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ABSTRACT At present, the primary technical deterrent to the use of strawberry harvesting robots is the
low harvest rate, and there is a need to improve the accuracy and real-time performance of the localization
algorithms to detect the picking point on the strawberry stem. The pose estimation of the fruit target (the
direction of the fruit axis) can improve the accuracy of the localization algorithm. This study proposes a
novel harvesting robot for the ridge-planted strawberries as well as a fruit pose estimator called rotated
YOLO (R-YOLO), which significantly improves the localization precision of the picking points. First,
the lightweight network Mobilenet-V1 was used to replace the convolution neural network as the backbone
network for feature extraction. The simplified network structure substantially increased the operating speed.
Second, the rotation angle parameter α was used to label the training set and set the anchors; the rotation
of the bounding boxes of the target fruits was predicted using logistic regression with the rotated anchors.
The test results of a set of 100 strawberry images showed that the proposed model’s average recognition
rate to be 94.43% and the recall rate to be 93.46%. Eighteen frames per second (FPS) were processed on
the embedded controller of the robot, demonstrating good real-time performance. Compared with several
other target detection methods used for the fruit harvesting robots, the proposed model exhibited better
performance in terms of real-time detection and localization accuracy of the picking points. Field test results
showed that the harvesting success rate reached 84.35% in modified situations. The results of this study
provide technical support for improving the target detection of the embedded controller of harvesting robots.

INDEX TERMS Ridge-planting, harvesting robot, R-YOLO, fruit detection, rotated bounding box.

I. INTRODUCTION
As one of the most widely grown berries in the world,
strawberry can be cultivated in the outdoors or controlled
environments such as greenhouses and polytunnels [1].
In general, the cultivation modes in the greenhouses include
table-top, bench-type, elevated-substrate, and ridge-planting
(Fig.1a, b, c, d). Although the cultivation modes of Fig. a, b, c
are more advanced in terms of the stereoscopic space utiliza-
tion, as well as fruit yield and quality, ridge-planting is still
widely implemented in China because of its lower initial costs
and easy implementation. The ridge-planting cultivation area
accounts for more than 90% of the total cultivation area [2].
However, strawberry cultivations have several drawbacks.
Harvesting is the most time-consuming and labor-intensive
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step in strawberry production. Harvesting labor costs account
for more than 75% of the total production costs, and this pro-
portion continues to increase annually [3]. Labor shortages
further restrict the economic benefits and development of
the strawberry industry. Also, the low ridges and narrow
roads between the ridges make ridge-planting more difficult,
time-consuming, and labor-intensive than other cultivation
modes. Therefore, research on harvesting robots can make
great impact on reducing manual labor, improving harvest-
ing efficiency, and reducing production costs. The market
demand is especially strong for a harvesting robot used in
ridge planting.

No reliable and cost-effective business system has been
established in recent years, although scholars from Japan
[5]–[7], China [10], [11], Norway [1], [4], [9] and Iran [8]
have conducted extensive research on strawberry harvest-
ing robots [12]. Some start-ups have also launched their
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FIGURE 1. Strawberry cultivation modes.

robot designs. In 2013, Shibuya Seiki of Japan exhibited a
strawberry harvesting robot that produced a >70% success
rate; Harvest CROO of the United States designed a rotat-
ing device with multiple grippers that can pick strawber-
ries on the ground. However, most of the harvesting robots
have been designed for elevated cultivation. The sizes of the
Cartesian-type and industrial robot arms are not suitable for
the low and narrow ridge-planting environment of a green-
house. As shown in Fig.1d, the width of the road between the
two ridges is less than 50cm, and the height of the ridge is
less than 40cm. The strawberry fruits cling to the side of the
ridge and grow downward.

AGROBOT of Spain has developed an automatic straw-
berry harvesting machine (SW6010) that can be used in
a ridge-planting mode. The machine has 24 independent
manipulator arms, and the whole process (including search-
ing for fruit and cutting fruit stems) takes only 4 seconds.
However, no detailed information about the physical and
performance parameters of this machine has yet been pub-
lished. Therefore, research on strawberry harvesting robots
in a ridge-planting mode is lacking.

Another major challenge in automated harvesting is
that strawberries are easily damaged and bruised, so the
end-effector (hand claw) of the harvesting robot cannot touch
the surface of the fruits during harvesting [13]. Successful
harvesting can only be achieved by cutting or burning the fruit
stem. Therefore, the design of the contactless end-effector
and the precise localization of the picking point on the fruit
stem is essential for successful harvesting. Xiong et al. [1], [4]
designed a cable-driven gripper for contactless harvesting of
elevated strawberries that delivers them directly into a market
pun-net, thereby eliminating the need for repacking. This
machine produced a state-of-the-art harvesting performance.
However, it could not be applied in the ridge-planting mode.
The structured light RGB-D camera (Intel R200) used by
Xiong to detect the depth of the fruit targets could not be
adapted to the narrow and low passages as the camera’s effec-
tive detection distance cannot be less than 80cm. Therefore,
the implementation of effective target detection in a narrow

and low environment of the ridge-planting mode is urgently
needed. In general, the prediction of picking points requires
the identification of the fruit targets, followed by the predic-
tion of the location of the picking point based on differences
in the size, shape, color, and texture between the fruit and
the background. Furthermore, due to the complex operating
environment of the harvesting robot and the various physical
features of the fruit targets, fruit detection is susceptible to
various factors, such as the intensity of the natural light,
overlapping fruits, and the blocking of the fruit by stems
and leaves. Low-precision target detection complicates the
accurate prediction and localization of the picking points.
Therefore, the rapid and accurate detection (identification and
localization) of the picking points represents the core problem
that has to be addressed in strawberry harvesting robots [14].

