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Driver’s Intention Identification With the
Involvement of Emotional Factors

in Two-Lane Roads
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Abstract— Driver’s emotion is a psychological reaction to
environmental stimulus. Driver intention is an internal state
of mind, which directs the actions in the next moment during
driving. Emotions usually have a strong influence on behavioral
intentions. Therefore, emotion is an important factor that should
be considered, to accurately identify driver’s intention. This
study used the support vector machine (SVM) theory to develop
a driver intention recognition model, with the involvement of
driver’s emotions. Various materials including visual materials,
auditory materials, and olfactory materials, were used to induce
driver’s emotions. Real driving, virtual driving and computer
simulation experiments were conducted to collect human-vehicle-
environment dynamic data in two-lane roads. The results present
that the proposed model can achieve high accuracy and reliability
in recognizing driver’s intentions. Our findings of this study can
be used to develop the personalized driving warning system and
intelligent human-machine interaction in vehicles. This study
would be of great theoretical significance for improving road
traffic safety.

Index Terms— Driver’s emotion, driver’s intention, intention
recognition model, support vector machine.
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I. INTRODUCTION

CURRENT driver-assistance systems evaluate safety situ-
ations and potential hazards, mainly relying on traffic

information inputs from Lidar or visual sensors. Among,
the effects of driver’s emotions during driving on road safety
are generally not considered [1]. However, emotion is
regarded as a major driver-related factor that affects the safety
of driving. Without considering the impacts on driving behav-
ior, driver-assistance systems may provide false or unnecessary
alerts [2]. This issue raises driver’s annoyance and reduces
trust, as a result, increasing the chance of traffic accident.

Transportation scholars have explored driver’s
intention recognition using various methods and models.
Berndt et al. [3] used the Hidden Markov Model (HMM) to
identify driver’s intentions of turning and going-straight, based
on driving data such as acceleration, pedal position, brake
pressure, and steering wheel angle. Bocklisch et al. [4]
proposed an online identification model of driver’s
lane-changing intention according to the fuzzy logic, using
the time spending on looking up into the rearview mirrors.
Ürün et al. [5] used the artificial neural network model and
support vector machine to predict driver’s behavior, based
on different combinations of driving and road data including
road curvature, lane position, steering wheel angle, lateral
acceleration, and collision time. Peng et al. [6] developed a
model for predicting lane-changing behavior based on the
back-propagation neural network algorithm, and constructed a
prediction index system for lane changes using drivers’ visual
search behaviors, vehicle operation behaviors, vehicle motion
states, and driving conditions. Ohashi et al. [7] used the fuzzy
set theory to identify driver’s intentions of turning and going
straight, using the detected data of driver’s motions, speed of
the target vehicle, and the distance between the vehicle and
the intersection. Mccall et al. [8] applied the sparse Bayesian
learning to recognize driver’s turning intention based on the
data of lane positional information, vehicle parameters and
driver head motion. Auzoult et al. [9] found that road safety
interventions have a significant impact on drivers’ cognition
and intention, and drivers’ cognitive effects on road safety
depend on their self-awareness. Wang et al. [10] analyzed
driver’s characteristics of parking, deceleration, keeping
speed, acceleration, and rapid acceleration in different
road environments, and used the fuzzy control theory to
develop an identification model of lane-changing intention.
Melnicuk et al. [11] adopted repeated measure design and
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Fig. 1. Vehicle groups in two-lane environment.

Fig. 2. Vehicle group relationship when the target vehicle locates in the left and right lanes.

multiple physiological measures to estimate driving state and
intention across common driving activities.

In addition, research [12], [13] suggests that emotion has
a strong influence on intention, and emotion identification
would be helpful in recognizing behavioral intention. Support
vector machine, as a pattern classification technique, has been
widely used for emotion classification and recognition in
many fields. Domínguez-Jiménez et al. [14] used SVM to
classify amusement, sadness, and neutral emotions, based on
galvanic skin response features. Bhavan et al. [15] proposed an
algorithm combining a bagged SVM with a Gaussian kernel,
to recognize emotions from speech. Ninaus et al. [16] applied
SVMs to detect facial positive and negative emotions during
game-based learning.

