IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

10091

Landscape of Architecture and Design
Patterns for IoT Systems

Hironori Washizaki

, Member, IEEE, Shinpei Ogata, Member, IEEE, Atsuo Hazeyama, Member, IEEE,

Takao Okubo, Member, IEEE, Eduardo B. Fernandez, Senior Member, IEEE,

and Nobukazu Yoshioka

Abstract—Due to the widespread proliferation of today’s
Internet of Things (IoT), a system designer needs the IoT system
and software design patterns to assist in designing scalable and
replicable solutions. Patterns are encapsulations of reusable com-
mon problems and solutions under specific contexts. Many IoT
patterns have been published, such as IoT design patterns and
IoT architecture patterns to document the successes (and failures)
in IoT systems and software development. However, because these
patterns are not well classified, their adoption does not live up to
their potential. To understand the reasons, we conducted a sys-
tematic literature review. From the 32 identified papers, 143 IoT
architecture and design patterns were extracted. We analyzed
these patterns according to several characteristics and outlined
directions for improvements when publishing and adopting IoT
patterns. Of the extracted patterns, 57% are non-IoT patterns,
suggesting that IoT systems and software are often designed via
conventional architecture and design patterns that are not specific
to IoT design. Although most IoT design patterns are applica-
ble to any domain, IoT architecture patterns tend to be domain
specific, implying that the unique nature of IoT adoption in spe-
cific domains appears at the architecture level. As more domains
adopt IoT, the number of domain-specific IoT design patterns
should increase. In terms of quality attributes, many IoT patterns
address compatibility, security, and maintainability.

Index Terms—Architecture, design, Internet of Things (IoT),
patterns, survey, systematic literature review (SLR).

I. INTRODUCTION

HE INTERNET of Things (IoT) is expected to bridge
diverse Internet collaborative technologies to enable new
services and applications by connecting physical objects (i.e.,

Manuscript received November 16, 2019; revised May 14, 2020; accepted
June 3, 2020. Date of publication June 18, 2020; date of current version
October 9, 2020. This work was supported in part by JSPS KAKENHI under
Grant 16H02804 and Grant 17K00475, and in part by SCAT and enPiT-Pro
Smart SE. (Corresponding author: Hironori Washizaki.)

Hironori Washizaki is with the Faculty of Science and Engineering,
Waseda University, Tokyo 1698555, Japan, also with the National Institute of
Informatics, Tokyo 101-8430, Japan, also with System Information Company
Ltd., Tokyo 104-0054, Japan, and also with eXmotion Company Ltd., Tokyo
141-0032, Japan (e-mail: washizaki@waseda.jp).

Shinpei Ogata is with the Graduate School of Engineering, Faculty of
Engineering, Shinshu University, Nagano 390-8621, Japan.

Atsuo Hazeyama is with the Department of Information Science, Tokyo
Gakugei University, Tokyo 184-0015, Japan.

Takao Okubo is with the Institute of Information Security, Kanagawa
221-0835, Japan.

Eduardo B. Fernandez is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA.

Nobukazu Yoshioka is with the Information Systems Architecture Research
Division, National Institute of Informatics, Tokyo 101-8430, Japan.

Digital Object Identifier 10.1109/JI0T.2020.3003528

, Member, IEEE

devices, such as sensors and actuators that are tied with the
physical entities to be monitored and manipulated), together
in support of intelligent decision making to empower teams
across the world [1].

Thus, IoT aims to bring connectivity to almost every electric
device in physical space. Although IoT extends connectivity
to everyday things, this increase in connectivity creates many
challenges [2]. Since the application spread in today’s IoT is
wide and is typically structured in market-oriented groups, a
system designer needs the IoT system and software design
patterns to assist in designing for scalable and replicable solu-
tions [3]. Patterns are encapsulations of reusable common
problems and solutions under specific contexts. To document
the successes (and failures) in IoT systems and software devel-
opment, IoT patterns, including IoT design patterns and IoT
architecture patterns, have been published.

In general, systems and software design processes have two
major phases [4] with different abstraction levels: 1) archi-
tecting (i.e., architectural design) and 2) design (i.e., detailed
design). These two phases can be classified into two corre-
sponding types: 1) architecture patterns and 2) design patterns.
Moreover, architecture patterns that do not emphasize prob-
lems and rationales are called architecture styles. Although
some IoT architecture styles have been studied [5], IoT archi-
tecture and design patterns at different abstraction levels are
not well classified or researched. Consequently, adopting such
patterns may not resolve problems or have the desired impact.

The abstraction level can be important when describing,
examining, and reusing IoT patterns. The same is true for
domain specificity and quality attributes. IoT is basically con-
stituted of the traditional technical fields, such as wireless
sensor networks, and embedded and control systems. Thus,
“IoT patterns” may not be exclusively IoT patterns. Non-IoT
patterns as well as some domain-specific IoT can be utilized
for 10T systems and software design. Moreover, it is impor-
tant to identify which quality attributes are addressed by the
target IoT pattern to be reused. IoT architecture and design
patterns should address interoperability since, by definition,
IoT is about ensuring interoperability among objects. However,
other attributes may also be addressed. Based on the definition
in ISO/IEC 25010:2011 [6], interoperability for IoT systems
means the degree that two or more IoT devices and systems
exchange and use information.

The contribution of this article is an overview of the current
landscape of IoT architecture and design patterns to identify

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-1417-9879
https://orcid.org/0000-0002-1986-5675

10092

shortcomings and suggest improvements when publishing and
adopting IoT patterns. Specifically, a complete set of IoT
patterns available in the literature is analyzed. The authors
found 32 papers published from 2014-2018. The four research
questions below are intended to constructively determine the
direction for improvement.

RQI. How does academic literature address IoT archi-
tecture and design patterns? To answer this question, we
conducted a systematic literature review (SLR) of the aca-
demic literature. We analyzed the 32 identified papers and
extracted 143 patterns.

RQ?2. Are all existing IoT architecture and design patterns
really IoT patterns? To answer this question, we distin-
guished between architecture and design patterns specific to
IoT systems and non-IoT patterns that are applicable to any
system or software design. Of the 143 patterns, 61 addressed
IoT-specific problems and solutions, and the remaining 82
were not IoT-specific patterns.

RQ3. Can IoT architecture and design patterns be classi-
fied? To answer this question, we classified these 10T patterns
with respect to three characteristics: 1) abstraction level;
2) domain specificity; and 3) quality attributes.

RQ4. What IoT architecture and design patterns exist? To
answer this question, we showed that IoT patterns not only
exist but are related to different abstraction levels, domain
specificities, and quality attributes. We also provided examples
of such patterns.

The remainder of this article is organized as follows.
Section II summarizes related work. Section III presents our
SLR and its results. Section IV discusses our results. Section V
concludes this article and provides a future direction.

II. RELATED WORK

Surveys have been conducted on general architecture and
design patterns, e.g., [7]-[9]. Most focus on the object-oriented
design. Moreover, surveys on architecture and design pat-
terns exist for specific domains and quality attributes, such
as multiagent systems [10], machine learning systems [11], or
secure systems [12].

Ahmadi et al. [13] conducted an SLR of IoT-specific to the
healthcare domain. Asghari et al. [14] conducted an SLR of
IoT applications. Giudice [15] conducted a literature review on
the role of IoT on the business process management in terms
of promotion of knowledge flow, innovation, and competitive-
ness. None of these reviews focused on IoT patterns. Ray [16]
surveyed existing IoT cloud platforms. However, Ray’s work
is not formalized and the scope of it is limited to the domain
concerning IoT clouds.

For the domain of IoT systems and software design,
case studies, best practices, and patterns are mostly avail-
able as independent documents. To grasp the entire picture,
several surveys have been reported [1], [5]. Muccini and
Moghaddam [5] conducted a systematic mapping study of IoT
architecture styles. They identified seven architecture styles,
including layered architecture and service-oriented architec-
ture. In addition, Aly et al. conducted an SLR of both IoT

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

interoperability issues and state-of-practices of IoT technolo-
gies in the industry, which highlighted integration challenges
related to IoT that have significantly shifted the landscape of
Internet-based collaborative services and applications.

However, previous studies did not classify IoT architecture
and design patterns at different abstraction levels. This study is
the first comprehensive survey on IoT architecture and design
patterns. !