Target detection of fruits is similar in many ways to other
target detecting applications, such as autonomous driving
and face recognition. Therefore, the classical target detection
models (R-CNN [15], SSP-Net [16], Faster R-CNN [16],
YOLO [17], and SSD [18]) can also be applied to fruit detec-
tion. Of these models, R-CNN, SSP-Net and Faster R-CNN
have a two-stage structure, which is slower than the one-stage
methods [20], like YOLO and SSD. It is well known that the
YOLO-V3 model is the preferred target detection algorithms
in the engineering community due to its explicit structure and
good real-time performance. However, the original YOLO
model is not suitable for fruit target detection because of two
reasons. First, unlike the COCO or VOC data set, which con-
tains 80 or 20 classes, the fruit target has less than 10 classes.
Therefore, the structure of the YOLO model needs to be
modified and simplified to be suitable for fruit target detec-
tion. In addition, the simplification of the YOLO model will
improve real-time performance. The second reason is that
the target bounding box predicted from the original YOLO
model is horizontal and contains many non-target pixels [21];
therefore, the pose of the fruit target is not well-defined,
causing localizing errors for determining the picking point.
Lei et al. [20] and Liu et al. [21] improved Faster RCNN and
YOLO-V3, respectively, by using target rotation information
for feature extraction to predict the rotation bounding box.
The methods detected the orientation of the target in Remote
Sensing Images, achieving a good balance between perfor-
mance and efficiency. However, while the feature extraction
networks (VGGNET and DarkNet53) of Liu and Lei run fast
on the servers equipped with GPU accelerated computing
cards (NVIDIA GTX 1080Ti / 4 TitanX), they cannot meet
the real-time requirements of target detection in the robot
embedded control terminal.

In this paper, a strawberry pose estimator called R-YOLO
is proposed. It can be transplanted into the embedded control
device of the robot to address the problems discussed above
and can determine the picking-point position in real-time.
This estimator not only identifies the strawberry targets
but also generates the rotated bounding box containing the
pose information of the fruit target. The slope of the fruit
axis can be calculated using the rotated bounding box.
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Subsequently, the picking point’s position on the fruit stem
can be located based on the direction of the fruit axis. This
localization method substantially improves the harvesting
success rate. Below is a summary of the proposal:

1. Designing a novel end-effector that is assembled on the
servo control system of a strawberry harvesting robot
suitable for the narrow ridge-planting mode. Unlike
the others, the proposed end-effector is equipped with
a pair of opposite fiber sensors between the two fin-
gertips. Therefore, when approaching the fruit target,
it does not need to measure the depth distance in real
time, which simplifies the robot structure and speeds
up the control.

2. Proposing R-YOLO, a target detector suitable
for strawberry fruit in the narrow spaces of the
ridge-planting mode. The rotated bounding box of
the strawberry target is achieved by adding a rotation
angle a to the anchors, thereby significantly improving
the localization accuracy of the picking point. The
proposed R-YOLO adopts a lightweight network for
feature extraction, which demonstrated good real-time
performance on the embedded control device of the
robot.

3. The proposed method can be used easily and quickly to
identify picking points of other fruits and vegetables.
Also, it requires a small number of image samples
for model retraining and minor modifications of the
mechanical structure size.

The rest of the paper is arranged as follows: Section II
reviews the literature of fruit target detection. In sections III,
IV and V, we introduce the mechanical structure of the
designed harvesting robot and the proposed object detection
method for training and testing. The experimental results and
discussions are provided in section VI. Section VII presents
the conclusions of this work.

II. RELATED WORK
Fruit target detection is an important prerequisite for
automatic harvesting. Various factors in the natural environ-
ment, such as the intensity of the light, overlapping fruits, and
the occlusion of the fruit by stems and leaves, have resulted
in many challenges. In recent years, numerous studies were
conducted on fruit target detection. Commonly used methods
include digital image processing, machine learning, and deep
learning.

