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ABSTRACT Determining the subcellular localization of long non-coding RNAs (lncRNAs) provides very
favorable references to discover the function of lncRNAs. Instead of through time-consuming and expensive
biochemical experiments, we develop a machine learning predictor based on logistic regression, lncLocPred,
to predict the subcellular localization of lncRNAs. We adopt sequence features including k-mer, triplet, and
PseDNC and systematically process feature selection through VarianceThreshold, binomial distribution, and
F-score to obtain representative features. We observe that the top-ranked k-mers have a higher base content
of G and C in the form of short repeats. Improving prediction accuracy on several subcellular localizations,
our model achieves the highest overall accuracy of 92.37% on the benchmark dataset by jackknife, higher
than the existing state-of-the-art predictors. Additionally, lncLocPred performs better for the prediction on
an independent dataset collected by us as well. Related experimental data and source code are available at
https://github.com/jademyC1221/lncLocPred.

INDEX TERMS Feature engineering, sequence features, subcellular localization of lncRNAs.

I. INTRODUCTION
Recently, long non-coding RNAs (lncRNAs) with more than
200 nucleotides [1] have become a research hotspot, whose
number reaches about 20000 estimated by ENCODE [2] or
FANTOM5 [3]. They make a variety of important biologi-
cal functions affecting different biological processes [4]–[6].
Alterations in the expression level of lncRNAs and
up-regulation or down-regulation of a novel lncRNA have
been shown to be the diagnostic marker for several types of
diseases and cancers, which contributes to the proposal of
therapeutic strategies [7]–[9].Most of their functions have yet
to be discovered cause their detailed functional mechanisms
remain unclear [10]. Of particular note is that different sub-
cellular localization patterns of lncRNAs enable them to per-
form their assigned functions [11]–[13]. LncRNAs located in
the nucleus perform their regulatory functions including chro-
matin organization, transcriptional and post-transcriptional
gene expression, and act as structural scaffolds of nucleus
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domains [14], [15]. For example, morrbid, a nuclear-localized
lncRNA, playing a regulatory role in the apoptosis of
short-lived myeloid cells, can facilitate the diagnosis and
treatment of inflammatory diseases [16]. Activity of lncRNA
XIST affects the methylation level of TIMP-3 promoter
and thus affects the degradation of collagen in osteoarthritis
chondrocytes after tibial plateau fracture [17]. Cytoplasmic
lncRNAs interfere with post-translational modification of
proteins and affect gene regulation [18]–[20]. For example,
as a tumor-promoting factor to enhance tumorigenesis of
GBC cells, lncRNA-HGBC can be used as a target for GBC
therapy [21]. LncRNA RP11-732M18.3 promotes glioma
growth through the interaction with the protein of 14-3-3 β/α
and provides clues for the treatment of glioma [22]. Obvi-
ously, the subcellular location of lncRNAs provides valuable
clues for their biological functions.