In conclusion, research on drivers’ intention recognition
has focused on developing intention recognition models based
on vehicle operating parameters (such as accelerator pedal
position, brake pedal opening, and driving speed), environ-
mental parameters (such as road curvature and lane line
position), the driver’s visual behavior parameters (such as face
orientation and sight characteristic). There is limited research
related to driver’s intention recognition have been conducted,
considering the effects of driver’s emotions. This study will
use the support vector machine theory to construct a driver
intention identification model concerning the involvement of
driver’s emotions. The real and virtual driving experiments
will be carried out to collect multi-source dynamic data of
human-vehicle-environment in different emotions.

II. RESEARCH METHOD

A. Analysis of Vehicle Groups

A vehicle group is composed of dynamic traffic entities,
which has an important influence on driver’s decision [17].
To analyze the impacts of driver’s emotion states on driving
intention, various scenarios of vehicle group situations were
defined first, which are shown in Figure 1. When the target

Fig. 3. Optimal classification plane of support vector machine.

vehicle (refers to the vehicle driven by subject) run in the
right lane, the interest-sensitive area (refers to the area with
the greatest impact on vehicle safety and driver’s attention)
was divided into front, left-front, left-rear and rear according
to the horizontal line l of the target vehicle’s front bumper
and the line separating the two lanes in the same direction
(the front and rear were divided by l, and the left and right
were divided by the lane line.) [17]. When the target vehicle
run in the left lane, the interest-sensitive area was divided into
front, right-front, right -rear and rear sides.

The physical concept of “Force” was borrowed to describe
the effects of the surrounding vehicles on the target vehi-
cle in vehicle group [18]. Six factors were used in the
interest-sensitive area, including gender, propensity, willpower,
driving experience, and relative distances and relative speeds
between target vehicle and surrounding vehicles [18]–[21].
Then, the fuzzy logic method was used to get the “force”
on vehicles in the sub-regions, and the collection of these
“forces” were applied to abstractly represent the vehicle group
relationship. If a vehicle compelled the target vehicle to
choose the same lane, it could be considered that the vehicle
exerted an “attraction force” on the target vehicle. The opposite
situation was considered as a “repulsive force”. According to
the target vehicle’s locations in the left and right lanes, eight
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Fig. 4. Structure of support vector machine.

Fig. 5. Real driving experiment.

vehicle group situations were obtained, shown in Figure 2.
The eight vehicle group situations were represented by T1,
T2 … T8 respectively, and attraction and repulsion forces
were denoted by “+” and “−”, respectively. Thus, it could
be said that vehicle group considers the effects of the vehicle
(e.g. relative distances between target vehicle and surrounding
vehicles) and driver-based factors (e.g. propensity), to build a
specific traffic environment for driving experiments.

B. Support Vector Machine Model

Support Vector Machines are supervised learning mod-
els used for classification, regression and outlier detection.
Besides performing linear classification, SVMs can also per-
form a non-linear classification by transforming the inputs into
high-dimensional feature spaces. In a classification problem,
the optimal hyperplane is the one that separates all the data
while being farthest away from the data points [22], [23].

1) Linear Optimal Hyperplane: A training sample is given,
of points with the form (x1, y1), (x2, y2), . . . , (xl, yl) [22].
Where xi is an n-dimensional vector, xi ∈ Rn ; yi is a sample
label, yi ∈ {−1, 1}. If xi belongs to the first group, then yi = 1;
otherwise yi = −1. As shown in Figure 3, the circular and
square points represent two classes of data. H is the optimal
hyperplane, H1 and H2 are the two hyperplanes parallel to H.
The data points on H1 and H2 are defined as support vectors.

Fig. 6. Virtual driving experiment.

Fig. 7. Real driving experiment route.

Fig. 8. Parts of emotion visual stimulus materials.

