a training set
{DiLR, I

i
HR,D

i
HR}

N
i=1, which contains N interpolated LR depth

map, N HR color guidance images, and N HR ground truth
depth maps. The loss function of RYNet can be formulated
as:

L(2) =
1
N

N∑
i=1

‖fRYNet (DiLR, I
i
HR)− D

i
HR‖

2, (7)

where 2 denotes the parameters of the network. The min-
imization of (7) is achieved by using stochastic gradient
descent.

FIGURE 2. The structure of RYNet junction.

B. RYNet JUNCTION
The network architecture of the RYNet junction is illustrated
in Fig. 2 (a). The high-level intensity features FLI from inten-
sity encoder and the high-level depth features FLD from depth
encoder are sent to the junction module for feature fusion.
We first apply two RCA-ASPP blocks to further extract the
multi-scale features of FLI and FLD, respectively. These two
RCA-ASPP blocks share the same weights. Then we con-
catenate the features out of two RCA-ASPP blocks together
and feed it into a 1 × 1 Conv layer to fuse information.
Finally, we use a CA block to focus on more informative
fusion features. Details of RCA-ASPP block and CA block
are shown in Fig. 2 (b). Specifically, the output FLR of RYNet
junction can be formulated as:

FLR = fCA(fF (
[
fRCA−ASPP(FLI ), fRCA−ASPP(F

L
D)
]
))

= fJ (FLI ,F
L
D), (8)

where fRCA−ASPP, fF , and fCA represent the function of
RCA-ASPP block, feature fusion Conv, and CA block,
respectively.

[
·, ·
]
refers to the feature concatenation. And fJ

denotes the overall function of RYNet junction.
Multi-scale context information would help resolve the

misalignment between depth maps and color guidance image,
and result in more efficient and robust feature fusion.
To this end, we propose the RCA-ASPP block as shown in
Fig. 2 (b) to further increase the feature’s scale diversity.
We first combine four parallel atrous convolutional layers

with different dilation rates of 1, 2, 4, and 8, and then concate-
nate multiple atrous convolved features into one feature using
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a 1 × 1 Conv layer. This forms the basic atrous spatial pyra-
mid pooling (ASPP) structure. Moreover, to adaptively pay
attention to different channel-wise features, we take the CA
mechanism [10]. In a CA block, a global pooling is used to
aggregate the multi-scale features across spatial dimension to
generate a squeezed channel descriptor. A Conv/ReLU/Conv
combination followed by a sigmoid gating unit is then applied
to learn nonlinear interactions between channels. Finally,
an element-wise multiplication operation is performed to
channel-wisely reweight the multi-scale features according
to weight values out of the sigmoid activation. Our final
RCA-ASPP block is constructed by cascading the basic
ASPP and the CA block with residual connection. Thus the
proposed RCA-ASPP block not only enriches scale diversity
of features, but also adaptively explores multi-scale feature
correlations, resulting in more expressive feature learning for
the subsequent depth-intensity feature fusion.

C. SPATIAL ATTENTION BASED FEATURE FUSION BLOCK
Most of the color guided depth map SR methods rely on the
co-occurrence assumption between depth discontinuities and
aligned intensity edges. However, the co-occurrence assump-
tion does not always hold. The assumption might be violated
when object surface has continuous depth but with com-
plicated texture, or adjacent object surfaces have different
depths but with similar color or texture, therefore, leading
to texture-transfer and depth-bleeding artifacts. In order to
mitigate the artifacts, we develop a spatial attention (SA)
mechanism as shown in Fig. 3, to exploit the spatial relevance
between intensity encoder features and depth encoder fea-
tures. The SAmodule adaptively rescale the intensity encoder
featuresF lI in spatial domain before its fusionwithF lD andF lR.

FIGURE 3. Spatial attention based feature fusion block (SA-FFB).