A. COMBINATION OF IMAGE PROCESSING
AND MACHINE LEARNING
The combination of digital image processing and machine
learning algorithms is the current mainstream approach for
fruit target detection. In general, the first step includes image
preprocessing operations, such as threshold segmentation,
edge detection, and region growing in different color spaces
to extract various features, such as the color, size, shape, and
texture of the fruit target [22]–[26]. Subsequently, k-means
clustering [27], the k-nearest neighbor method [28], support

vector machine (SVM) [29], and artificial neural networks
[30], and other machine learning algorithms have been used
for target detection. Ouyang et al. [31] performed several pro-
cessing operations on strawberry images to identify diseases,
including median filtering to remove noise, the Otsu algo-
rithm for image segmentation, and mean-shift clustering and
morphological operations to obtain the most discriminative
shape features. Wei et al. [32] extracted a new color feature
in the OHTA color space, which was used to automatically
calculate the segmentation threshold of fruit images using
the improved Otsu algorithm; a recognition accuracy of more
than 95% was achieved. An elevated strawberry harvesting
robot designed by Qingchun et al. [11] used hue and satu-
ration features to identify ripe fruits in the hue, saturation,
and value (HSV) color space, and a binocular vision unit was
used to determine the picking points. Benalia et al. [33] devel-
oped an automatic system to improve the quality control and
sorting of dried figs (Ficus carica) based on computer vision.
The browning index of each fruit and features extracted from
the CIE XYZ, CIELab, and HunterLab color spaces were
used as the input of a principal component analysis (PCA)
and partial least squares discriminant analysis (PLS-DA);
excellent results were obtained. Borges et al. [34] proposed
a clustering method to detect and classify the severity of
bacterial spot in tomatoes. The premise was to preprocess the
images and extract the color features using the CIELab color
space. In general, the above studies require expert knowledge
to extract the features of the fruits. The target detection often
suffered from low robustness and was greatly affected by
the differences in the images and environmental factors. It is
challenging to develop a method that can detect heteroge-
neous strawberry fruits and is not affected by multiple fruits,
overlapping fruits, and the occlusion by stems and leaves.
In addition, machine learning algorithms generally require a
large number of samples, and methods that combine image
processing and machine learning models are complex and
have poor real-time performance.

B. FRUIT DETECTION BASED ON DEEP LEARNING
In recent years, object detection models based on deep
learning and capable of good image representation and
autonomous learning, such as R-CNN, faster R-CNN,YOLO,
and SSD, have been widely used in research on fruit tar-
get detection [36]–[42]. Bargoti and Underwood [43] pro-
posed an image processing framework for fruit detection
and counting using images of orchards. A general image
segmentation method was adopted, including two feature
learning algorithms, i.e., multi-scale multi-layered percep-
trons (ms-MLP) and CNN; good fruit detection perfor-
mance was obtained. Zhou et al. [44] optimized an 8-layer
network based on VGGNet for feature extraction of the
stem, flower, and fruit of tomatoes. Fu et al. [45] used
the LeNet CNN to identify multiple clusters of kiwifruits;
the method provided better performance in terms of speed
and accuracy than other traditional methods. Inkyu et al.
[46] applied the Faster R-CNN model to multi-band images
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FIGURE 2. The overall structure of the designed harvesting robot.

(RGB and near-infrared) and used migration learning for
sweet pepper detection. After retraining, this model was able
to identify several other fruits, such as melons, apples, avo-
cados, oranges, and strawberries. Tian et al. [47] improved
the YOLO-V3 model to achieve real-time detection of apples
in different natural environments and adopted the DenseNet
network to process low-resolution feature layers. The exper-
imental results showed that the improved model had better
detection performance than the original YOLO-V3 model
and faster R-CNN. However, the complexity of the model
structure resulted in long running times on the embedded
control devices and poor real-time performance. Moreover,
the above-mentioned object detection algorithms can only
roughly calculate the location of the fruit target because of
the horizontal bounding box. The contour or pose informa-
tion of the fruit target cannot be extracted, and the spatial
relationship between the fruit and the picking point on the
stem cannot be determined. In most cases, the target fruit
can be located, but the picking point on the stem cannot.
Unlike apple, citrus, and other fruits with a hard-outer cor-
tex, harvesting of strawberries can only be achieved by cut-
ting or burning the stem to avoid damage to the skin of
the fruit. Therefore, the precise localization of the picking
point is the ultimate goal of strawberry detection. None
of the above methods meet the detection requirements for
strawberry harvesting.

III. OVERVIEW OF THE ROBOT MECHANICAL STRUCTURE
Focusing on the low and narrow work environment of the
ridge-planting cultivation mode, this paper designed a novel
strawberry harvesting robot. As shown in Fig.2, the robot’s
hardware mechanism was independently designed, and
assembled by the team to include three main modules:
‘‘hand-eye / laser sensor’’ end-effector, 6-degrees-of-freedom
(6DOF) arm, and the moving chassis.

The end-effector was composed mainly of a space cam
spring mechanism and two mechanical fingers. The maxi-
mum opening width of the fingertips was 45mm, and the
diameter of the fruit stem that could be cut was within 3mm.
The hand-eye visual system used a USB camera with a
640× 480 resolution to capture video images in real-time for

target detection. The head of the fingers was equipped with
a pair of laser beam sensors, which emitted the signal on one
side and received on the other. When the fruit stem entered
the spaces between the two fingertips, it blocked the laser
beam, triggering a ‘‘fingertip closing’’ signal, which was sent
to the control module to perform an immediate closing action
and cut the stem. Moreover, the end-effector could approach
the fruit target at a fast and uniform speed (approximately
20cm/s) without detecting for the depth of the target fruit.

The 6DOF robotic arm was independently designed by
the research team. Its overall height in the initial state was
80 cm, and it consisted of two rods, two moving joints,
and four rotating joints. Each joint was equipped with a DC
deceleration servo motor. When the end-effector needed to
move to a specified position, the robot kinematics inverse
solution was used to calculate the movement required for
each joint, and then the pulse signal of each joint motor was
outputted in sequence.