III. SYSTEMATIC LITERATURE REVIEW
A. Process and Query

We performed an SLR of the academic literature to collect
architecture and design patterns for IoT systems and software.
An SLR aims to assess scientific papers and group con-
cepts around a topic. We chose Scopus” as the search engine
since it is effectively used in SLRs of software engineering
and the search results can be exported. The database cov-
ers many major publishers, including IEEE, ACM, Springer
Nature, Wiley Blackwell, Taylor & Francis, and Elsevier.
Furthermore, the database provides a mechanism to perform
keyword searches.

Fig. 1 overviews the process adopted to identify relevant
papers. Our process has four steps as follows.

1) Initial Search: We executed the following query on titles,
abstracts, and keywords of papers regardless of time and
subject area. We used no publications period restrictions.
We found 63 papers published from 2014 to 2018.

"IoT" AND ( "design pattern" OR "
architecture pattern" )

2) Impurity Removal: Due to the nature of the involved
data source, the search results included elements that
are clearly not research papers, such as abstracts and
international standards. Removing such results left 56
papers.

3) Inclusion and Exclusion Criteria: For each paper, two
of the authors vetted whether they should be included
in our SLR by applying the following criteria. First, the
titles and abstracts followed by the entire paper were
read to determine whether the paper pertained to IoT
architecture and design patterns. Using the definition of
our query, 32 scholarly papers [18]-[49] were identified.

a) Inclusion: Papers addressing patterns to design IoT
systems and software that are written in English.

b) Exclusion: Papers focusing on IoT but not explic-
itly dealing with architecture and design patterns
or duplicate papers of the same study.

4) Data Extraction: The following information was col-
lected from each paper to answer the research questions:
publication title, publication year, publication venue,
types of patterns proposed or used, pattern names,

I This article is an extension of a paper presented at the st International
Workshop on Software Engineering Research & Practices for the IoT
(SERP4IoT 2019) [17]. In this article, we extend research questions and pat-
tern analysis as well as corresponding discussions. We also added related
work.

2https://Www.scopus.coml



WASHIZAKI et al.: LANDSCAPE OF ARCHITECTURE AND DESIGN PATTERNS FOR IoT SYSTEMS

Initial ~ Impurity  Inclusion and
Search  Removal Exclusion Criteria

63 56 32
—
Total

Fig. 1. Selection process and the number of papers remaining after each
activity.
8
7
6 ——Workshop
—=—Symposium
5 Conference
4 —=Book chapter
3 / Journal
2 /
| /><
0 -

2014 2015 2016 2017 2018

Fig. 2. Numbers of documents per year.

domain names in the case of domain-specific IoT pat-
terns, and quality attributes addressed.

B. RQI. How Does Academic Literature Address loT
Architecture and Design Patterns?

Our SLR revealed that IoT architecture and design patterns
are very popular due to the promotion of IoT systems and
software in recent years. Fig. 2 shows the annual trend in
the number of papers related to IoT architecture and design
patterns by publication type.

The most common publication types are conference papers
(17), journals (7), workshops (5), symposiums (2), and a ref-
ereed book chapter (1). The most common publication type is
conference papers followed by journals, suggesting that cer-
tain IoT patterns are maturing. However, the high number of
conference papers suggests that the entire topic of IoT archi-
tecture and design patterns is in its early stage. Since 2016,
IoT patterns have garnered increased research attention each
year.

RQI1. How does academic literature address the IoT archi-
tecture and design patterns? There are 32 academic papers
related to IoT architecture and design patterns. Most are con-
ference papers followed by journal publications. The high
number of conference papers indicates that the entire topic
of IoT architecture and design patterns is in its early stage,
but the presence of journal articles suggests that some types
of IoT patterns are maturing.

C. RQ2. Are All Existing IoT Architecture and Design
Patterns Really IoT Patterns?

Five of the authors plus two researchers indicated in the
acknowledgment read a seventh of the papers. For each paper,
patterns were extracted and the specificity of the content to
IoT was analyzed. All patterns were independently vetted by
another author. Overall, the 32 papers contained 143 patterns.

10093

Among the 143 patterns, 82 (57%) were considered non-IoT
patterns in terms of domain specificity. Table I shows the list
of extracted non-IoT architecture and design patterns and their
abstraction levels (i.e., architecture style, architecture pattern,
or design pattern). 11 non-IoT patterns appeared in multiple
papers: “publish-subscribe” [21], [22], [39], [48], [49], “client-
server” [39], [48], [49], “peer-to-peer” [39], [48], “represen-
tational state transfer” (REST) [48], [49], “service-oriented
architecture” (SOA) [39], [49], “role-based access control”
(RBAC) [27], [30], “model-view-controller” (MVC) [35], [43],
“reflection” [23], [42], “blockchain architecture style” [22],
[24], “strategy” [23], [30], and “observer” [30], [40]. The other
71 non-IoT patterns appeared in one paper only.

Fourteen papers [18], [21], [23], [26], [27], [35], [37],
[39], [41]-[43], [46], [48], [49] only used non-IoT patterns.
These results indicate that IoT systems and software are often
designed via conventional architecture and design patterns that
are not specific to IoT design. This is not unexpected since
IoT is constituted of traditional technical fields such as wire-
less sensor networks, embedded and control systems, and other
supports. However, an alternative possibility is that practition-
ers are unaware of the existing IoT patterns. The existing IoT
patterns support practitioners to plan and design their own IoT
systems and software.

There are 61 IoT patterns (i.e., 43%) in 18 papers [19],
(201, [22], [24], [25], [28]-[34], [36], [38], [40], [44], [45],
[47] that address specific problems and solutions in IoT. The
details are discussed in the subsequent section.

RQ2. Are all existing IoT architecture and design pat-
terns really IoT patterns? Of the extracted patterns, 57% are
non-IoT patterns, suggesting that IoT systems and software
are often designed via conventional architecture and design
patterns that are not specific to IoT design.

D. RQ3. Can IoT Architecture and Design Patterns Be
Classified?

Through our SLR and while reading the documents, we
noted various characteristics that could help classify patterns.
We observed that IoT patterns are often presented in a con-
text with an abstraction level, domain specificity, and quality
attribute to be addressed.

1) Abstraction Level: Patterns to design IoT systems and
software can be classified into two types: 1) architecture pat-
terns and 2) design patterns. In addition, there are two different
terms in the literature with respect to the nature of archi-
tecture patterns: 1) “architecture style” and 2) “architecture
pattern.” Both refer to recurring solutions that solve prob-
lems at the architecture design level and provide a common
vocabulary to facilitate communication [7]. The key differ-
ence is that architecture patterns address problem—solution
pairs with contexts and rationales behind particular solutions,
while architecture styles address the structure with constraints
without explicit attention to the problem [7]. By definition,
architecture styles are located at a higher abstraction level
compared to architecture patterns since architecture styles have
less information.



10094

TABLE I

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

L1ST OF EXTRACTED NON-IOT PATTERNS (AS: ARCHITECTURE STYLE, AP: ARCHITECTURE PATTERN, AND DP: DESIGN PATTERN)