The optimal hyperplane can be expressed as:
ω · x + b = 0 (1)

The two classes of data can be described by the equations:�
ω · xi + b ≥ 1, yi = 1

ω · xi + b ≤ −1, yi = −1
(2)
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TABLE I

EXPERIMENTAL DESIGN

Eq. (2) is normalized so that the linearly separable sample
(xi , yi ), i = 1, 2, . . . n, satisfies:

yi [(ω · xi ) + b] ≥ 1, i = 1, 2, . . . n (3)

According to the definition of the optimal separating hyper-
plane, the margin can be expressed as:

ρ = min{xi ,yi=1}
|ω · xi + b|

�ω� + min{x j ,y j=−1}

��ω · x j + b
��

�ω�
= 2

�ω� i = 1, 2, . . . n (4)

We can maximize the optimal 2
�ω� , by minimizing 1

2 �ω�
or 1

2 �ω�2. This becomes a convex quadratic programming

problem:⎧⎨
⎩min

1

2
�ω�2 i = 1, 2, . . . n

Constraint conditions : yi [(ω · xi ) + b] ≥ 1

(5)

The optimal solution can be obtained by the Lagrange
function:

L(ω, b, α) = 1

2
�ω�2 −

n�
i=1

αi [yi (ω · xi + b) − 1]

i = 1, 2, . . . n (6)



6870 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2021

Fig. 9. The process of driving experiment.

where αi ≥ 0(i = 1, 2, . . . n) is a Lagrange multiplier. The
optimal classification function can be obtained:

f (x) = sgn(ω · x + b) = sgn[
�

xi⊂SV

αi yi(xi · x) + b] (7)

2) Generalized Optimal Hyperplane: The optimal classifi-
cation hyperplane is for linearly separable patterns. However,
for non-linearly separable dataset, a relaxation factor ξi ≥ 0
is added to satisfy the constraints [17].

yi [(ω · x) + b] ≥ 1 − ξi (8)

The goal is to find the minimum value of 1
2 �ω� + c

n�
i=1

ξi .

Where c is the penalty parameter, and larger value of c
corresponds more penalty for misclassification.

For a nonlinear problem, nonlinear mapping is performed,
Q(x) : Rn → Z . z is a high dimensional inner product
space called feature space, and Q(x) is called feature mapping.
The generalized optimal hyperplane is constructed in z [22].
When constructing a generalized optimal hyperplane, a key
step is to compute the inner product in high-dimensional
space. A kernel function K (xi , yi ) is given, which satisfies
Mercer condition. It corresponds to the inner product of a
transformation space [22].

Thus, the nonlinear decision function in the input space can
be constructed:

y(x) = sgn(ω · Q(x) + b) = sgn[αi yi K (xi , x j ) + b] (9)

where K (xi , x j ) is kernel function. The kernel functions
mainly include linear kernel function, polynomial kernel func-
tion, gauss radial basis kernel function, and neural network
kernel function [22]. And, 0 ≤ αi ≤ c is a Lagrange multiplier.

The structure of the support vector machine is shown
in Figure 4.

Fig. 10. Speed intention recognition based on 1-v-1 scheme.

Fig. 11. Lane-changing intention recognition based on 1-v-1 scheme.

C. Experimental Design

Real driving and virtual driving experiments were designed
and conducted in this study. The real driving experiment is
closer to reality than the virtual one, thus more reliable data
on driver’s behavior and emotion can be obtained by this
method. However, using real driving experiments to collect
data is time-consuming, expensive, less safe and difficult to
organize. It is difficult to get a large amount of real driving
experimental data. Driving simulation can be used as an
alternative to real vehicle experiment, because it is safety,
low-cost, reproductive and easy to control. In this study,
the high-fidelity simulator provided by Japanese company
FORUM 8, allows users to construct 3D traffic environment
and engage interactive experience. Eight kinds of common
emotions, fear, helplessness, relief, pleasure, surprise, anxiety,
contempt, anger, were chosen for analysis in this study, based
on the emotion classification proposed by Johnston [24] and
the questionnaire results for driving emotions. Details of
the experimental design including experimental equipment,
driving routes and emotion induction, are shown in Table I.
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Fig. 12. Accuracy of identifying driving speed intention (based on real driving data).

Fig. 13. Accuracy of identifying lane-changing intention (based on real driving data).