Currently, databases related to lncRNA subcellular
localization include RNALocate [23], LncATLAS [12], and
lncSLdb [24]. To date, RNALocate has contained experimen-
tal results for 190,000 entries of RNA subcellular localiza-
tions. LncATLAS has collected 6,768 GENCODE-annotated
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lncRNAs in different compartments of 15 cell lines with the
help of relative concentration index. LncSLdb has collected
lncRNA subcellular localization information for more than
11,000 transcripts from three species. Although methods to
predict the subcellular localization of lncRNAs are limited
compared with that of proteins [25]–[29], some achievements
have been made so far. The existing methods to identify
subcellular localization fall into two categories, biochemical
experiments and computational methods. In spite of the
fact that biochemical experiments such as fluorescence in
situ hybridization (FISH) [12], [30], [31] report convincing
results about the subcellular localization of lncRNAs, they
have the disadvantages of being time-consuming, low in
yield and requiring expensive reagents. To overcome these
disadvantages, we need to develop more effective computa-
tional methods. There are, however, limited existing com-
putational methods to predict the subcellular localization
of lncRNAs. Cao et al. developed a predictor, lncLocator,
to predict the subcellular location of lncRNAs through high
level features from stacked autoencoder and an ensemble
learning method [32]. Su et al. developed iLoc-lncRNA by
integrating octamer into PseKNC and using SVM model
to identify the subcellular location of lncRNAs [33]. The
prior method used novel features derived from autoencoder
but was not ideal in terms of accuracy. The latter method
greatly improved the overall accuracy, but the prediction
in the subcellular locations, such as nucleus and ribosome,
needs further improvement. After that, Ahsan Ahmad et al.
proposed Locate-R based on locally deep support vector
machines with features of n-gapped l-mer composition and
l-mer composition, which significantly improved the predic-
tion performance on subcellular location of ribosome and
exosome [34]. Unlike the former three predictors predicting
multiple subcellular locations of lncRNAs on a small dataset,
Gudenas et.al developed DeepLncRNA with a deep learning
algorithm to predict two subcelluar locations, nucleus and
cytosolic, on a big dataset [35]. Based on the foregoing
methods, we are committed to proposing a method to predict
the subcellular localization of lncRNA in multiclassification
that can not only improve the overall accuracy, but also
improve the accuracy in the subcellular locations with a
smaller sample size.

In this study, we considered several sequence-derived
features and proposed a logistic regression-based method
to predict the subcellular localization of lncRNAs, named
as lncLocPred. Figure 1 displays the overall framework of
lncLocPred. To begin with, we collected the benchmark
dataset from published work and sorted out an independent
dataset from RNALocate. Subsequently, we adopted kinds
of features to formulate lncRNA sequences, including pen-
tamer, hexamer, octamer, the Series Correlation PseDNC
(SC-PseDNC) and triplet. Next, according to the character-
istics of different features, we proposed an effective fea-
ture selection process by systematically using several feature
selection techniques to pick out the optimal feature set from
different feature combinations. Finally, based on the logistic

regression, we built the model lncLocPred for the subcellu-
lar localization prediction of lncRNAs, which outperformed
previous methods [32]–[34]. What’s more, in order to make
the prediction method more practical, we developed a pre-
diction software where people may find it useful in the pre-
diction. Related data files and source code are available at
https://github.com/jademyC1221/lncLocPred.

II. MATERIALS AND METHODS
A. DATASET
In order to build a reliable model, we first need to construct
a reliable dataset. This paper referred to the dataset from
previous studies. Cao et al. [32] constructed a dataset con-
taining five subcellular localizations by using computational
methods to predict the subcellular localization of lncRNA.
Later, based on this, Su et al. [33] reorganized to obtain the
dataset containing four subcellular locations. We used dataset
from [33] as the benchmark dataset. As shown in Table 1,
the benchmark dataset covers four subcellular locations of
nucleus, cytoplasm, ribosome, and exosome. In addition,
to better demonstrate the generalization capability of the
model, we downloaded the raw sequence data file of lncRNAs
from the RNALocate [23], and then by randomly selecting
from the raw sequence data file, we sorted out a new indepen-
dent dataset that does not appeared in the benchmark dataset.
As listed in Table 1, the sample size of each subcellular local-
ization in the independent dataset was allocated according to
the original sequence data given by the database.

TABLE 1. The dataset of lncRNA subcellular localization.