Type | Pattern name Paper Type | Pattern name Paper
AS Blockchain [22], [24] - - —
AS | Clean Architecture (35] PP} Decoupling 123)‘33‘; and location in- | [26]
22 I\D/Iallgoi?i:grzet;n Bg} DP Personal data store [26]
AS Event-based [39] DP Single Point of Contact [26]
AS laaS-based [39] DP File authentication [27]
AS Intelligent gateway [39] bP Reference mqnitor L (27]
AS Protocol Integration via Middleware | [39] DP I:jzess Matrix Role authorization | [27]
22 g/fil;lstl_—bgaa;:gvay gg} DP Remote Authenticator/Authorizer [27]
AS SaaS-based [59] DP Role Based Access Control (RBAC) [27], [30]
. DP Constraint based Role Based Access | [30]
AS Traditional gateway [39] Control (CRBAC)
AS | Distributed Multi-Gateway 39] DP | Abetract Fact 30
AS Web-service multiprotocol [39] DP Ob:errz:zer actory {30} [40]
AS Pef:r—to—Peer [39], [48] DP Frame Buffer [37]’
AS Client-Server [39], [48], [49] DP Slot Buffer [37]
AS Service Oriented Architecture (SOA) | [39], [49] DP Asynchronous data synchronizations | [38]
AS Lambda-style architecture [46] DP Bazic search y (38]
AS Kappa-style architecture [46] DP Cascade selection fields [:’:8]
AS Representational ~ State  Transfer | [48], [49] DP Co;npleté storage ” [38]
(REST) DP | CRUD [38]
AS Microkernel [49] DP Data lookup [38]
AS Service bus [49] y .
AP | Publish-Subscribe (211, 1221, (391, (48T, [49] DF | Default selection gg
AP Model-View-Presenter (MVP) [35] DP Locationlaware search [38]
AP Model-View-ViewModel (MVVM) [35] DP Login (38]
AP Model—VieW -Controller (MVC) [35], [43] DP Mfiter details and multi-details [38]
:g Eg)eesrg&d Filters {23} DP Mathematical transfer [38]
Y . DP | Multi-field form [38]
AP Enuty—Component—Attrlbute (ECA) [32] DP Multi-level master details [38]
DP Exceptlor} mflnager [18] DP Partial storage [38]
gg Isnput Val(lldattlon [ig] DP Permission and Access configuration | [38]
ecure adapter [18] DP | Pre-assigned selection field [38]
DP Secure directory [18] DP Preloaded field [38]
gg F?‘ecuredlogger [ég] DP Synchronous data synchronization [38]
ruste gatevyay . (22] DP Timestamp transfer [38]
DP Dependency injection [23] DP User management [38]
gg iugtegt'y [g]’ [ig] DP Coordinated control [41]
cliec lon' (23], [42] DP Hierarchical control [41]
DP Added noise measurement obfusca- | [26] DP Information sharing [41]
tion . DP Master-worker [41]
DP Aggregation gateway [26] DP Regional planning [41]
DP Aggregation of data [26] DP Bridee [42]
DP Data isolation at different entities [26] g

Thus, IoT design patterns can be classified into the follow-
ing three types in terms of abstraction level.
1) High Abstraction Level: Architecture styles are patterns

architecture patterns contain more information than
architecture styles (i.e., highly abstract design descrip-
tions) while still addressing the entire software or system

that specify architectural elements and connections at a
very high abstraction level. These are often used in early
phases, such as analysis and architecture design. For
example, “layered architecture for IoT applications” [44]
addresses a general layered IoT architecture without any
concrete problem or rationale. Hence, architecture styles
are regarded as highly abstract.

2) Medium Abstraction Level: Unlike architecture styles,
medium recommends concrete architecture designs of
IoT systems and software to address recurrent architec-
tural problems such as ensuring interoperability among
heterogeneous devices. These architectural elements and
connections are often documented as architecture pat-
terns that encapsulate contexts, recurring problems,
and corresponding solutions. The abstraction level of
architecture patterns is between high and low since

3)

design rather than specific parts. On the other hand,
design patterns address specific parts of the system
design (i.e., low abstract design descriptions). For exam-
ple, “entity-component-attribute (ECA) on linked data
platform” [32] recommends a specific architecture to
improve the changeability and reusability of IoT soft-
ware components over different domains on the linked
data platform by establishing the structural mapping
from ECA to the platform as semantic Web of Things
(WoT). Hence, architecture patterns are regarded as
medium abstract.

Low Abstraction Level: There are recommended detailed
designs to address recurrent detailed design problems
such as enabling proper communications among soft-
ware modules while keeping high extensibility. Since
these patterns target specific modules or limited parts



WASHIZAKI et al.: LANDSCAPE OF ARCHITECTURE AND DESIGN PATTERNS FOR IoT SYSTEMS

and not the entire software or system, the abstrac-
tion level of the design patterns is regarded as low.
These are often used in the detailed design and con-
struction phases. For example, “pull information” [38]
recommends a detailed design of the communication
structure between IoT devices and gateways. Hence,
design patterns are regarded as low abstract.

2) Domain Specificity: Domain specificity is important to
examine the applicability and reusability of each IoT pattern.
It is divided into three types: 1) non IoT; 2) general IoT; and
3) domain-specific IoT.

1) Non-IoT Patterns: General systems and software archi-
tecture patterns as well as design patterns that can
be adopted to design IoT systems and software if the
contexts and problems match the patterns’ contexts
and problems. There are 82 non-lIoT patterns, such
as MVC [35], [43] and RBAC [27], [30], which are
well-accepted general architecture and design patterns.

2) General IoT Patterns: 10T architecture and design pat-
terns, which are applicable to any IoT system or
software. Examples include “IoT gateway event sub-
scription” [29] and “pull information™ [38] since these
are originally described in the context of IoT systems
and software, and not specific to a certain problem or
technical domain.

3) Domain-specific loT Patterns: IoT architecture and
design patterns that address specific problem domains
(such as healthcare) and technical domains (such as
brain—computer interactions). For example, “operator-
controller-module (OCM)” [19], [47] is a problem-
domain-specific pattern since it addresses a specific
problem and solution in the cyber—physical control
domain such as operating organic Rankine cycle tur-
bines.

3) Quality Attribute: All systems and software design pat-
terns are expected to address one or more quality attributes.
For example, IoT design patterns should mostly address
interoperability, which is defined as a subattribute of com-
patibility in ISO/IEC 25010:2011 [6] since, by definition,
IoT is about ensuring interoperability among objects. To
classify IoT patterns, we use all quality attributes except
for functional suitability defined in ISO/IEC 25010:2011,
which is a well-accepted quality model system, and select
terms from software engineering: performance, compatibility,
usability, reliability, security, maintainability, and portability.
We excluded functional suitability because certain functional
requirements are often satisfied by concrete system and soft-
ware design decisions, including reuse of IoT platforms and
software libraries, instead of reuse of abstract architecture
or design patterns. Without concrete functional requirements,
it is difficult to determine whether a pattern contributes to
functional suitability.

Additionally, there are emerging quality attributes that are
not defined in ISO/IEC 25010:2011 but are common in IoT
development and operation. Possible candidates are scalability
and privacy.

We observed that some IoT patterns are dedicated to one
or few quality attributes, while others address many attributes.

10095

TABLE 11
PATTERNS BY ABSTRACTION LEVEL AND DOMAIN SPECIFICITY (AS:
ARCHITECTURE STYLE, AP: ARCHITECTURE PATTERN, AND
DP: DESIGN PATTERN)

Domain specificit
Type Non-IoT  General IOTP Dom}zlxin—speciﬁc IoT Total
AS 22 2 1 25
AP 7 1 15 23
DP 53 38 4 95
Total 82 41 20 143

For example, the IoT design patterns described in [38] such
as “application launch” are dedicated to usability only, while
“edge orchestration” [34] addresses many attributes, including
reliability and maintainability.

RQ3. Can IoT architecture and design patterns be clas-
sified? Patterns for IoT systems and software can be
divided along three main characteristics: 1) abstraction level;
2) domain specificity; and 3) quality attributes.

E. RQ4. What IoT Architecture and Design Patterns Exist?

Table II shows the distribution of IoT and non-IoT pat-
terns by abstraction level and domain specificity. Table III
lists the 61 IoT architecture and design patterns. Table III can
be a guide for practitioners to identify available IoT patterns
in terms of abstraction level, domain specificity, and quality
attributes.

Surprisingly, only two patterns “OCM” [19], [47] and “com-
putation offloading” [22], [33] are mentioned in multiple
papers. The rest appear in one paper, demonstrating that IoT
patterns are not shared or recognized by different research
groups. This may be due to their short history. To avoid con-
fusion, potential pattern authors should check the existing IoT
patterns carefully before publishing their own “new” patterns.

In terms of abstraction level, many IoT design patterns (i.e.,
42/61 = 69%) and some IoT architecture patterns (16/61 =
26%) exist, but only a few represent IoT architecture styles
(3/61 = 5%).

In terms of domain specificity, 41 patterns (i.e., 67%) are
general 0T, while the remaining 20 patterns (33%) are specific
to a problem or technical domain (Table II).

Reviewing the combinations of abstraction level and domain
specificity, most of the IoT design patterns are applicable
to any domain. In contrast, many IoT architecture pat-
terns exist for specific domains, implying that the unique
nature of IoT adoption in specific domains often appears
at the architecture level. Design details seem to be com-
monly addressed by general IoT design patterns or non-IoT
design patterns. This is not surprising since IoT is constituted
of traditional technical fields. In the future, the number of
specific IoT design patterns may increase as more domains
adopt IoT.