Before the experiment, certain personal and driving-related
information of each subject was collected, including gender,
age, driver’s propensity, vehicle mileage traveled, and driving
style. Subjects were given a detailed introduction of the
experimental procedure, and were asked to learn how to
manipulate the experimental vehicle. The International Affec-
tive Picture System (IAPS) and the Chinese Affective Picture
System (CAPS) were used as emotional induction materials.
The experiment started only when participant’s emotion was
induced to a certain level of arousal. During driving, driver’s
facial expression and action, road conditions, driving speed
and pedal strength were recorded in real time with the video
monitoring system, speedometer and pedal dynamics instru-
ment. While, various methods including material incentives
and spiritual motivation were used to remain and increase
driver’s emotional level (shown in Table I and Figure 9).
After the driving experiment, drivers were asked to watch
the recorded video immediately, and describe their emotional
changes in the driving experiments.

III. RESULTS

This study used the directed acyclic graph (DAG) algorithm
proposed by Platt et al. [26] to build an identification model
of driver’s intentions. The algorithm was developed based on
1-v-1 (one versus one) classification. For a k-class problem,
there are k (k − 1) /2 nodes, each of which is a 1-v-1 classifier.
For driving speed identification with K = 3 classifiers, the
1-v-1 class binarization is illustrated in Figure10. For vehi-
cle lane-changing recognition with K = 2 classifiers, the
1-v-1 class binarization is illustrated in Figure11.

Feature vector Data (t) and Label vector Label (t) are
constructed as the training parameters and the character-
istic parameters of SVM model, respectively. Data (t) =
{x1 (t) , x2 (t) , . . . , xi (t) , . . . , xn (t)}. n is the number of
training samples, xi (t) is the corresponding characteristic

Fig. 14. Average accuracy of identifying driver’s behavioral intention with
and without the involvement of emotion (real driving).

variable in t time period. The characteristic variables selected
in this paper are driver’s emotion and vehicle group. According
to the PAD emotional models proposed by Chinese Acad-
emy of Sciences, driving emotion is expressed in 3 dimen-
sions: pleasure (P), arousal (A) and dominance (D) [27].
The vehicle group is described by the forces on the target
vehicle that vehicles in the same lane and the adjacent
lane exert [18]. Label (t) = {y (t)}, where y (t) represents
the classification label of support vector machines at each
node, y (t) ∈ {−1, 1}. For example, in the lane-change
intention recognition model, lane-changing is denoted as 1,
and lane-keeping is denoted as −1. The gauss radial basis
function [19] is selected to train the model under the Matlab
Lib-svm environment. The Gaussian radial basis function ker-
nel was selected, because compared to other common kernels
like polynomial kernels, the number of the kernel parameter is
smaller. A total of 1609 experimental datasets were obtained,
including 674 datasets for SVM training and 935 datasets for
SVM testing. The training time is 0.4792s and the number of
iteration is 38 times.
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Fig. 15. Accuracy of identifying driving speed intention (based on virtual driving data).

Fig. 16. Accuracy of identifying lane-changing intention (based on virtual driving data).

IV. DISCUSSION

A. Model Verification Based on Real Driving
Experimental Data

To verify driver’s intention identification model, the real
driving experimental data was split into two parts. One part
was used for the model training, and another one was used
for the model testing. The accuracies of model identifica-
tion regarding speed and lane-changing intentions are shown
in Figures 12 and 13, respectively.

As shown in Figure12, the accuracies of identifying driving
speed intention are above 85% under the emotional states of
fear, contempt and anger. In the states of helplessness, surprise
and anxiety, the accuracies of speed intention identification are
more than 80%. Regarding lane-changing intention recognition
shown in Figure13, the model can achieve an accuracy of
above 85% for the states of fear, anxiety, contempt and anger,
over 80% for the states of helplessness and surprise, as well
as 75% or higher for the states of relief and pleasure.

With the involvement of driver emotion, the model is able
to improve the accuracies for recognizing the three intentions
of acceleration, speed-keeping and deceleration, from 76.24%,
71.58% and 69.76%, to 84.61%, 81.75% and 82.87%, respec-
tively (see Figure 14). The model can improve the accuracies
for recognizing the intentions of lane changing and lane
keeping, from 73.59% and 71.96%, to 84.67% and 84.17%,
respectively (see Figure 14).