B. FEATURE REPRESENTATION
1) K-MER NUCLEOTIDE COMPOSITION FEATURES
Recent studies have shown that similar k-mer profiles
often appear in lncRNAs with related functions, and the
protein-binding and subcellular localization of lncRNAs are
correlated with k-mer content [36]. Different values of k
formulate sequences into different feature spaces. According
to Zhang et al.’s article [37], mutational analyses showed that
a novel RNA pentamer sequence motif, AGCCC, mediated
the nucleus localization of lncRNA BORG with a sequence
limitation at positions -8 (T or A) and -3 (G or C) relative
to the first nucleotide of the pentamer. On the report of
Zuckerman and Ulitsky [38], the preference for C-rich
hexamers correlated with nucleus enrichment. Moreover,
the biological mechanism of CG-contented octamer trimodal
spectrum was unique [39]. Therefore, we calculated the
normalized frequency of pentamer occurrence (k = 5,
1024 dimensions), hexamer (k = 6, 4096 dimensions),
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FIGURE 1. The overall framework. A shows the flow chart of our method. First to prepare the datasets and make
feature extraction. Subsequent to compare different models based on the optimal feature set to construct the
best-fit model and its tool. B presents the process of feature extraction. Step 1, formulate lncRNA sequences to
five kinds of features. Step 2, select important features of 5-mer, 6-mer and 8-mer based on Variance Threshold
and Binomial distribution. Step 3, combine triplet and PseDNC features with selected K-mer features. Step 4,
perform feature selection on different feature combinations with F-score and choose the optimal feature set
with the best performance.

and octamer (k = 8, 65536 dimensions) to make pre-
diction for their unique properties in lncRNA subcellular
localization.

2) PSEUDO-DINUCLEOTIDE COMPOSITION(PseDNC)
PseDNC extracts sequential information and physicochem-
ical properties of the nucleotide sequence by a collec-
tion of auto-covariance and cross-covariance transformations
[40]–[42]. It generates 16+λ3 features, the first 16 of which
reflecting the local information of dinucleotide and the other
λ3 reflecting the global information of dinucleotide. λ is
the total counted ranks of the correlation along the RNA
sequence, and 3 is the number of physicochemical proper-
ties.ω is used to balance the local and global sequence effects,
ranging from 0 to 1. The detailed definition of PseDNC
could be referred to Chen et al. [43]. This paper chose the
Series Correlation PseDNC (SC-PseDNC) for feature extrac-
tion [44], [45], in which ten physicochemical properties were
adopted.We used three thermodynamics properties (enthalpy,
entropy, and free energy) [46], [47], GC content [48], and
six structural properties [43], [49], involving three angular
parameters (twist, tilt, roll) and three translational parameters
(shift, slide, rise). The Pse-in-One 2.0 web server [45] was
used to calculate SC-PseDNC features.

3) LOCAL STRUCTURE-SEQUENCE TRIPLET
ELEMENT(TRIPLET)
The function of lncRNAs is closely related to their secondary
structure. Triplet [50]–[52] utilizes structural information of
RNA sequences. According to the secondary structure [53]
of an RNA sequence of length L, we express the sequence
as [45]:

R = [ψ1, ψ2, ψ3, . . . , ψL] (1)

where ψ1 represents the structural status of the first
nucleotide of the sequence,ψ2 represents the structural status
of the second nucleotide of the sequence, and so forth.

Each nucleotide has two structural statuses. The brackets
‘‘(’’or‘‘)’’ and dots ‘‘.’’ symbolize the paired and unpaired sta-
tuses, respectively. Here we use ‘‘(’’ to unify these two kinds
of brackets. Therefore, given a three adjacent nucleotides,
it can be expressed as 23 possible structural compositions,
which are ‘‘(((’’, ‘‘((.’’, ‘‘(..’’, ‘‘(.(’’, ‘‘.((’’, ‘‘.(.’’, ‘‘..(’’, and
‘‘. . . ’’. If we only consider the middle nucleotide in the
three adjacent nucleotides, which can be A, C, G, and U,
we obtained 32

(
4× 23

)
possible structural combinations.

Therefore, triplet expresses an RNA sequence as follows.

R=
[
fA
(
′′
(((
′′
)
, fA

(
′′
((
·
′′
)
, . . . , fA

(
′′ . . .′′

)
, . . . , fU

(
′′ . . .′′

)]
(2)
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where f indicates the normalized frequency of the occur-
rence of the structure-sequence compositions. The Pse-in-
One 2.0 web server was used to calculate triplet features.