The moving chassis on four wheels was 50cm long and
30cm wide, which met the narrow environment requirements
of the ridge-planting mode. In addition to the fixed 6-DOF
arm, the upper space of the chassis was also equipped with a
control cabinet. The control cabinet contained the main con-
troller (Raspberry Pi 3B+), embedded target detection mod-
ule (Jetson TX2), power transformer module, motor drivers,
relay module and wiring terminals. All the circuits of motors
and sensors were encapsulated in the control cabinet via the
aviation plugs.

IV. R-YOLO DETECTOR
The proposed strawberry target pose detector (rotated YOLO
(R-Yolo)) is an improvement of the YOLO-V3 model. The
YOLO model, which is an object detection model, has the
advantages of fast running speed and a simple model struc-
ture. The target detection task consists of classifying the target
objects in the image and the generation of a bounding box
of each target. YOLO reframes object detection as a single
regression problem, straight from image pixels to bounding
box coordinates and class probabilities. First, fixed size (n×n)
feature maps are extracted from the input image through the
feature extraction network. The input image is divided into
n×n grid cells. Each grid cell predicts 3 bounding boxes
with different sizes. If the center point of an object in the
ground truth is located in a grid cell, then the grid cell will
be used to predict the object. Compared with other classic
target detection models such as R-CNN, fast R-CNN, and
faster R-CNN, YOLO eliminates the complexity caused by
a large number of sliding windows (anchor) and regional
proposals generated in the region proposal network (RPN),
which greatly improves the real-time performance of target
detection.

R-YOLO uses the lightweight CNN MobileNet-V1 [48]
as the backbone network for feature extraction to increase
the running speed of YOLO on the embedded controller
of the robot. MobileNet, which has excellent real-time per-
formance when used in embedded devices, was proposed
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FIGURE 3. Overview of the R-YOLO model.

by Google in 2017. It significantly reduces the number of
parameters in the convolutional networks by using depthwise
separable convolution. In addition, the target bounding boxes
predicted by conventional target detection models, such as
fast R-CNN, faster R-CNN, and YOLO are horizontal and
cannot describe the pose information of the target. However,
the pose information of strawberry fruit is very important for
automatic harvesting and improves the localization accuracy
of the picking point for the end-effector. The target pose
information minimizes the opening and closing range of the
end-effector, thereby avoiding the harvesting of neighboring
fruits or causing damage to the fruit. Therefore, the proposed
R-YOLO not only needs to have high accuracy and good real-
time performance for fruit detection but also needs to predict
the rotation of the bounding box; therefore, the rotation angle
of the fruit axis (pose information) has to be calculated. The
framework of R-YOLO is shown in Fig.3.

A. THE MobileNet-V1 BACKBONE NETWORK
R-YOLO uses the lightweight network Mobilenet-V1 as the
backbone network for feature extraction to improve the run-
ning speed in the feature extraction stage and reduce themem-
ory requirements for a better real-time performance of the
embedded controller.Mobilenet-V1 decomposes the standard
convolution kernel into a 3× 3 depthwise convolution and a
1×1 pointwise convolution. The depthwise separable convo-
lution (DW Conv) reduces redundant expressions of the con-
volution kernel, which significantly decreases the number of
convolutions and parameters and improves the real-time per-
formance of the embedded controller. The backbone network
structure of Mobilenet-V1 is shown in Fig.4.

Fig.4 shows the detailed structure of the backbone network
of R-YOLO and the DW Conv. The DW Conv includes two
independentmodules: the depthwise convolution and the 1×1
pointwise convolution. Batch normalization is performed on
the output, and a nonlinear activation unit (ReLU) is added.
In Fig.4, s represents the step size of the depthwise convo-
lution and k represents the number of the 1 × 1 pointwise
convolution.

FIGURE 4. The backbone network of Mobilenet-V1.

B. THE PREDICTION OF ROTATED BOUNDING BOX
The feature map outputs from the backbone network divided
the input image into n×n grid cells. Each grid cell con-
tained the probability of 3 bounding boxes and 2 categories
(ripe or unripe). The prediction of each bounding box con-
sisted of 5 parameters (x, y, w, h, confidence). (x, y) is the
center coordinates of the box, which was normalized to a
range of 0 to 1; the size of the box, (w, h), was also normalized
to [0, 1] relative to the size of the image.

1) THE IMAGE ANNOTATION OF THE
ROTATED BOUNDING BOX
Different from the horizontal bounding box in the traditional
labeled image, the rotated bounding box excludes most of
the background and represents the smallest bounding box of
the fruit target. The rotation parameter α was added during
labeling the training image set to generate a rotated bound-
ing box. Fig.5 shows the labeled strawberry image; the red
dashed line is the traditional horizontal bounding box, and
the yellow solid line box is the rotated bounding box with a
rotation parameterα. The rotated bounding box is represented
by five parameters: (x, y, w, h, α), where (x, y) represents
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FIGURE 5. Image annotation and the rotation range of α.

the coordinate of the center point of the bounding box, w
and h respectively represent the long and short sides of the
bounding box, and α represents the angle between the y-axis
and the long side of the bounding box. The rotation range of
α is shown in Fig.5 and is α ∈ [−90◦, 90◦]. If α is negative,
the fruit axis is rotated to the left by α. Otherwise, the axis
is rotated to the right. When α is 0, the fruit axis is vertical.
The robot determines the pose of the fruit target according to
the values of α and controls the rotation direction and angle
of the end-effector joint to reduce the localization error of the
picking point.