In terms of quality attributes, more than 80% of IoT pat-
terns address compatibility (including interoperability as a
subattribute), security, and maintainability. This finding is rea-
sonable since major concerns in IoT adoption revolve around
these attributes. As expected, most [oT architecture and design



10096

L1ST OF 10T PATTERNS (AS: ARCHITECTURE STYLE, AP: ARCHITECTURE PATTERN, DP: DESIGN PATTERN, PE: PERFORMANCE, C: COMPATIBILITY,

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

TABLE III

U: USABILITY, R: RELIABILITY, SE: SECURITY, M: MAINTAINABILITY, PO: PORTABILITY, SC: SCALABILITY, AND PR: PRIVACY)

Type | Pattern name Specific domain Pe C U R Se M Po Sc Pr Paper
AS Layered architecture for IoT applications X X X X X [44]
AS Semantic Web Thing Architecture X X X [45]
AS Security Architecture for Smart Water Manage-  Smart Water Management X X X [22]
ment System
AP Fog computing X X X X X [20]
AP Operator-Controller-Module (OCM) Cyber-Physical Control X X [19], [47]
AP Blockchain-based  Architectural Pattern for  Blockchain X X X X X [24]
Trusted Orchestration Management
AP Actor Blockchain X X [40]
AP Closed-Loop: Classical Closed-Loop Control Industrial IoT X X [31]
AP Cloud-in-the-Loop: Closed-Loop Control via the  Industrial IoT X X [31]
Cloud
AP Cloud-on-the-Loop: Cloud-configured Control Industrial IoT X X [31]
AP Device-to-Device (D2D): Local Coordination Industrial IoT X X [31]
AP Open-Loop: Classical Open-Loop Control Industrial IoT X X [31]
AP Publisher: Sensor Data Publication Industrial IoT X X [31]
AP Entity-Component-Attribute on Linked Data Plat-  Semantic Web of Things X X X [32]
form
AP Landline Interception Emergency Information Delivery X [36]
AP SIM Equipped Device Emergency Information Delivery X [36]
AP SMS to Display over Bluetooth/Wi-Fi Emergency Information Delivery X [36]
AP SMS to Mobile Application Emergency Information Delivery X [36]
AP Web System (for Emergency Information Deliv-  Emergency Information Delivery X [36]
ery)
DP Computation offloading X X X [22], [33]
DP Stateless authentication X [22]
DP Alignment-based Translation X X [29]
DP AS2AS Discovery of IoT Services X X [29]
DP AS2AS Flow-based Service Composition X X [29]
DP AS2AS Service Orchestration X X [29]
DP D2D REST Request/Response X X [29]
DP IoT Artifact’s Middleware Message Broker X X [29]
DP IoT Artifact’s Middleware Message Translator X X [29]
DP IoT Artifact’s Middleware Self-contained Mes- X [29]
sage
DP IoT Artifact’s Middleware Simple Component X X [29]
DP IoT Gateway Event Subscription X X [29]
DP IoT Pattern for Orchestration of SDN Network X X [29]
Elements [29]
DP IoT SSL CROSS-Layer Secure Access X X X [29]
DP Translation with Central Ontology X X X [29]
DP Sensor Design Pattern (SDP) X X [30]
DP Edge Code Deployment X X [34]
DP Edge Diameter of Things (DOT) X [34]
DP Edge Orchestration X X X X [34]
DP Edge Provisioning X X [34]
DP Application launch X [38]
DP Get details of a device X [38]
DP Get Information for one category X [38]
DP Get information from the device X [38]
DP Get state of the device X [38]
DP More devices more operations X [38]
DP More devices one operation X [38]
DP Nearby devices X [38]
DP One category more operations X [38]
DP One device more operations X [38]
DP One device one operation X [38]
DP One device one program X [38]
DP Pull information X [38]
DP Push information X [38]
DP Search device X [38]
DP Event interaction X [45]
DP Action interaction X [45]
DP Property interaction X [45]
DP Ontology Design Pattern for IoT Device Tagging  Building Automation, Ontology X X [25]
Systems
DP Actuation-Actuator-Effect (AAE) ontology design ~ Brain-Computer Interaction, On- X X [28]
tology
DP Participation foundational design Brain-Computer Interaction, On- X X [28]
tology
DP Stimulus-Sensor-Observation (SSO) ontology de-  Brain-Computer Interaction, On- X X [28]
sign tology
Number of patterns that address the corresponding quality attribute 21 57 20 18 51 54 11 28 12

patterns address interoperability. On the other hand, connec-
tivity is at the core of IoT, and every communication channel
needs to be secured against attacks. Moreover, the number and
heterogeneity of objects can increase the attack surface. Hence,

IoT security patterns have been required and published to mit-
igate vulnerabilities. Maintainability is well addressed in IoT
patterns since IoT systems and software often address various
devices and their different lifecycles.



WASHIZAKI et al.: LANDSCAPE OF ARCHITECTURE AND DESIGN PATTERNS FOR IoT SYSTEMS 10097
TABLE IV Core loT Microservices Edge loT Microservices loT Gateway
OVERVIEW OF PAPERS MENTIONING IOT PATTERNS (REFERENCES Microservices
INDICATING PAPERS OF DOMAIN-SPECIFIC IOT PATTERNS)
Autonomic Autonomic Autonomic
Manager oT Manager IoT Manager loT
Type | Influence on quality in use for | Influence on quality in use for Control Control Control Se';’sTorS
primary users maintenance tasks Cluster | Services Cluster | SeTvices Cluster | Services
AS [44] [44], [45] Master Workers Workers
[22] [22]
AP [20] [20] Macroservices Macroservices loT Middleware
[19], [24], [31], [36], [40], [47]] [19], [24], [31], [32], [40], [47]
[22], 1291, [30], [33], [34], [38] | [22], [29], [30], [33], [34], [43] Core-Cloud Edge-Cloud Aggregators
br [25, [28]
Fig. 3. Layered architecture style for IoT applications (adapted from [44]).

In addition, some IoT patterns address performance, usabil-
ity, reliability, and scalability. We observed that these attributes
are also important to address in IoT systems and software.

Consequently, other quality attributes are less researched.
For example, only a few IoT patterns address portability and
privacy. In the future, IoT patterns addressing these attributes
are anticipated by accumulating more design cases focusing
on these attributes since they are also important.

As an additional guide for practitioners to find papers about
IoT patterns, Table IV shows the distribution of papers contain-
ing IoT patterns by abstraction level, domain specificity, and
influence of the quality attributes addressed by the patterns.
According to ISO/IEC 25010:2011 [6], performance, usabil-
ity, reliability, and security significantly influence the quality in
use for primary users, while compatibility, maintainability, and
portability greatly impact quality in use for secondary users
who maintain the system. We classify these additional quality
attributes as privacy and scalability. The former is an impor-
tant concern of primary users, while the latter is about ease of
extending a system by maintainers in terms of performance.

In Table IV, most papers use IoT patterns to address quality
attributes that influence the quality in use for primary users
as well as those that influence the quality in use for main-
tenance tasks. Because this implies that IoT systems should
be designed with good quality for both primary users and
maintainers, the identified IoT patterns should help support
architecting and design.

RQ4. What IoT architecture and design patterns exist? 10T
architecture patterns and design patterns exist. Many IoT pat-
terns address compatibility (including interoperability as a
subattribute), security, and maintainability. Most IoT design
patterns are applicable to any domain. On the other hand, many
IoT architecture patterns are domain specific, implying that the
unique nature of IoT adoption in specific domains appears at
the architecture level.

IV. DISCUSSION

We describe extracted IoT patterns, possible use cases, and
threats to validate our results.

A. Examples of loT Pattern

Here, we describe three extracted IoT patterns having dif-
ferent abstraction levels: 1) “layered architecture for IoT
applications” [44] as an example of IoT architecture style;
2) “ECA on linked data platform (ECA2LD)” [32] as an
example of IoT architecture pattern; and 3) “IoT gateway

event subscription” [29] as an example of IoT design pattern.
For brevity, participants, collaborations, implementation, and
known uses are omitted. The intent section of each pattern can
be a guide for practitioners to understand and consider reusing
the corresponding content.