C. FEATURE SELECTION
As stated by the feature representation, we obtained pen-
tamers, hexamers, octamers, SC-PseDNC, and triplet features
with a high dimension. Effective feature selection is required
to be carried out to select important features and solve prob-
lems of information redundancy, over-fitting, and running
time increasing causing by dimension-disaster [54], [55].

1) VARIANCE THRESHHOLD
VarianceThreshhold [56] follows a principle that the distin-
guishing ability of features with low variance is weak so
that these features have little effect in the prediction. Vari-
anceThreshold removes all features whose variances do not
meet the threshold. As the value of k increases, the number
of k-mers increases as well. Therefore, some k-mers may
be not in the sequences of the dataset, or may appear the
same number of times in all sequences. Consequently, to save
calculation time, we first removed these k-mers with a zero
variance for the reason that they have little influence on the
prediction of subcellular localization of lncRNAs.

2) BINOMIAL DISTRIBUTION
The binomial distribution has been widely applied in bioin-
formatics to rank the importance of sequence-based features
[33], [57], [58]. We formulate sequence samples in four
subcellular localizations to k-mer features. Therefore, from
the perspective of statistic, it may be a stochastic event that a
certain k-mer occurs in a particular subcellular localization
[59]–[61]. We first define the prior probability qj for each
class:

qj = mj/M (3)

where mj represents the number of a certain k-mer occurring
in the jth class (j = 1, 2, 3, 4 corresponding to the four sub-
cellular locations of the nucleus, cytoplasm, ribosome, and
exosome, respectively), and M is the sum of the occurrence
of all k-mers in the four classes.

If the ith k-mer does not occurs in the jth class randomly,
the probability that the ith k-mer randomly occurs nij times
and above in the jth class will be very small. Therefore,
we can define the confidence level CLij to describe the
propensity of a certain ith k-mer to appear in the jth class and
choose the maximum confidence level CLi for each k-mer as
its final confidence level:CLij = 1−

∑Ni

m=nij

Ni!
m! (Ni − m)!

qmj
(
1− qj

)Ni−m
CLi = max (CLi1,CLi2,CLi3,CLi4)

(4)

where Ni and nij serves as the number of the ith k-mer
occurring in the entire dataset and occurring in the jth class
respectively.

3) F-SCORE
F-score is an easy-to-understand feature selection method
originally proposed by Chen et al. to solve the problem
of binary classification [62]–[64]. The larger the F-score,
the stronger the distinguishing ability of the feature for the
reason that it makes different classes sparse and makes the
same class dense. Later, Xie et al. [65] improved this feature
selection method and expanded it to the multi-classification
problem. According to the improvement, the F-score of the
features in this paper is defined as:

F =

∑l
j=1(x

(j)
l − xl)

2

∑l
j=1

1
nj−1

∑nj
k=1

(
x(j)k,i − x

(j)
l

)2 (5)

where xl and x
(j)
l denote the average value of the ith feature

in the entire dataset and in the jth class respectively, x(j)k,i
represents the value of the ith feature of the kth sequence in
the jth class, and nj is the number of sequences in the jth class,
l = 4.

4) FEATURE SELECTION PROCESS
Figure 1.B presents the process of feature selection. Firstly,
we performed feature selection on k-mers for the reason
that with the increase of k, the number of k-mers would
be more than that of triplet and PseDNC. We used Vari-
anceThreshhold to remove those k-mers (k = 5, 6, and 8)
with a variance of zero. Only to find that none of pentamers
and hexamers was removed and 681 octamers with a vari-
ance of zero were removed. Then, we reordered these three
kinds of k-mers according to their confidence levels from
the binomial distribution. Next, we performed IFS strategy
on them based on logistic regression to determine the best
dimensions of 5-mer, 6-mer and 8-mer with highest accu-
racies respectively. To improve efficiency and avoid over-
fitting, other than adding features one by one, our IFS strategy
was performed in the way of adding features by percentage.
According to the different dimensions of k-mer, we gradually
added the pentamer and hexamer by one percent each time,
and gradually added the octamer by two percent each time.
Figure 2 displays the IFS process of pentamer, hexamer and
octamer. As a result, the top 205 pentamers with CL of 100%
and accuracy of 67.51%was chosen, and the top 2008 hexam-
ers with CL of higher than 96.06% and accuracy of 71.27%
as well. Similarly, we obtained the top 9080 octamers with
CL of higher than 96.91% and accuracy of 86.38%.