Moreover, it was found that the proposed model is able
to recognize driving intention provoked by negative emotions
(e.g. anger and contempt) at a higher level of precision than
by positive emotions (e.g. relief and pleasure).

The results indicate that the proposed identification model
can obtain high accuracy in recognizing intentions of driving
speed and lane change.

B. Model Verification Based on Virtual Driving
Experimental Data

To verify driver’s intention identification model, the virtual
driving experimental data was also split into two parts. One

Fig. 17. Average accuracy of identifying driver’s behavioral intention with
and without the involvement of emotion (virtual driving).

part was used for the model training, and another one was
used for the model testing. The accuracies of model identifi-
cation regarding speed and lane-changing intentions are shown
in Figures 13 and 14, respectively.

For speed intention recognition shown in Figure 15,
the model achieves an accuracy of above 85% for the states
of anxiety and anger, over 80% for the states of fear, relief
and pleasure, as well as 75% or higher for the states of help-
lessness, surprise and contempt. Regarding the lane-changing
intention recognition shown in Figure 16, the model can
achieve an accuracy of above 85% for the states of anxiety,
contempt and anger, over 80% for the states of fear, helpless-
ness and surprise, and 75% or higher for the states of relief and
pleasure. The results indicate that the proposed identification
model can get high accuracy in recognizing intentions of
driving speed and lane change.

Without considering driver’s emotion, the identification
model only achieves the accuracies of 72.55%, 71.47% and
70.29% for recognizing the intentions of acceleration, constant
speed and deceleration, respectively, as well as 72.68% and
71.92% for recognizing the intentions of lane change and lane
keep, respectively. After adding the factor of driver emotion
into the model, the identification accuracies are increased
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Fig. 18. The relative speed between the target vehicle and the vehicle in front.

Fig. 19. The relative acceleration between the target vehicle and the vehicle in front.

to 82.52%, 80.84% and 81.71% for recognizing the intentions
of acceleration, speed-keeping and deceleration, respectively,
as well as 83.96% and 83.90% for recognizing the intentions
of lane change and lane keep, respectively (see Figure 17). The
results further confirm that the proposed identification model
is reasonable and effective in recognizing intentions of driving
speed and lane change.

C. Model Verification Based on Computer Simulation Data

The computer simulation was conducted to compare driver
behavior characteristics with and without considering driver’s
emotional factors. The simulation results present the relative
speed and relative acceleration between the target vehicle and
the vehicle in front, shown in Figures 18 ∼ 19. Among
them, driver’s emotions are taken into account in simulation 2,
and not in simulation 1. It was observed that in Figure 18,
simulation 2 with emotion involvement is more consistent
with the actual data than simulation 1. Especially when the
target vehicle is running fast and follows the front one closely
(positive relative speed, e.g. 150s ∼ 180s in Figure 18), speed
can be predicted more accurately with the involvement of emo-
tion. In Figure 19, when the running status of vehicles appear
to abruptly change (accelerate or decelerate dramatically, e.g.
10s and 56s.), simulation 2 performs better in simulating rela-
tive acceleration than simulation 1. Overall, the results indicate
that the model can more accurately predict driving behavioral
intentions with the involvement of emotion, especially for the

risk scenarios and abrupt changes. These results further prove
the accuracy and reliability of the identification model.

V. CONCLUSION

This study used the support vector machine theory to
develop a driver intention recognition model, considering
driver’s emotional factors. Real driving, virtual driving and
computer simulation experiments were conducted to collect
human-vehicle-environment dynamic data in two-lane roads,
in order to verify the recognition model. The results present
that the developed model can achieve high accuracy and
reliability in identifying driver’s intentions.

Our findings of this study suggest that the prediction
accuracy of driver’s intention can be increased with the
involvement of driver emotion. It can be used to develop
the personalized driving warning system and intelligent
human-machine interaction in vehicles. This study would be of
great theoretical significance for improving road traffic safety.
Further studies are required to improve the effectiveness of
the proposed model by considering more factors, such as
road capacity, level of service, weather condition, driver’s
occupation and personality type. Moreover, further studies are
also needed to recognize driver’s intentions in more complex
traffic environments.
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