Let F lI = [µ1, µ2, . . . , µH×W ] be one input of SA, which
has C feature maps with size ofH ×W . And µi ∈ RC×1×1 is
the i-th spatial features of F lI . Here we first take a Conv layer
(k3n1) and a sigmoid activation to generate different attention
weights from F lD for each spatial feature in F lI , as

w = δ(fSA_W (F lD)) (9)

where fSA_W denotes the function of the Conv layer which
learns the spatial attention. δ denotes the sigmoid gating

function. Then we use the spatial attention weight map
w = [w1,w2, . . . ,wH×W ] ∈ R1×H×W to reweight the
intensity features F lI by

F̃ lI = fSA(F lI ,w), (10)

where F̃ lI = [ν1, ν2, . . . , νH×W ] are the reweighted intensity
features, and νi ∈ RC×1×1. fSA denotes the space-wise mul-
tiplication operation, which implies νi = wi · µi. We employ
the SA mechanism to learn the distinct importances of dif-
ferent intensity spatial features and then re-calibrate them.
The relevant spatial features in F lI are strengthened and the
irrelevant ones are suppressed. After concatenating F̃ lI , F

l
D

and F lR, we finally adopt a 1× 1 Conv layer and a CA block
to effectively fuse them.

D. IMPLEMENTATION DETAILS
Now we specify the implementation details of our RYNet.
By comprehensively considering the network complexity and
sufficient feature’s scale diversity, we set L = 4 scale levels
in encoders and decoder. We set the number of RCABs
cascaded in each scale level as B = 4. We set 3 × 3 as the
size of all Conv and Deconv layers except where otherwise
stated. For Conv and Deconv layers with kernel size 3 × 3,
we apply zero-padding strategy to keep the size fixed. The
output_padding of Deconv layers is set to 1. The number of
filters in each weight layer is set according to the n value
indicated in Fig. 1, Fig. 2, and Fig. 3.

IV. EXPERIMENTAL RESULTS
A. SETTINGS
1) TRAINING DATA
The training dataset consisting of 82 RGB-D images is pro-
vided by [4]. To make full use of data, we adopt data aug-
mentation (flipping and rotation) as [46] do. The HR RGB
color images are transferred to corresponding HR intensity
guidance images beforehand. Then the HR depth maps and
HR intensity images are cropped into 96× 96 image patches
for scaling factors 2× and 4×, and 128× 128 image patches
for scaling factors 8× and 16 ×, respectively. The adja-
cent patches have 24-pixels overlap. To synthesize LR depth
patches, the corresponding HR depth patches are further
down-sampled using Bicubic with the given scaling factor.
All the training patches are normalized into [0, 1].

2) TRAINING SETTINGS
Our network models are implemented with Pytorch frame-
work. The networks are optimized using Adam [58] with
β1 = 0.9, β2 = 0.999 and a batch size of 64. In the
network initialization, the filter weight parameters are ini-
tialized using the ‘‘MSRA’’ method in [59], and the bias
parameters are set to 0. The initial learning rate is set to 10−4

and decreased to half after every 40 epochs. The training is
stopped after 80 epochs since validation accuracy stops fur-
ther improving. We train a specific network for each scaling
factor (2×, 4×, 8×, and 16 ×), respectively.
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3) TEST DATA
To keep consistency with previous works [45], [46], we use
10 depth maps from the hole-filled Middlebury dataset [60]
for test under various scaling factors, including Art, Book,
Dolls, Laundry, Moebius, Reindeer, Cones, Teddy, Tsukuba,
and Venus. None of the test depth maps occur in the training
set. We conduct noise-free and noisy experiments to demon-
strate the robustness of our network. In the noisy experi-
ment, Gaussian noise with variance of 25 is added to the
LR depth maps to simulate the ToF-like degradation. In addi-
tion, we evaluate our network on real data [36] captured by
Kinect. The experiment results on several standard bench-
mark datasets (Middlebury [60], ToFMark [35], and NYU
Depth v2 [61]) are also provided for a statistical evaluation.

4) BASELINE METHODS
We compare our method with the baseline Bicubic interpola-
tion method and the following state-of-art methods:

1) Deep learning-based single color image SR methods,
i.e., RCAN [10] and SAN [11].