Subsequently, we combined triplet and SC-PseDNC fea-
tures with the 205 pentamers, the 2008 hexamers, and the
9080 octamers in different ways to find the best combination.
For each combination, we utilized the F-score method to
reorder its features and the IFS strategy was utilized again.
Consequently, we obtained the best dimensions of each com-
bination. For the convenience of description, we used ‘‘tpk’’
to represent the way to combine, whose ‘‘tp’’ represents
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FIGURE 2. (A) Pentamer IFS selecting process. (B) Hexamer IFS selecting
process. (C) Octamer IFS selecting process.

triplet and PseDNC, and ‘‘k’’can be 5, 6, and 8 indicating
pentamer, hexamer, and octamer respectively.

D. LOGISTIC REGRESSION
Logistic regression [66] is a nonlinear classification model
in machine learning. It has been applied to solve many
classification problems in bioinformatics [67]–[70]. Logistic
regression converts the results of linear regression into a
probability between 0 and 1 by a sigmoid function. In this
paper, we used the logistic regression package in sklearn [56].
Adjustable parameters of the model include multiclass for
the multi-classification strategies, solver for the optimization
algorithms of the loss function, and the regularization param-
eter C, which reduce overfitting of the model. The search
ranges of the three parameters by the grid search were as
follows:


multi class = ovr, multinomial
solver = liblinear, lbfgs, newton− cg
10−3 ≤ C ≤ 103

(6)

E. PERFORMANCE EVALUATION
To provide a set of more intuitive and objective scales to
evaluate the performance of the model, the criterion used in
other methods about predicting the subcellular localization of
lncRNAswas adopted in this study, including sensitivity (Sn),
specificity (Sp), Matthews’s correlation coefficient (MCC),
and accuracy (Acc) [32]–[34]. Sensitivity measures the abil-
ity to correctly predict one sample belongs to a certain class
while specificity measures the ability to correctly distinguish
one sample does not belong to a certain class. MCC is a
correlation coefficient describing the relationship between
true classes and predicted classes, whose value of 1 repre-
sents a perfect prediction of the class while -1 represents a
completely wrong prediction of the class. The following are

FIGURE 3. Influence of λ and ω in PseDNC for prediction of the
subcellular localization of lncRNAs.

four metrics:

Sn(i) = 1−
N+− (i)
N+(i)

0 ≤ Sn(i) ≤ 1

Sp(i) = 1−
N−+ (i)
N−(i)

0 ≤ Sp(i) ≤ 1

MCC(i)=
1−

(
N+− (i)
N+(i)+

N−+ (i)
N−(i)

)
√(

1+ N−+ (i)−N
+
− (i)

N+(i)

)(
1+ N+− (i)−N

−
+ (i)

N−(i)

)
−1 ≤ MCC(i) ≤ 1

Acc=
1
δ

∑l

i=1

[
N+(i)− N+− (i)

]
0 ≤ Acc ≤ 1

(7)

whereN+(i) is the total number of class i,N−(i) is the number
other than the class i. N+− (i) is the number of samples in
class i that are incorrectly predicted to other classes; N−+ (i)
is the number of samples in other classes except i that are
incorrectly predicted to class i. l is the number of classes and
δ is the number of the total samples in the benchmark dataset.