2) GENERATION OF THE ROTATED ANCHOR
The backbone network output three features maps with
different sizes. Each grid cell on the feature map had
3 anchors with fixed sizes, which were used to predict the
target bounding box using logistic regression. The rotation
angle α was also added to the traditional horizontal anchor to
match the ground truth in the annotated image. The distances
between the camera that captured the strawberry images and
the target fruits were variable, resulting in different sizes
of the target bounding boxes labeled in the training set.
K-means clustering was used on the sizes of the fruit bound-
ing boxes in the training set, and R-YOLO used nine anchors
with different lengths and widths. The smallest feature maps
(13 × 13) with the largest receptive field were assigned
the three largest anchors ((96 × 113), (154 × 181), and
(286× 319)), which were suitable for detecting larger fruits.
Medium-sized feature maps (26×26) with medium receptive
fields and medium-sized anchors ((31 × 58), (43 × 62), and
(55×107)) were used to medium-sized fruits. The remaining
three smallest anchors ((11× 15), (17× 29), and (32× 34))
were assigned to the largest feature maps (52× 52) and were
suitable for detecting smaller targets. Each anchor had six
rotation angles: {-π /3, -π /6, 0, π /6, π /3, π /2}, which meant
that each grid cell in the feature maps had 18 anchors (3×6).

C. LOSS FUNCTION
The training loss of R-YOLO included two parts: classifica-
tion loss and bounding box prediction loss. The prediction
of the target bounding box was performed using logistic
regression, which output six parameters: the coordinates of
the center point (x, y), the box size (w, h), confidence, and
the rotation angle α. In this study, different loss functions
were formulated according to the calculation characteristics
of the parameters. Each loss part was added to obtain the total

training loss and perform end-to-end loss function training.
The total training loss Ltotal is expressed as follows:

Ltotal = Lclass + Lbbox
= Lclass + (Lx_y + Lw_h + Lconf + Lα) (1)

where Lα is the smooth L1 loss function [49]:

Lα =
S2∑
i=0

B∑
j=0

smoothL1
(
vi − v∗i

)
smoothL1(x)=

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise,

v= α−αanchor+k · π, k ∈Z , v∈ (−
1
2
π,

1
2
π ]

(2)

where S2 represents the size of the extracted feature map
(S = 13/26/52), B represents the total number of anchors in
the feature map, v and v∗ respectively represent the predicted
and the ground-truth bounding boxes, α represents the pre-
dicted rotation angle, and αanchor represents the rotation angle
of the anchor with the largest intersection over union (IoU)
value compared to the fruit target in the image. The designs
of the loss function other than Lα were the same as that of
YOLO-V3. Lw_h used the mean squared error (MSE) loss
function:

Lw_h=λ ·
S2∑
i=0

B∑
j=0

(
√
wi−

√
w∗i
)2
+

(√
hi−

√
h∗i
)2

(3)

where w and w∗ represent the widths of the predicted and
ground-truth bounding boxes. h and h∗ represent the lengths
of both. The rest of the loss functions all used the binary
cross-entropy:

LBinary_crossentropy
[
s, s∗

]
=

S2∑
i=0

B∑
j=0

si log s∗i + (1− si) log
(
1− s∗i

)
,

s ∈ {(x, y), confidence, class} (4)

Lx_y = λ · LBinary_crossentropy
[
(x, y) ,

(
x∗, y∗

)]
(5)

Lclass and Lconf were calculated in the same way as Lx_y. The
hyperparameter λ was used to balance the training losses of
the classification and bounding box, and s and s∗ represent
the predicted and ground-truth bounding boxes, respectively.

D. THE LOCALIZATION OF THE PICKING POINT
R-YOLO predicted the rotated bounding boxes of the
fruit targets in the view-field of the camera in real-time.
A coordinate system was established by using the first pixel
of the original image as the origin and the image length and
width as the x- and y-axes, respectively. In this coordinate
system, the straight line passing through the center point A
(x, y) and the rotation angle α was generated (as shown
in Fig.6); the line was the long axis of the fruit target.
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FIGURE 6. The localization of the fruit and picking point: A. barycenter,
B. vertex, and C. picking point.

The robot hand-eye visual system calculated the axis direc-
tion (inclination slope) of the target fruit in real-time. The
localization process of the picking point worked as follows:

1) The hand-eye visual system searched the target fruit
and adjusted the initial state of the end-effector. Once
the target detection module found the target fruit,
the main controller adjusted the initial state of the
end-effector to face the ridge wall and aimed at the
target fruit.

2) The end-effector approached the target fruit and the
wrist joint rotated in real time. The robotic arm control
system received the slope value of the fruit axis from
the visual system in real time, and dynamically adjusted
the rotation angle of the wrist joint to keep the angle
of the cutter consistent with the target fruit.