2) Single depth map SR methods, such as,
Aodha et al. [18], and ATGV-Net [22].

3) Color guided depth map SR methods, including DJFR
[43], JID [39], TSDR [36], MSG-Net [4], MFR-SR [45], and
DepthSR-Net [46].

We briefly explain the experimental details of the deep
learning-based comparison methods. For RCAN [10] and
SAN [11], we use their source codes and retrain themwith our
augmented training dataset. The authors of ATGV-Net [22],
DJFR [43], MSG-Net [4], and DepthSR-Net [46] have pro-
vided their source codes for training and testing. We directly
use their publicly available models for some experimental
cases. For other cases where their models are inaccessible,
we retrain them using their training codes. We only perform
numerical comparison with the reported results of TSDR [36]
and MFR-SR [45] in the noise-free and noisy experiments.

5) EVALUATION METRICS
The quantitative performance is reported in terms of RMSE
and PSNR (dB). The best result for each evaluation is high-
lighted in bold, whereas the second best one is underlined.

B. EXPERIMENT ON NOISE-FREE DATA
In this subsection, we evaluate the performance of RYNet on
noise-free depth maps. The quantitative results for scaling
factors of 2×, 4×, 8×, and 16× are reported in Table 1.
It can be observed that all the deep learning-based methods
achieve significant performance gains over other methods
for all the scaling factors, reflecting that DCNN can facil-
itate learning more accurate LR-HR mapping relationships.
In the case of small scaling factors such as 2× and 4×, the
performances of RCAN [10] and SAN [11] without color
guidance are comparable to, or even better than those of
color guided methods. While for large scaling factors such
as 8× and 16×, the increasing feature ambiguity hinders

the performance of methods without color guidance. The
results demonstrate that color guidance can help alleviating
feature ambiguity and resulting in SR performance improve-
ment, especially on large scaling factors. Benefiting from the
increase of scale diversity by multi-scale encoders-decoder
structure and RCA-ASPP structure, and the discriminative
feature learning by spatial attention mechanism, the proposed
RYNet outperforms other competing methods for all scaling
factors. Specifically, compared with the second best RMSE
results, our average reductions are up to 0.12 over SAN [11]
for scaling factor of 2×, and up to 0.20, 0.18, and 0.50
over DepthSR-Net [46] for scaling factors of 4×, 8×, and
16×, respectively. And compared with the second best PSNR
results, our average gains are up to 3.61dB and 2.13dB over
MSG-Net [4] for scaling factors of 2× and 4×, and up to
1.22dB and 1.17dB over DepthSR-Net [46] for scaling factors
of 8× and 16×, respectively.
In order to compare visual quality, the reconstructed results

produced by different methods on depth map Cones for
4× SR and Venus for 8× SR are shown in Fig. 4 and
Fig. 5, respectively. The absolute error images between recon-
structed results and ground truth images are also provided in
terms of jet colormap to give an explicit comparison. Specifi-
cally, the reconstructed depth maps by Bicubic interpolation,
DJFR [43], and JID [39] are over-smoothed to some extent.
The patch-based method [18] suffers from severe blocking
artifacts. ATGV-Net [22] produces obvious reconstruction
artifacts, especially in the case of 4× SR. Although deep
learning-based methods RCAN [10] and SAN [11] gener-
ate competitive results for 4× SR, they inevitably introduce
blurring artifacts for 8× SR, due to the difficulty in learning
accurate mapping relationship without color guidance infor-
mation. Recent MSG-Net [4] and DepthSR-Net [46] recover
depth edges well, but moderate reconstruction errors still
present in their smooth regions. By contrast, the proposed
RYNet shows superiority in reducing reconstruction errors
as well as recovering sharp edges and accurate depth details.
Our reconstructed depth maps are more visually appealing
and closer to the ground truth, which can be observed from
the highlighted cropped regions.