III. RESULTS AND DISCUSSION
A. PARAMETERS OF PseDNC
In respect of PseDNC [43], we used the grid search to opti-
mize two parameters, λ and ω. According to the definition
of PseDNC, the value of λ should not exceed the difference
between the sequence length and 2 (2 means dinucleotide).
Besides, the larger λ is, the lower the cluster-tolerant capacity
is [71]. Hence, we set the search range as formula (10).
As shown in Figure 3, after carrying out 100 times of the
five-fold CV on the benchmark dataset, we found that the best
accuracy was obtained when λ = 150 and ω = 0.3.{

10 ≤ λ ≤ 150, 1 = 20
0.1 ≤ ω ≤ 0.9, 1 = 0.2

(8)

B. DIFFERENT FEATURE COMBINATIONS AND FEATURE
ANALYSIS
Table 2 manifests details of the feature selection results
of seven different feature combinations. We present the
models trained by different feature combinations in the form
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TABLE 2. Performance of different combinations of feature.

of ‘‘lncLocPred+tpk’’, whose suffix ‘‘tpk’’ represents the
combined features. We tested each model by jackknife cross-
validation. By analyzing the optimal feature dimensions of
those models whose accuracies were over 90%, we could
know more details about the selected features. Regarding
triplet feature, its number selected was relatively small but
its utilization was over 78%(25/32). Regarding PseDNC,
the number selected was in the interval of 367 to 562, with
about 24% to 37% utilization in the total number of 1516.
Regarding k-mer, not only the number of features selected
wasmuchmore than triplet and PseDNC, but they also ranked
higher in the F-score feature ranking. It is particularly worth
noting that when the octamer was added into the feature set,
the accuracy could be increased to over 90%,which suggested
that octamer had better discriminating ability for subcellular
localization of lncRNAs than other features. Figure 4 shows
the frequency of the top 20 pentamers in the F-score ranking
of lncLocPredtp58 occurring in four subcellular localizations,
as well as the case of hexamers of lncLocPredtp68 and
octamers of lncLocPredtp8. The frequency is the ratio of
the times of the certain k-mer appeared in one subcellular
localization and the times of all k-mers appeared in that
subcellular localization. We observed that the top-ranked k-
mers had a higher base content of G andC and often contained
short repeats such as GG, CC, GGG, CCC, GGGG, and
CCCC. This observation is consistent with the conclusion
drawn in the previous study [37]–[39]. The supplementary
material Table S1-S4 is available at our github address, which
listed the details of the top 1000 features in the optimal fea-
ture sets of lncLocPredtp8, lncLocPredtp58, lncLocPredtp68,
and lncLocPredtp568, demonstrating feature names and their
F-scores.

From Table 2, we know that model lncLocPredtp8,
lncLocPredtp58, lncLocPredtp68, and lncLocPredtp568
achieved accuracy of 92.37%, 91.91%, 90.23%, and 90.23%
respectively, among which lncLocPredtp8 was the highest.
Therefore, we chose the selected feature set of the com-
bination of octamer, triplet and PseDNC as the optimal
feature set and lncLocPredtp8model as the best model named
lncLocPred with the highest accuracy on benchmark dataset
in our study.

C. PERFORMANCE COMPARISON WITH DIFFERENT
MACHINE LEARNING ALGORITHMS
To compare logistic regression with other machine learn-
ing algorithms, we repeated our experimental process, espe-
cially the feature selection process, based on other machine

FIGURE 4. (A)The frequency of the top 20 pentamers of lncLocPredtp58 in
the F-score ranking on four subcellular locations. (B)The frequency of the
top 20 hexamers of lncLocPredtp68 in the F-score ranking on four
subcellular locations. (C)The frequency of the top 20 octamers of
lncLocPredtp8 in the F-score ranking on four subcellular locations.

learning algorithms. As shown in Table 3, compared with
other classifiers, lncLocPred performed most prominently on
most indicators by jackknife. We considered that as long
as the machine learning method was matched with a more
appropriate feature selection process, it may obtain better
prediction result like logistic regression done in this work.