1) Example of IoT Architecture Style:

a) Pattern Layered architecture
applications [44].

b) Intent: Support the construction of hierarchical, pro-
grammable, and autonomic IoT applications.

c) Solution: The IoT platform providing resource virtual-
ization using lightweight virtualization (i.e., containerization)
for multilayer applications (Fig. 3).

d) Consequences: By implementing the respective
requirements of an IoT application to the appropriate layer of
the three layers shown in Fig. 3, nonfunctional properties, such
as performance, security and privacy, reliability, elasticity, and
scalability can be treated flexibly with service orchestration
through the layers.

2) Example of 1oT Architecture Pattern:

a) Pattern name: ECA2LD [32].

b) Intent: Support the design of changeable and main-
tainable software components for large-scale IoT applications.

c) Context: The Web is considered as an IoT con-
vergence platform to realize WoT. Software built for IoT
environments must be adaptable to changes and interoperable
with others on the platform.

d) Problem: ECA-based software design (Fig. 4) is par-
ticularly well suited to improve the changeability and reusabil-
ity of IoT software components. However, seamless cross-
domain interoperability between independently developed IoT
applications and platforms is not directly addressed.

e) Solution: 1t establishes a structural mapping from
ECA to the Linked Data Platform so that the interoperability
of independently developed IoT applications can be seamless
over different domains on the platform.

f) Consequences: This data-oriented approach should
significantly improve the changeability of entities and reuse
of IoT software components. Mapping the entire architecture
makes it easy to implement large-scale IoT applications to
Semantic WoT.

3) Example of IoT Design Pattern:

a) Pattern name: 10T gateway event subscription [29].

b) Intent: Provide interoperability between two hetero-
geneous [oT devices, while simultaneously ensuring that the
IoT gateway has flexibility.

name: for IoT



10098

J Entity-Component-Attribute Server

( . \

I Entity | . .

! Instances | Entity 1 Entity 2
) {

7777777777 {
(Comporent |

! omponent 1\ comp | Comp |
. Instances |

|

A 4
‘( Attribute "[ Attr A :value a J { Attr A :value a J
I I
‘\77”15:[??8875771‘[ Attr B :value b ] [ Attr B :value b ]
FEZ ******** : 4 "Comp |" prototype
; Component | 1 1
‘x Prototypes } e [ Attr A, <data type 1> J —
Nmmmm e 4 [ Attr B, <data type 2> ]

Fig. 4. ECA (adapted from [32]).

c) Context: This pattern is used within event-based com-
munication when the data are pushed (pulled) to (from) the
IoT gateway asynchronously. The IoT gateway allows for data
forwarding.

d) Problem: Interoperability between two heterogeneous
IoT devices requires bidirectional, asynchronous communica-
tion with the ability to publish, filter, and consume data.

e) Solution: Employ a subscription mechanism into the
IoT gateway, which allows asynchronous and mutual trans-
missions of data obtained by sensors at the destination and
the message between artifacts. Transmitters of messages (i.e.,
publishers) can publish messages using defined classes with-
out knowledge of subscribers. Meanwhile, subscribers can
express interest in one or more classes, and receive messages
of interest without knowledge of publishers. The IoT gate-
way works flexibly in two parts. The physical part deals with
network access and communication protocols, while the virtual
part deals with the remaining gateway operations and services.
The former is platform specific. It depends on the network
communication protocols and devices deployed in physical
space. In contrast, the latter is platform-independent.

f) Consequences: Encouraging asynchronous messaging
improves the compatibility of IoT applications using hetero-
geneous IoT devices. Enhancing the loose coupling between
publishers and subscribers improves the maintainability of IoT
applications. In addition, decoupling the IoT gateway into two
parts realizes flexibility in the device-to-device layer.

g) Related  patterns: “D2D  REST  request/re-
sponse” pattern [29], and “publish-subscribe” pattern
[211, [22], [39], [48], [49].

B. Use Cases

The results of our SLR are expected to guide practitioners
and researchers in the following possible use cases UC1-UC3.

UCI (To Publish New IoT Patterns): When practitioners
(and researchers) want to write and publish their new IoT
architecture and design patterns, they can be aware of the
existing IoT patterns by referring to our classification results.
The characteristics of IoT patterns identified in our SLR

34T gateway event subscription” can be regarded as a general IoT
design pattern since it is originally described as a slight extension of
“publish-subscribe” in the context of IoT [29].

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

can also support writing new patterns to consider appropri-
ate abstraction levels, domain specificity, and quality attributes
to be addressed. In addition, the practitioners and researchers
eventually extend the existing IoT architecture and design
patterns.

UC2 (To Resolve IoT Design Problems): When practitioners
and researchers want to resolve problems in the IoT design,
our classification results and the characteristics of IoT patterns
help them to compare the existing [oT patterns, and then select
and reuse the appropriate one according to their objectives.
Developers can utilize our classification scheme and results in
different development phases.

1) To consider the appropriate high-level IoT system archi-
tecture in the analysis phase as well as the early
architecting phase in IoT system development projects,
developers can first review non-IoT or IoT architecture
styles of the given projects by examining the relevance
between the contexts, architectural elements, and their
connections.

2) To design concrete architectures of the target IoT
systems and software in the architecting phase, devel-
opers can also consider reusing (non-) IoT architecture
patterns by examining the relevance between projects’
specific requirements, contexts, and problems of the
architecture patterns.

3) To design limited parts of the target IoT systems and
software in the design phase, developers can consider
reusing (non-) IoT design patterns by examining rel-
evance between specific detailed design problems and
contexts of the design patterns.

UC3 (To communicate and Research loT Patterns): Our
classification results and the characteristics of IoT patterns can
serve as a reference for the IoT pattern engineering commu-
nity, including practitioners and researchers. Our results can be
extended by peers, providing the community with an impor-
tant body of knowledge to guide future communications and
research on IoT patterns.

C. Threats to Validity

As an empirical study, the results of SLRs are vulnerable
to internal validity and reliability [50]. Internal validity arises
from the cause—effect conclusion drawn from the SLR process
and its results. To alleviate this, we used the data to answer
each research question.

Reliability concerns arise from the quality and rigor that
the SLR was conducted. To demonstrate a sound process,
Section III explains the steps in our SLR and reports the num-
ber of papers in each step. In addition, all of our data are
available online.*

Another threat to reliability is that an independent third
party has yet to vet all the identified patterns. The Pattern
Languages of Programs (PLoP) conference series,” such as
PLoP® and AsianPLoP,” which is sponsored by the Hillside

4http://www.washi.cs.waseda.ac‘jp/iot—pattems/
Shttps://hillside.net/conferences/
6https://wvvvv.hillside.net/plop/
7http://asianplop.org



WASHIZAKI et al.: LANDSCAPE OF ARCHITECTURE AND DESIGN PATTERNS FOR IoT SYSTEMS

Group, focuses on pattern writing groups to improve patterns
through group exposure. We intend to participate in the confer-
ence series to receive community feedback about each pattern
prior to publication.

Most authors extracted and classified patterns. All patterns
were independently vetted by another author. Although our
rigorous SLR noted the characteristics of IoT patterns, other
characteristics to be used for the classification of IoT patterns
may be omitted. It is possible that our classification results are
not completely correct. To analyze the extent of this threat to
reliability in terms of pattern extraction and classification, we
asked two uninvolved researchers (R; and Ry) to extract and
classify patterns from [32] and [44] studied in our SLR. We
selected these papers [32], [44] since they do not describe pat-
terns in any explicit structured pattern format. Thus, there was
a possibility that different examiners may extract different pat-
terns or classify them differently. From [44], R; extracted the
same architecture style as our result (i.e., layered architecture
for IoT applications) while Ry extracted a similar but more
concrete architecture pattern. In terms of quality attributes, Ry
commonly identified performance, reliability, security, scala-
bility, and privacy, which are also identified by us in Table III.
In contrast, R; identified compatibility, maintainability, porta-
bility, and scalability; these attributes except for scalability
are different from our result. From [32], R; and R, extracted
the same or similar patterns as our result (i.e., ECA2LD), but
classified them as design patterns unlike our classification. In
terms of quality attributes, R, identified compatibility, main-
tainability, and portability, which are also identified by us in
Table III. R; also identified compatibility and portability but
missed maintainability. Based on these independent analysis
results, we believe that our pattern extraction results can be
generally consistent. However, our classification process can
be somewhat inconsistent resulting in partially different classi-
fication results by different examiners. To mitigate this threat,
we have shared our classification results with the public to call
for comments on our website in the future.