C. EXPERIMENT ON NOISY DATA
To compare the robustness of comparison methods, we eval-
uate the performance of different methods on the noisy data
in this subsection. We add Gaussian noise with mean 0 and
variance 25 to the LR depth maps in our training dataset,
and retrain the RYNet model for 8× SR. Then, the trained
model is evaluated on the test data including 10 noisy
depth maps. Due to limited space, seven representative or
state-of-the-art algorithms from Section IV-B are selected
as comparison baselines of noisy experiments. The quan-
titative results are presented in Table 2. As illustrated
in Table 2, although without color guidance, RCAN [10]
and SAN [11] yield better results than MSG-Net [4]. And
the proposed RYNet, MFR-SR [45], and DepthSR-Net [46]
perform the 1st, 2nd, and 3rd best in terms of average
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TABLE 1. Quantitative comparison (in RMSE / PSNR (dB)) on noise-free data.

TABLE 2. Quantitative comparison (in RMSE / PSNR (dB)) on noisy data (8×).

RMSE and average PSNR values. Our average RMSE
reductions and average PSNR gains over MFR-SR [45]
and DepthSR-Net [46] are 0.26/0.73dB and 0.38/0.89dB,
respectively.

The visual comparison of the noisy depth map Art for
8× SR is provided in Fig. 6. It can be observed from the
highlighted regions that although most of the learning-based
methods without color guidance successfully suppress noise,
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FIGURE 4. Visual comparison of depth map Cones for 4× SR. (a) Original depth map and its aligned color image (RMSE/PSNR(dB)), (b) Bicubic
(3.84/36.45), (c) RCAN (2.12/41.61), (d) SAN (2.13/41.57), (e) Aodha et al. (5.22/33.78), (f) ATGV-Net (2.91/38.84), (g) DJFR (3.55/37.11), (h) JID
(2.85/39.03), (i) MSG-Net (2.60/39.85), (j) DepthSR-Net(2.33/40.77), (k) RYNet (1.92/42.46).

they produce over-smooth boundaries and inaccurate depth
details, such as the incorrect lip shapes in Fig. 6 (d)-(f). The
result of MSG-Net [4] is somewhat blurred. DepthSR-Net
[46] preserves the edge sharpness well, but still fails to
recover some depth details, e.g. the disappearing vertical
stick in the bottom-right highlighted region of Fig. 6 (h).
By contrast, the proposed RYNet performs well in suppress-
ing noise, and recovering sharp depth edges and accurate
depth details. The quantitative and qualitative comparisons
verify the robustness of RYNet to noise.

D. EXPERIMENT ON REAL DATA
In this subsection, we perform experiment on real data from
[36] captured by Microsoft Kinect camera. Kinect simulta-
neously returns a 512 × 424 depth map and a 1920 × 1080
color image. Besides the low resolution defect, Kinect depth
maps also frequently contain depth holes, such as structural
missing values along depth edges and random missing values
in flat areas. As the preliminary work on the depth map

SR of real data, we first calibrate the depth maps and the
color images under the resolution of 480 × 270 according
to the calibration parameters, and fill the depth holes by
interpolation. The hole-filled depthmaps are then up-sampled
to 1920×1080 by Bicubic interpolation and used as the depth
input of RYNet. Due to the limited space, we only provide the
visual comparison with TSDR [36] and DepthSR-Net [46]
on depth map Yoga in Fig. 7. It can be seen that TSDR [36]
produces smooth reconstruction results. Both DepthSR-Net
[46] and the proposed RYNet perform well in restoring depth
edge sharpness. But the reconstruction of DepthSR-Net [46]
appears somewhat distorted, such as in the railing regions.
In contrast, the proposed RYNet makes an accurate structural
reconstruction.