3) For visual detection of the picking point, statistical
methods were used to measure the physical size of
a large number of strawberry samples in the natural
environment. The results showed that the best picking
point for a strawberry is generally 13-20 mm above
the calyx (top of the fruit) along the fruit stem. Once
the laser beam sensor of the end-effector was trig-
gered, the end-effector stopped moving towards the
fruit. In a previous camera calibration study, the dis-
tance at which the end-effector cut the stem was
13-20mm, which corresponded to 20 pixels in the
image. Therefore, at the moment when the cutting
action was completed, the localization of the picking
point (Fig.6C) was approximately 20 pixels away from
the vertex of the contour (Fig.6B) along the axis of the
fruit. The existing measurement error was caused by
the distortion of the visual system when shooting at
close range, but it was within the range of successful
harvesting.

V. THE IMPLEMENTATION PLATFORM OF R-YOLO
After several operations, such as filtering, labeling, and image
processing, the captured strawberry images were divided into
a training set, validation set, and test set. The training set and
validation set were used for model training and parameter

FIGURE 7. The flowchart of R-YOLO training and inference.

tuning of R-YOLO, and the test set was used to evaluate the
performance of the trained model. The trained R-YOLO was
implemented on the embedded control module for inference.
The predicted rotated bounding box output from R-YOLO
contained five parameters (x, y, w, h, α), which were used to
calculate the coordinate of the picking point on the fruit stalk.
The flowchart of R-YOLO training and inference is shown
in Fig.7.

A. TRAINING THE R-YOLO MODEL
The proposed R-YOLO model was an improvement on the
Darknet version of YOLO-V3. An Intel CPU (R) with a
core (TM) of i7-8700k and 16 GB memory and an NVIDIA
1080 GPU for accelerated computing were used for training
the model. In this experiment, 1900 out of 2000 strawberry
imageswere selected for training (80% for the training set and
20% for the validation set). The remaining 100 images were
used to evaluate the performance of the trained model. Four
data enhancements were adopted for these images: the image
brightness and contrast were enhanced by 1.5 times, respec-
tively, and reduced to 50% of the original image. Therefore,
the actual number of testing images was expanded to 400.
Since the increase and decrease of the brightness and contrast
do not modify the pixel coordinates in the originally- labeled
images, no additional manual labeling was required. Before
model training, migration learningwas used for pretraining of
the model based on the COCO dataset to address the problem
of insufficient samples in the training set. The pre-training
model extracted the general characteristics from the image set
and provided good training performance, even for a relatively
small dataset.

116562 VOLUME 8, 2020



Y. Yu et al.: Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry Harvesting Robot

FIGURE 8. Results of strawberry detection: a. adherent fruit, b. overlapping fruit, c. separated fruit, d. occluded fruit, e and f. fruits under
insufficient illumination.

B. THE EMBEDDED PLATFORM FOR
THE TRAINED R-YOLO MODEL
The trained R-YOLO model was implemented on the
embedded control platform NVIDIA Jetson TX2 for infer-
ence. The TX2 equipped with an NVIDIA Pascal TMGPU
with 256 NVIDIA CUDA cores provides superior speed and
energy efficiency for using embedded AI computing devices.
Moreover, it should be emphasized that the module size of
the TX2 is only 50mm×87mm, which meets the space size
requirements of the robot control platform.

VI. EXPERIMENT RESULTS AND DISCUSSION
A. RESULTS AND EVALUATION OF STRAWBERRY
DETECTION
The test set included 100 strawberry images (573 mature
fruits and 315 immature fruits). In the experiment, the overlap
coefficient (OC) [45] was used to evaluate the target detection
accuracy. The OC was the ratio of the overlap between the
detected target and the ground truth. The OC is calculated as
follows:

OC =
AT ∩ AD
AT ∪ AD

(6)

where Ar and, AD respectively, represent the ground-truth
bounding box and the detected bounding box. The successful
harvest was performed when most of the area (≥90%) of
the fruit was identified. Therefore, if the OC was 0.9 or
above, the target detection result was considered correct. The
detection performance of R-YOLO is shown in Fig.8.

As shown in Fig.8, R-YOLO not only showed good target
detection performance for multiple separated fruits, overlap,
and occlusion (Fig.8a, b, c, and d), but also for images with
low light and interference (Fig.8e and f). The confusion
matrix of the detection results for 100 image samples is listed
in Table 1.

TABLE 1. Confusion matrix of R-YOLO detection results.

TABLE 2. Precision and recall rate of R-YOLO.

The precision (P) and recall (R) rates were used to evaluate
the target detection performance of R-YOLO:

P =
TP

TP+ FP
, R =

TP
TP+ FN

(7)

where TP is the number of cases that are correctly labeled as
positive.FP is the number of cases that are incorrectly labeled
as positive. FN is the number of cases that are positive but
were labeled as negative [50]. The P and R results are shown
in Table 2.