We used Scopus as the initial document base of the SLR.
Although many other SLRs, such as [11] and [51]-[53] have
adopted it, relevant papers (such as IoT security pattern
papers [54]) may have been missed. To mitigate this threat, we
plan to use other databases, extend our SLR, and elicit public
review of the results.

V. CONCLUSION

To overview the current landscape of IoT architecture and
design patterns, we conducted an SLR of the academic litera-
ture and identified the 143 patterns mentioned in 32 papers. Of
the extracted patterns, 57% are non-IoT patterns, suggesting
that IoT systems and software are often designed via conven-
tional architecture and design patterns that are not specific to
the IoT design. Although most IoT design patterns are appli-
cable to any domain, IoT architecture patterns tend to be for
specific domains, implying that the unique nature of IoT adop-
tion in specific domains appears at the architecture level. In
the future, the number of domain-specific IoT design patterns
may increase as more domains adopt IoT. In terms of quality
attributes, many IoT patterns address compatibility, security,

10099

and maintainability. Consequently, other quality attributes have
yet to be investigated.

Our future work includes further analysis of IoT pat-
terns using additional characteristics, such as the relationships
among patterns and writing quality of patterns (as discussed
in [55] for security patterns). We also plan to increase our
survey scope to include gray literature.

We plan to share the revised survey and analysis results to
obtain reviews from the public. We expect that the research com-
munity will further validate the SLR results from the viewpoints
of practitioners and researchers. Public input should extend the
classification to include new characteristics and data sets.

ACKNOWLEDGMENT

The authors would like to thank Dr. Takehisa Kato and
Prof. Haruhiko Kaiya for their initial pattern analysis, and
Dr. Takafumi Tanaka and Hideyuki Kanuka for their additional
pattern analysis. They also would like to thank the anonymous
reviewers for their insightful comments and suggestions.

REFERENCES

[1] M. Aly, FE. Khomh, Y. Guéhéneuc, H. Washizaki, and S. Yacout, “Is
fragmentation a threat to the success of the Internet of Things?” IEEE
Internet Things J., vol. 6, no. 1, pp. 472-487, Feb. 2019. [Online].
Available: https://doi.org/10.1109/JI0T.2018.2863180

[2] M. Aly, F. Khomh, M. Haoues, A. Quintero, and S. Yacout, “Enforcing
security in Internet of Things frameworks: A systematic literature
review,” Internet Things, vol. 6, Jun. 2019, Art. no. 100050. [Online].
Available: https://doi.org/10.1016/.i0t.2019.100050

[3] J. Holler, V. Tsiatsis, and C. Mulligan, “Toward a machine intel-
ligence layer for diverse industrial IoT wuse cases,” IEEE Intell.
Syst., vol. 32, no. 4, pp. 64-71, Aug. 2017. [Online]. Available:
https://doi.org/10.1109/MI1S.2017.3121543

[4] “Software engineering—Guide to the software engineering body of
knowledge (SWEBOK),” ISO/IEC, Geneva, Switzerland, Rep. TR
19759:2015, 2015.

[5] H. Muccini and M. T. Moghaddam, “IoT architectural styles—A
systematic mapping study,” in Proc. 12th Eur. Conf. Softw. Archit.
(ECSA), Madrid, Spain, Sep. 2018, pp. 68-85. [Online]. Available:
https://doi.org/10.1007/978-3-030-00761-4_5

[6] “Systems and software engineering—Systems and software quality
requirements and evaluation (SQuaRE)—System and software quality
models,” ISO/IEC, Geneva, Switzerland, Rep. 25010:2011, 2011.

[71 P. Avgeriou and U. Zdun, “Architectural patterns revisited—A pattern
language,” in Proc. 10th Eur. Conf. Pattern Lang. Programs (EuroPLoP),
Irsee, Germany, Jul. 2005, pp. 431-470.

[81 A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on GoF design patterns: A mapping study,” J. Syst.
Softw., vol. 86, no. 7, pp. 1945-1964, 2013. [Online]. Available:
https://doi.org/10.1016/j.jss.2013.03.063

[9] B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, “The state of

the art on design patterns: A systematic mapping of the literature,”

J. Syst. Softw., vol. 125, pp. 93-118, Mar. 2017. [Online]. Available:

https://doi.org/10.1016/j.jss.2016.11.030

J. Juziuk, D. Weyns, and T. Holvoet, “Design patterns for multi-agent

systems: A systematic literature review,” in Agent-Oriented Software

Engineering—Reflections on Architectures, Methodologies, Languages,

and Frameworks. Heidelberg, Germany: Springer, 2014, pp. 79-99.

[Online]. Available: https://doi.org/10.1007/978-3-642-54432-3_5

H. Washizaki, H. Uchida, F. Khomh, and Y.-G. Gueheneuc, “Studying

software engineering patterns for designing machine learning systems,”

in Proc. 10th Int. Workshop Empirical Softw. Eng. Pract. (IWESEP),

Tokyo, Japan, 2019, pp. 1-6.

P. Ponde and S. Shirwaikar, “An exploratory study of the secu-

rity design pattern landscape and their classification,” Int. J. Syst.

Syst. Eng., vol. 7, no. 3, pp.26-43, 2016. [Online]. Available:

https://doi.org/10.4018/1JSSE.2016070102

[10]

(11]

[12]



10100

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

H. Ahmadi, G. Arji, L. Shahmoradi, R. Safdari, M. Nilashi, and
M. Alizadeh, “The application of Internet of Things in healthcare: A
systematic literature review and classification,” Univ. Access Inf. Soc.,
vol. 18, pp. 1-33, May 2018.

P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of
Things applications: A systematic review,” Comput. Netw., vol. 148,
pp. 241-261, Jan. 2019.

M. D. Giudice, “Discovering the Internet of Things (IoT) within the
business process management: A literature review on technological
revitalization,” Bus. Process Manag. J., vol. 22, no. 2, pp. 1-9, 2016.
P. P. Ray, “A survey of IoT cloud platforms,” Future Comput.
Informat. J., vol. 1, no. 1, pp. 35-46, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2314728816300149

H. Washizaki et al., “Landscape of IoT patterns,” in Proc. Ist Int.
Workshop Softw. Eng. Res. Pract. Internet Things, (SERP41oT@ICSE),
Montreal, QC, Canada, May 2019, pp. 57-60. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3354013

W. Lee and P. Law, “A case study in applying security design patterns
for IoT software system,” in Proc. Int. Conf. Appl. Syst. Innov. (ICASI),
May 2017, pp. 1162-1165.

C. Wolff, M. Khnirr, K. Priebe, P. Schulz, and J. Strumberg, “A
layered software architecture for a flexible and smart organic rank-
ine cycle (ORC) turbine—solutions and case study,” Inf. Technol.
Control, vol. 47, no. 2, pp. 349-362, 2018. [Online]. Available:
https://doi.org/10.5755/j01.itc.47.2.19681

M. H. Syed, E. B. FernAndez, and M. Ilyas, “A pattern for fog comput-
ing,” in Proc. 10th Travelling Conf. Pattern Lang. Programs VikingPLoP,
Leerdam, The Netherlands, Apr. 2016, pp. 1-10. [Online]. Available:
https://doi.org/10.1145/3022636.3022649

L. Roffia et al, “A semantic publish-subscribe architec-
ture for the Internet of Things,” IEEE Internet Things J.,
vol. 3, no. 6, pp.1274-1296, Dec. 2016. [Online]. Available:

https://doi.org/10.1109/J10T.2016.2587380

N. Ntuli and A. M. Abu-Mahfouz, “A simple security architecture
for smart water management system,” in Proc. 7th Int. Conf. Ambient
Syst. Netw. Technol. (ANT) 6th Int. Conf. Sustain. Energy Inf. Technol.
(SEIT) Affiliated Workshops, Madrid, Spain, May 2016, pp. 1164-1169.
[Online]. Available: https://doi.org/10.1016/j.procs.2016.04.239