E. STATISTICAL EVALUATION ON DEPTH MAP DATASET
To evaluate the statistical performance of the proposed
RYNet, we carry out experiments on three public bench-
mark datasets: Middlebury [60] (60 RGB-D image pairs),
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FIGURE 5. Visual comparison of depth map Venus for 8× SR. (a) Original depth map and its aligned color image (RMSE/PSNR(dB)), (b) Bicubic
(2.75/39.35), (c) RCAN (1.50/44.61), (d) SAN (1.38/45.31), (e) Aodha et al. (3.21/37.99), (f) ATGV-Net (1.10/47.27), (g) DJFR (2.22/41.22), (h) JID
(1.23/46.35), (i) MSG-Net (1.04/47.79), (j) DepthSR-Net(1.10/47.26), (k) RYNet (0.70/51.26).

TABLE 3. Average RMSE / PSNR (dB) on three depth datasets (4×).

ToFMark [35] (3 RGB-D image pairs of real scenes), and
NYU Depth v2 [61] (1449 RGB-D image pairs of real
scenes).

For the limited space, six representative or state-of-the-art
methods from Section IV-B are selected as baselines, includ-
ing Bicubic interpolation, RCAN [10], SAN [11], ATGV-Net
[22], MSG-Net [4], and DepthSR-Net [46]. The average
RMSE and PSNR values for 4× depth map SR achieved by
these methods are shown in Table 3. The proposed method

achieves the lowest RMSE and the best PSNR on all the
datasets. It is followed by ATGV-Net [22], MSG-Net [4],
SAN [11], and DepthSR-Net [46] according to the gen-
eral results. More exactly, our average RMSE reductions
and PSNR gains of all the 1512 RGB-D image pairs in
three datasets over ATGV-Net [22], MSG-Net [4], SAN
[11], and DepthSR-Net [46] are 0.24/1.76dB, 0.25/1.85dB,
0.25/1.96dB, and 0.27/2.16dB, respectively. As shown in
Fig. 8, we also provide the RMSE/PSNR improvement prob-
ability distributions over the four baselines to better illus-
trate the statistical performance of the proposed method. The
RMSE reduction distributions and PSNR gain distributions
are all positively biased, proving that the proposed method is
statistically superior to the competing baselines.

The NYU Depth v2 dataset is composed of 464 video
scenes taken with a Kinect. There are unavoidable local struc-
tural misalignment between hole-filled Kinect depth maps
and color images, which may deteriorate the SR performance
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FIGURE 6. Visual comparison of noisy depth map Art for 8× SR. (a) Color guidance image, (b) original depth map (RMSE/PSNR(dB)) (c) Bicubic
(6.85/31.42), (d) RCAN (4.16/35.75), (e) SAN (4.20/35.67), (f) ATGV-Net (4.53/35.01), (g) MSG-Net (4.30/35.46), (h) DepthSR-Net(3.96/36.17), (i) RYNet
(3.47/37.33).

FIGURE 7. Visual comparison of real data Yoga captured by Kinect. From left to right, (a) Raw LR depth maps from [36], (b) the HR color image, and the
reconstruction results of (c) TSDR, (d) DepthSR-Net, and (e) RYNet.

of most depth map SR methods with color guidance. This
explains why the single depth map SR methods such as
SAN [11] and ATGV-Net [22] outperform MSG-Net [4] and
DepthSR-Net [46] on the NYU Depth v2 dataset. However,
the proposed method still exhibits robustness to the local
depth-color structural misalignment due to the increase of the
feature’s scale diversity and the adoption of spatial attention.
As shown in Fig. 9, the fake edge artifacts caused bymisalign-
ment are obvious in DepthSR-Net [46], especially along the
edges in the bottom-left highlighted regions. The proposed
method not only effectively suppresses the fake edge artifacts,
but also performs well in recovering depth details.

F. ABLATION ANALYSIS
In this subsection, we perform ablation experiments to verify
our network choices, including multi-scale encoders-decoder

FIGURE 8. The probability distributions of RMSE reductions and PSNR
gains of the proposed RYNet over four state-of-the-art baselines.