As shown in Tables 1 and 2, the results of the 100 test
images showed that the overall P and R rates were 94.43%
and 93.46%, respectively. The main reasons for the errors in
fruit detection were as follows. The size of the unripe fruit
samples was only 53% of that of the ripe fruit samples; thus,
the feature extraction of unripe fruits did not provide reli-
able results. However, since the harvesting robot only picked
ripe fruits, the omission of unripe fruits and the incorrect
detection of other objects as unripe fruits in the background
did not affect the harvesting performance. In addition, some
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TABLE 3. Comparison of R-YOLO and other methods of strawberry detection.

of the ripe and unripe fruits were misidentified. The main
reason was that the ripeness of these fruits is difficult to
determine, even by humans. The model classification results
were affected by human errors when labeling the training
images. Furthermore, some image features could not be
detected because of illumination, occlusion, or the camera
angle, resulting in misidentification.

R-YOLO had lower recognition accuracy and recall
than the original YOLO-V3. The primary reason was that
the simplified lightweight network MobileNet used as the
backbone network of R-YOLO reduced the weight param-
eters of the residual convolution network in the origi-
nal YOLO by several times. Although the speed of the
model was improved, the accuracy of feature extraction
was adversely affected. However, it was found that the
detection accuracy of R-YOLO was only 1.3% lower
than that of the original YOLO-V3. Moreover, the simpli-
fied network structure of R-YOLO greatly improved the
model running speed, which was 3.6 times faster than that
of the original YOLO-V3. R-YOLO implemented on the
TX2 processed 18 frames per second (FPS), demonstrating
excellent real-time performance.

B. COMPARISON WITH OTHER DETECTION ALGORITHMS
We tested several fruit detection methods proposed in
previous studies to compare and verify the advantages and
disadvantages of R-YOLO. The results of the performance
comparison are shown in Table 3.

As shown in Table 3, the proposed fruit detection method
has not only high accuracy but also good real-time perfor-
mance. Although the precisions of the algorithms proposed
by Wei et al. and Wang et al. were higher than that of the
R-YOLO algorithm, the two studies used machine vision
algorithms that are not very robust and may not be stable in

a changing environment. In addition, these studies identified
the fruits by extracting a single feature or few features and
did not express the spatial relationships between multi-level
features; therefore, the studies resulted in poor recogni-
tion performance for multiple fruits, overlap, and occlusion.
Inkyu et al., Bargoti et al., and Fu et al. also used deep learn-
ing models, resulting in high accuracy and good robustness.
The recognition precision of Yu et al. was 1.35% higher than
that of R-YOLO. However, the real-time performance of the
above methods was not as good as that of R-YOLO and is
not be applicable to embedded control terminals. Moreover,
R-YOLO also generated rotated bounding boxes for fruit tar-
gets, which increased the localization precision of the picking
points.

In Fig.9, the three images in the first row show several
strawberries in close proximity. The image processing meth-
ods based on machine vision mistakenly identified multiple
fruits in close proximity as a single target (Fig.9a) and were
not able to separate the fruits. In addition, the strawberry
marked by the black circle in Fig.9d was occluded by the
stalk. The machine vision method misidentified this target
as two separate fruits. Although the use of CNN models
such as faster R-CNN, mask R-CNN, and YOLO avoided
the problems of the machine vision algorithms (Fig.9b, e),
these traditional target detection models could only generate
horizontal target bounding boxes and could not determine
the pose information of the fruits. The proposed R-YOLO
model not only provided good detection performance in com-
plex environments but also generated the rotated bounding
boxes of the fruit targets, thereby improving the localization
precision of the picking points (Fig.9c, f).

We designed several different image acquisition schemes
for the images used as training sets to prevent over-fitting of
the model. First, we obtained the strawberry images from the
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FIGURE 9. Comparison of the proposed method and other object detection methods: a. Detection result of machine vision, b. Detection result of
CNN, c. Detection result of R-YOLO, d. Detection result of machine vision, e. Detection result of CNN, f. Detection result of R-YOLO.

same planting bases and took images of the same varieties at
different times. Second, images of different strawberry vari-
eties were captured in the same period. Third, we downloaded
a large number of strawberry images from the internet. These
images were used to fine-tune the pre-trained model. The
proposedmodel provided good detection results using a small
number of labeled images. Since strawberry images were
obtained in different environments, the model was able to
learn the features of various strawberry fruits, and over-fitting
of the model was avoided. It was found that the different
nature environments and different strawberry varieties had
little effect on the detection results, indicating that we used
a sufficiently large number of training samples with varying
environmental conditions.

C. EVALUATION OF THE DETECTION OF
THE PICKING POINT
The rotated bounding box of the fruit target, which was the
output of R-YOLO, was used to find the fruit axis. The
coordinate of the intersection between the fruit axis and the
short side at the top of the bounding box was calculated;
this represented the vertex of the bounding box. The picking
point was approximately 20 pixels away from this vertex.
The prediction results of the picking points from the 573 ripe
strawberries showed that the average error of the proposed
localization method was ± 2 mm. The maximum error was
approximately 4 mm, which mainly occurred in the location
of picking points of some malformed or flattened fruits.
A comparison of the methods for detecting the picking point
showed that the proposed method using the rotated bounding
box (Fig.10b) resulted in an error that was 50% less than that
using the horizontal bounding box (Fig.10a). The R-YOLO

FIGURE 10. Comparison of localization methods for strawberry picking
points: a. horizontal bounding box; b. rotated bounding box.

method resulted in relatively large errors for strawberries with
an asymmetrical shape, such as deformities.