D. COMPARISON WITH EXISTING STATE-OF-THE-ART
METHODS
We compared lncLocPred with three published predictors,
lncLocator, iLoc-lncRNA and Locate-R, on the benchmark
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TABLE 3. Compared with different machine learning methods based on the jackknife.

FIGURE 5. (A) ROC curve of Locate-R under 10-fold CV [34]. (B) ROC curve
of lncLocPred under 10-fold CV. (C) ROC curve of lncLocPred under
jackknife.

dataset by jackknife. Performance comparison results were
presented in Table 4. In general, we have improved the
overall accuracy by 2%. Regarding the subcellular location
of the nucleus and cytoplasm, our method performed bet-
ter in Sn and MCC. Regarding the subcellular location of
ribosome and exosome, our method performed better than
iLoc-lncRNA and lncLocator but worse than Locate-R in

FIGURE 6. The performance comparison between lncLocPred and
DeepLncRNA.

Sn and MCC. In order to better evaluate the performance
of lncLocPred, we plotted the ROC curve under the jack-
knife cross-validation and 10-fold cross-validation methods,
and calculated the AUC value. At the same time, we com-
pared with the ROC curve of Locate-R under 10-fold cross-
validation, which can be seen from Figure 5 that our method
achieved better results in the overall AUC value, the AUC
value on the subcellular localization of nucleus and the AUC
value the subcellular localization of cytoplasm. In addition,
we compared our method with DeepLncRNA [35]. The
comparative data set came from 152 nuclear lncRNAs and
91 cytoplasmic lncRNAs in the lncLocator test set. In partic-
ular, lncLocPred is a four-category prediction method while
DeepLncRNA is a binary one. Figure 6 shows that our
methods have achieved satisfactory performance in terms of
sensitivity and specificity.

E. COMPARISON IN THE INDEPENDENT DATASET
To compare the performance of the model more objectively,
we input independent testset to the web servers provided
by iLoc-lncRNA and Locate-R to obtain prediction results.
Also, we input into our lncLocPred as well. What can be
seen from Table 5 is that whether our models, iLoc-lncRNA
and Locate-R, their performance were significantly different
from the benchmark dataset. The lncLocPred, Locate-R and
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TABLE 4. Comparison with existing state-of-the-art methods.

TABLE 5. Comparing different methods on the independent dataset.

iLoc-lncRNA differs by 0.4793 (0.9237 to 0.4444), 0.5205
(0.9069 to 0.3864) and 0.5086 (0.8672 to 0.3586), where
the difference of our method is the smallest. It can be seen
that our method has more advantages in the prediction of
nucleus and cytoplasm, and the prediction effect of Locate-R
on the ribosome is better than ours. However, the results
still illustrate the advantages of our model, whose overall
accuracy is higher and the difference between the benchmark
dataset and independent dataset is smaller.

IV. CONCLUSION
In conclusion, we proposed an effective method, called
lncLocPred, to predict the subcellular localization of
lncRNAs based on logistic regression. In terms of feature
selection, we put forward a process that combines multi-
ple feature selection techniques to select different types of
features. Feature analysis shows that the top k-mer features
prefer repeated C bases or G bases, indicating that rich
C-nucleotide andG-nucleotide impacted subcellular localiza-
tion of lncRNAs. We admit that there are some limitations
in lncLocPred. Due to the small number on the subcellular
locations of ribosome and exosome on benchmark dataset,
the model is more biased towards the subcellular locations
of nucleus and cytoplasm. In the future, with the continu-
ous increase of experimental data on these two locations,
lncLocPred could be trained on a more balanced data set
to improve our tools. In addition, we expect to collect a
bigger dataset not only from RNALocate but also from other
databases to develop a more effective bioinformatics tool.
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