(MSED) architecture, RCA-ASPP block, spatial attention
(SA), and RCAB. Due to the limited space, instead of
enumerating all possible combinations, we select six repre-
sentative network models (from M-1 to M-6) with differ-
ent combinations of MSED, RCA-ASPP, SA, and RCAB as
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FIGURE 9. An example of the SR results on NYU Depth v2 dataset. (a) Original depth map (RMSE/PSNR(dB)), (b) the aligned color image, (c) RCAN
(1.74/43.30), (d) SAN (1.66/43.72), (e) ATGV-Net (1.77/43.18), (f) MSG-Net (1.84/42.83), (g) DepthSR-Net (1.91/42.51), (h) RYNet (1.42/45.08).

TABLE 4. Ablation investigation of RYNet (8×).

shown in Table 4. The model M-2 is actually a single-scale
encoders-decoder architecture with L = 1. In model M-3,
we directly concatenate FLD and FLI in the junction module.
In model M-4, the intensity encoder features F lI without
reweighting are directly fused with the depth encoder features
and the decoder features from the preceding scale level. The
model M-5 substitutes RCAB with a residual block. M-6 is
exactly the complete RYNet model used in previous experi-
ment sections.

As listed in Table 4, compared to M-6, network models
M-2 to M-5 suffer an increase of 0.35, 0.08, 0.03, and 0.06 in
average RMSE, and a decrease of 1.79dB, 0.46dB, 0.34dB,
and 0.43dB in average PSNR, respectively. It proves that the
adoption of MSED, RCA-ASPP, SA, and RCAB can sepa-
rately improve the performance. In addition, the comparison
between single-scale model M-2 with L = 1 and multi-scale
model M-6 with L = 4 indicates the more scale diversity, the
better. The considerable performance gap between the basic
modelM-1 and the complete modelM-6 clearly demonstrates
that all our network choices work coherently and make posi-
tive complementary contributions to performance.

G. TRAINING CONVERGENCE
In this subsection, we visualize the convergence process of
the proposed RYNet. The average PSNR curves on the ten

FIGURE 10. The PSNR (dB) values of RYNet on ten test depth maps in
Section IV-B and ToFMark dataset with different training epochs.

test depth maps in Section IV-B and ToFMark dataset versus
training epochs are shown in Fig. 10. The trends are similar
for different scaling factors, so only the curve for 2× SR
is provided. Clearly, with the growth of epochs, the PSNR
curves increase monotonically and reach their convergent
states after about 30 epochs. Hence, the maximal epoch num-
ber 80 seems appropriate.

H. RUNNING TIME
We evaluate the running time on the same desktop com-
puter with a NVIDIA RTX 2080Ti GPU and Intel Core i9
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TABLE 5. Average running time (sec) on 1080× 1320 test depth maps.

FIGURE 11. Running time and accuracy trade-off for different depth map
SR methods.

3.5GHz GHz CPU. Table 5 lists the average running time
of different methods for 4× SR of 1080 × 1320 test depth
maps. The running time of Bicubic interpolation is negligible.
Generally, deep learning-based methods are computationally
more efficient than optimization-based methods and tradi-
tional learning-based methods. The speed of the proposed
RYNet is faster than all the competingmethods except RCAN
[10], ATGV-Net [22], and MSG-Net [4]. Fig. 11 presents the
trade-offs between the running time and PSNR performance
on the ten test depth maps in Section IV-B. The results show
that the proposed RYNet is an appropriate choice for depth
map SR with comprehensive consideration of computational
complexity and performance.

V. CONCLUSION
In this paper, we propose a recumbent Y network (RYNet)
using an encoders-decoder architecture to fuse depth infor-
mation and intensity information for the depth map SR task.
Our RYNet introduces a residual channel attention based
atrous spatial pyramid pooling structure to enrich feature’s
scale diversity and adapt the network to focus on feature
channels with more informative scales. We also introduce a
spatial attention mechanism to increase the spatial correla-
tion between depth features and intensity guidance features
to mitigate the texture-transfer and depth-bleeding artifacts.
Comparison to recent depth map SR methods has shown
that our RYNet achieves the state-of-the-art performance for
different scaling factors. In future, we will extend this work
to other computer vision tasks with multiple inputs and single
output.
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