Each group of black and red dots in Fig.10 represents the
predicted picking point and the ground truth, respectively.
Di and di (i = 1,2,3. . . 6) represent the distance between the
predicted picking point and the ground truth. Di is generally
smaller than di, indicating that the errors in predicting the
picking point are lower for the rotated bounding boxes than
that the horizontal bounding boxes.

To evaluate the impact of different picking point
localization methods on the harvesting success rate,
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FIGURE 11. Action sequence of robotic harvesting operation in the field.

TABLE 4. Harvesting success rate with two localization methods.

the proposed R-YOLO, and the original YOLO were both
deployed for a comparison of the harvesting performance.
Harvesting tests were conducted on a modified field that con-
tained some isolated fruits and some multi-fruit adhesions.
Also, some leaves were artificially removed to guarantee
that the fruit stems were exposed and the occlusion area
of the fruits did not exceed 50%. The results showed that
the proposed method was indeed not effective at picking
the fruits from the completely covered stems. For fruits
with severe occlusion, the confidence scores predicted by
R-YOLO were <60. At times the fruit was unrecognizable,
and the robot gave up harvesting these fruits. Agronomy
dictates that strawberry cultivation requires regular trimming
of the branches and leaves at the top of the plant, which not
only helps the fruit absorb nutrients and sunlight but also
avoids fruit occlusion.

In this paper, a total of 10 groups of field tests were set up.
In each test, the robot adopted two harvesting target detection
models within the same scenario, and the success rate was
used to evaluate the harvesting performance. While working,
the hand-eye visual structure on the end-effector always faced
the ridge surface, constantly searching for strawberry targets

in the camera’s view. After finding a target fruit, the robotic
arm drove the end-effector to approach the fruit, cut the
stem at a suitable place, transport it to the basket, and move
to the next fruit. The action sequence of robotic harvesting
operation in the field is shown in Fig.11. A harvesting process
can only be defined as successful when the stem is cut off
and the surface of the fruit is not damaged. The number of
fruits successfully detected and harvested with the two target
detection models in each test is recorded in Table 4.

It can be seen from Table 4 that within the same scenario,
the harvesting success rate of R-YOLO is 84.35%, which
is higher than that of the original YOLO model (72.74%).
R-YOLO can be especially helpful in the harvesting of the
strawberries that grow non-vertically downward and have an
inclination angle of ≥45◦. The localization of the picking
point predicted by the original horizontal bounding box is
generally directly above the bounding box. However, the rota-
tion bounding box generated by R-YOLO calculates the
direction of the fruit axis, and then finds the picking point
along the fruit axis, thus improving the positioning accuracy
of the picking point.

VII. CONCLUSION
In this study, we designed a novel harvesting robot for
the ridge-planting strawberry, and proposed the R-YOLO
model for detecting the pose of strawberries in automatic
harvesting. The proposed model achieved excellent robust-
ness and real-time performance for the detection of fruits
growing in various natural environments under varying light
intensities and for multiple overlapping fruits. Moreover,
the model could predict the rotation of the bounding box of
the fruit target, which greatly improved the localization pre-
cision of the picking point. The following conclusions were
drawn:

1) R-YOLO had good real-time performance while ensur-
ing high accuracy of target detection. The overall P
and R rates of 100 strawberry images were 94.43%
and 93.46%. R-YOLO provided better detection per-
formance and was more robust than traditional target
detection methods based on machine vision for detect-
ing strawberry fruits under different light intensities
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and for multiple overlapping fruits. However, for those
fruits whose area covered by leaves or other obsta-
cles exceeds 50%, the confidence scores predicted by
R-YOLO are lower than 60 or even unrecognizable, and
the robot will give up harvesting these fruits. The target
detection of the occlusion fruit is the focus of future
research. Compared with other target detection models
such as the Faster R-CNN, the accuracy of R-YOLO
was not the highest, but the difference was relatively
small. However, R-YOLO had the fastest running time
and was 3.6 times faster than the original YOLO-V3.
R-YOLO processed 18 images per second when imple-
mented on TX2, meeting the real-time requirements of
embedded controllers.

2) The rotated bounding box of the target generated by
R-YOLO significantly improved the localization pre-
cision of the picking point. The localization results
of 573 ripe fruits from 100 testing images showed
that the average error was ±2 mm, which met the
error requirements of the end-effector of the harvest-
ing robot. Meanwhile, it can be seen from the results
of 10 sets of field harvesting tests that the robot imple-
menting R-YOLO improved the localization accuracy
with a harvesting success rate of 84.35% in modified
situations. The primary reasons for the localization
error were the curved stems of several strawberries
and some malformed fruits that did not grow verti-
cally. In a future study, we will increase the number
of strawberry samples, optimize the model structure,
and improve the performance for identifying the pick-
ing points. And we will also focus on determining
priorities for fruit harvesting and optimal harvesting
strategies. Moreover, the structure of the end-effector
also needs to be upgraded. A temporary storage box or a
conveyor belt should be added to provide continuous
harvesting of multiple fruits.
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