E. Jung, I. Cho, and S. M. Kang, “An agent modeling for over-
coming the heterogeneity in the IoT with design patterns,” in Proc.
Mobile Ubiquitous Intell. Comput. (MUSIC) FTRA 4th Int. Conf.
Mobile Ubiquitous Intell. Comput., Gwangju, South Korea, Sep.
2013, pp. 69-74. [Online]. Available: https://doi.org/10.1007/978-3-642-
40675-1_11

C. Pahl, N. E. Ioini, S. Helmer, and B. Lee, “An architecture pattern for
trusted orchestration in IoT edge clouds,” in Proc. 3rd Int. Conf. Fog
Mobile Edge Comput. (FMEC), Barcelona, Spain, Apr. 2018, pp. 63-70.
[Online]. Available: https://doi.org/10.1109/FMEC.2018.8364046

V. Charpenay, S. Kibisch, D. Anicic, and H. Kosch, “An ontology design
pattern for IoT device tagging systems,” in Proc. 5th Int. Conf. Internet
Things (IoT), Seoul, South Korea, Oct. 2015, pp. 138—145. [Online].
Available: https://doi.org/10.1109/10T.2015.7356558

S. Pape and K. Rannenberg, “Applying privacy patterns to the Internet
of Things’ (IoT) architecture,” Mobile Netw. Appl., vol. 24, no. 3,
pp. 925-933, 2019. [Online]. Available: https://doi.org/10.1007/s11036-
018-1148-2

I. Ali and M. Asif, “Applying security patterns for authorization of users
in IoT based applications,” in Proc. Int. Conf. Eng. Emerg. Technol.
(ICEET), Feb. 2018, pp. 1-5.

S. J. R. Méndez and J. K. Zao, “BCI ontology: A context-based sense
and actuation model for brain-computer interactions,” in Proc. 9th Int.
Semantic Sensor Netw. (SSN) Workshop Colocated 17th Int. Semantic
Web Conf. (ISWC), Monterey, CA, USA, Oct. 2018, pp. 32-47. [Online].
Available: http://ceur-ws.org/Vol-2213/paper3.pdf

R. Tkaczyk et al., “Cataloging design patterns for Internet of Things
artifact integration,” in Proc. IEEE Int. Conf. Commun. Workshops
(ICC), Kansas City, MO, USA, May 2018, pp. 1-6. [Online]. Available:
https://doi.org/10.1109/ICCW.2018.8403758

K. Periyasamy, V. S. Alagar, and K. Wan, “Dependable design
for elderly health care,” in Proc. Federated Conf. Comput. Sci.
Inf. Syst. (FedCSIS), Sep. 2017, pp. 803—-806. [Online]. Available:
https://doi.org/10.15439/2017F261

G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design
patterns for the industrial Internet of Things,” in Proc. 14th IEEE
Int. Workshop Factory Commun. Syst. (WFCS), Jun. 2018, pp. 1-10.
[Online]. Available: https://doi.org/10.1109/WFCS.2018.8402353

(32]

[33]

[34]

[35]

[36]

(371

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

T. Spieldenner, R. Schubotz, and M. Guldner, “ECA2LD: From entity-
component-attribute runtimes to linked data applications,” in Proc.
Int. Workshop Semantic Web Things Ind. Extend. Semantic Web Conf.
(ESWC), Jun. 2018, pp. 1-12.

S. Chen, B. Liu, X. Chen, Y. Zhang, and G. Huang, “Framework for
adaptive computation offloading in IoT applications,” in Proc. 9th Asia—
Pac. Symp. Internetware, Shanghai, China, Sep. 2017, pp. 1-6. [Online].
Available: https://doi.org/10.1145/3131704.3131717

S. Qanbari et al., “lIoT design patterns: Computational con-
structs to design, build and engineer edge applications,” in Proc.
Ist IEEE Int. Conf. Internet Things Design Implement. (IoTDI),

Berlin, Germany, Apr. 2016, pp.277-282. [Online]. Available:
https://doi.org/10.1109/10TDI1.2015.18

M. P. Shopov, “IoT gateway for smart metering in electri-
cal power systems—software architecture,” in Proc. 40th Int.
Convention  Inf.  Commun. Technol.  Electron. Microelectron.
(MIPRO), May 2017, pp. 974-978. [Online]. Available:

https://doi.org/10.23919/MIPRO.2017.7973565

A. Q. Gill, N. Phennel, D. Lane, and V. L. Phung, “TIoT-enabled emer-
gency information supply chain architecture for elderly people: The
australian context,” Inf. Syst., vol. 58, pp. 75-86, Jun. 2016. [Online].
Available: https://doi.org/10.1016/j.i5.2016.02.004

S. Vorapojpisut, “Model-based design of IoT/WSN nodes: Device driver
implementation,” in Proc. Int. Conf. Embedded Syst. Intell. Technol.
Int. Conf. Inf. Commun. Technol. Embedded Syst. (ICESIT-ICICTES),
May 2018, pp. 1-5.

M. Brambilla, E. Umuhoza, and R. Acerbis, “Model-driven develop-
ment of user interfaces for IoT systems via domain-specific components
and patterns,” J. Internet Services Appl., vol. §, no. 1, pp. 1-21, 2017.
[Online]. Available: https://doi.org/10.1186/s13174-017-0064-1

B. Tekinerdogan and 0. Koksal, “Pattern based integration of Internet
of Things systems,” in Proc. 3rd Int. Conf. Internet Things (ICIOT)
Services Conf. Federat. (SCF), Seattle, WA, USA, Jun. 2018, pp. 19-33.
[Online]. Available: https://doi.org/10.1007/978-3-319-94370-1_2

M. A. Walker, A. Dubey, A. Laszka, and D. C. Schmidt, “PlaTIBART:
A platform for transactive I0oT blockchain applications with repeat-
able testing,” in Proc. 4th Workshop Middleware Appl. Internet Things
(M4loT@Middleware), Las Vegas, NV, USA, Dec. 2017, pp. 17-22.
[Online]. Available: https://doi.org/10.1145/3152141.3152392

V. Cardellini, T. G. Grbac, M. Nardelli, N. Tankovic, and H. L. Truong,
“QoS-based elasticity for service chains in distributed edge cloud envi-
ronments,” in Autonomous Control for a Reliable Internet of Services—
Methods, Models, Approaches, Techniques, Algorithms, and Tools.
Cham, Switzerland: Springer, 2018, pp. 182-211. [Online]. Available:
https://doi.org/10.1007/978-3-319-90415-3_8

M. Mongiello, G. Boggia, and E. D. Sciascio, “RelOS: Reflective

architecting in the Internet of objects,” in Proc. 4rd Int.
Conf.  Model Driven Eng. Softw. Develop. (MODELSWARD),
Rome, Italy, Feb. 2016, pp.384-389. [Online]. Available:

https://doi.org/10.5220/0005800603840389

M. A. Al-Taee, W. Al-Nuaimy, Z. J. Muhsin, and A. Al-Ataby, “Robot
assistant in management of diabetes in children based on the Internet of
Things,” IEEE Internet Things J., vol. 4, no. 2, pp. 437-445, Apr. 2017.
[Online]. Available: https://doi.org/10.1109/JI0T.2016.2623767

H. Khazaei, H. Bannazadeh, and A. Leon-Garcia, “SAVI-IoT:
A self-managing containerized IoT platform,” in Proc. 5th IEEE

Int. Conf. Future Internet Things Cloud (FiCloud), Prague,
Czech Republic, Aug. 2017, pp. 227-234. [Online]. Available:
https://doi.org/10.1109/FiCloud.2017.27

A. Mazayev, J. A. Martins, and N. Correia, “Semantic
Web thing architecture,” in Proc. 4th Exp. Int. Conf,
Faro, Portugal, Jun. 2017, pp.43-46. [Online]. Available:
https://doi.org/10.1109/EXPAT.2017.7984368

A. Auger, E. Exposito, and E. Lochin, “Sensor observation

streams within cloud-based IoT platforms: Challenges and direc-
tions,” in Proc. 20th Conf. Innov. Clouds Internet Netw. (ICIN),
Paris, France, Mar. 2017, pp. 177-184. [Online]. Available:
https://doi.org/10.1109/ICIN.2017.7899407

C. Wolff et al., “Software architecture for an ORC turbine—Case
study for an intelligent technical system in the era of the Internet
of Things,” in Proc. 23rd Int. Conf. Inf. Softw. Technol. , (ICIST),
Druskininkai, Lithuania, Oct. 2017, pp. 226-237. [Online]. Available:
https://doi.org/10.1007/978-3-319-67642-5_19

P. M. Jacob and P. Mani, “Software architecture pattern selection model
for Internet of Things based systems,” IET Softw., vol. 12, no. 5,
pp. 390-396, 2018. [Online]. Available: https://doi.org/10.1049/iet-
sen.2017.0206



WASHIZAKI et al.: LANDSCAPE OF ARCHITECTURE AND DESIGN PATTERNS FOR IoT SYSTEMS

[49] V. Taratukhin, Y. Yadgarova, and J. Becker, “The Internet of Things
prototyping platform under the design thinking methodology,” in Proc.
125th ASEE Annu. Conf. Expo. Amer. Soc. Eng. Educ., 2018, pp. 1-9.
X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats
to validity of systematic literature reviews in software engineering,” in
Proc. 23rd Asia—Pac. Softw. Eng. Conf., Dec. 2016, pp. 153-160.

H. Washizaki et al., “Taxonomy and literature survey of security pattern
research,” in Proc. IEEE Conf. Appl. Inf. Netw. Security (AINS), Nov.
2018, pp. 87-92.

A. Dadwal, H. Washizaki, Y. Fukazawa, T. lida, M. Mizoguchi, and
K. Yoshimura, “Prioritization in automotive software testing: Systematic
literature review,” in Proc. 6th Int. Workshop Quantitative Approaches
Softw. Quality Colocated 25th Asia—Pac. Softw. Eng. Conf. (APSEC),
Nara, Japan, Dec. 2018, pp. 52-58. [Online]. Available: http://ceur-
ws.org/Vol-2273/QuASoQ-07.pdf

A. B. Marques, R. Rodrigues, and T. Conte, “Systematic literature
reviews in distributed software development: A tertiary study,” in Proc.
IEEE 7th Int. Conf. Global Softw. Eng., Aug. 2012, pp. 134-143.

E. B. FernAndeZ, N. Yoshioka, and H. Washizaki, “Abstract and IoT
security segmentation patterns,” in Proc. 8th Asian Conf. Pattern Lang.
Programs (AsianPLoP), 2019, pp. 1-9.

T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An analysis of
the security patterns landscape,” in Proc. 3rd Int. Workshop Softw. Eng.
Secure Syst. (SESS), Minneapolis, MN, USA, May 2007, p. 3. [Online].
Available: https://doi.org/10.1109/SESS.2007.4

(501

(511

[52]

[53]

[54]

[55]

Hironori Washizaki (Member, IEEE) received the
Doctoral degree in information and computer science
from Waseda University, Tokyo, Japan, in 2003.

He is a Professor and the Associate Dean of the
Research Promotion Division, Waseda University,
and a Visiting Professor with the National Institute
of Informatics. He also works in industry as Outside
Director of System Information and eXmotion. He
has led many academia—industry joint research and
large-funded projects in software analysis and qual-
ity assurance. Since 2017, he has been the lead on
a large-scale grant at MEXT, called enPiT-Pro SmartSE, which encompasses
professional education in IoT, Al, software engineering, and business. Since
2015, he has been the Convener of ISO/IEC/JTC1 SC7/WG20 to standardize
bodies of knowledge and professional certifications. He has published more
than 120 research papers in refereed international journals and conferences,
including IoT-J, TETC, EMSE, SCICO, ICSE, and ASE. His research interests
include systems and software engineering.

Dr. Washizaki has received various awards and honors, including the
IWESEP Best Paper Award and the IJSEKE Most Read Article. He has
served as the Program Chair of multiple IEEE conferences, including ICST,
CSEE&T, and SIoT/SISA of COMPSAC. He is the Program Chair of ICPC
Programming Education Track and SCAM Engineering Track, the Workshop
Chair and the Publicity Chair of ASE, a Local Chair of COMPSAC, and the
Chair of IEEE CS Japan Chapter. He serves as the Chair of the IEEE Computer
Society Professional and Educational Activities Board Engineering Discipline
Committee. He is spearheading the Guide to the Software Engineering Body
of Knowledge (SWEBOK) evolution. He serves as an Associate Editor for the
IEEE TRANSACTIONS ON EMERGING ToPICS IN COMPUTING, a Steering
Committee Member of the IEEE Conference on Software Engineering
Education and Training, and an Advisory Committee Member of the IEEE
CS flagship conference COMPSAC. He is a Professional Member of IEEE-
Eta Kappa Nu. Since 2019, he has been a Steering Committee Member of
APSEC.

Shinpei Ogata (Member, IEEE) received the M.E.
degree in electrical engineering and computer sci-
ence and the Ph.D. degree in functional control
systems from the Shibaura Institute of Technology,
Tokyo, Japan, in 2009 and 2012, respectively.

He is an Associate Professor with Shinshu
University, Nagano, Japan. His current research
interests include model-driven engineering for
information system development.

Dr. Ogata is a member of ACM, IEICE, IPSJ, and
JSSST.

10101

Atsuo Hazeyama (Member, IEEE) received the
Doctoral degree in information engineering from
Shinshu University, Nagano, Japan, in 1999.

He is a Professor with the Department of
Information Science, Tokyo Gakugei University,
Tokyo, Japan. His research interests are support of
secure software development, collaborative software
development, and project-based learning for soft-
ware development.

Dr. Hazeyama has served as a Program Committee
Member for some international conferences, includ-
ing the International Conference on Software Engineering Education and
Training, Asia—Pacific Software Engineering Conference, and Knowledge
Based and Intelligent Information and Engineering Systems.

Takao Okubo (Member, IEEE) received the M.S.
degree in engineering from the Tokyo Institute
of Technology, Tokyo, Japan, in 1991, and the
Ph.D. degree in informatics from the Institute of
Information Security, Kanagawa, Japan, in 2009.

He is a Professor with the Institute of Information
Security. From 1991 to 2013, he worked as a
Researcher in software engineering and software
security with Fujitsu Laboratories. In 2013, he
moved to the Institute of Information Security as an
Associate Professor. His current interests are secure
development and threat analysis.

Dr. Okubo is a member of IEICE, IPSJ, ACM, and IEEE CS.

Eduardo B. Fernandez (Eduardo Fernandez
Buglioni) (Senior Member, IEEE) received the B.S.
degree in electrical engineering from Universidad
Técnica Federico Santa Maria, Valparaiso, Chile,
the M.S. degree in electrical engineering from
Purdue University, Lafayette, IN, USA, in 1963,
and the Ph.D. degree in computer science from the
University of California Los Angeles (UCLA), Los
Angeles, CA, USA, in 1972.

He is a Professor with the Department of
Computer Science and Engineering, Florida Atlantic
University, Boca Raton, FL, USA. He is an active consultant for industry,
including assignments with IBM, Allied Signal, Panasonic, Motorola, Lucent,
and Huawei. He has published numerous papers as well as several books on
computer security and software architecture, and numerous papers on autho-
rization models, object-oriented analysis and design, cloud computing, and
security patterns. He has written four books on these subjects, the most recent
being a book on security patterns.

Nobukazu Yoshioka (Member, IEEE) received the
B.E. degree in electronic and information engi-
neering from Toyama University, Toyama, Japan,
in 1993, and the M.E. and Ph.D. degrees in
information science from the School of Information
Science, Japan Advanced Institute of Science and
Technology, Nomi, Japan, in 1995 and 1998, respec-
tively.

He is a Researcher with the National Institute of
Informatics, Tokyo, Japan. From 1998 to 2002, he
was with Toshiba Corporation, Tokyo. From 2002 to
2004, he was a Researcher, and since August 2004, he has been an Associate
Professor with the National Institute of Informatics. His research interests
include Security and privacy software engineering and software engineering
for machine learning-based systems.

Dr. Yoshioka was a Board Member of JSSST from 2011 to 2015, and has
been the Auditor since 2018. He was the Chair of the IEEE CS Japan Chapter
from 2015 to 2017.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


