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Recognition of multifunction radar (MFR) is an open problem
in the field of electronic intelligence. Parameters of MFR pulses are
generally agile and difficult to distinguish statistically. A prospective
way to realize credible MFR recognition is mining and exploiting more
distinguishable high-dimensional patterns buried in pulse groups,
which may be designed for implementing infrequently used radar
modes such as target tracking. A high-dimensional pattern is defined
according to the agile range and switching law of sequential pulse
repetitive intervals within a pulse group. This article establishes deep
recurrent neural networks (RNN) to discriminate and coarsely cluster
different pulse groups hierarchically with respect to their sequential
structures. Afterwards, RNN-based classifiers are trained to extract
and exploit features within different pulse group clusters. Distinct
degrees of confidence are then attached to these classifiers to indicate
the discriminabilities of the corresponding pulse group clusters. The
pulse group clustering and classifying models are finally cascaded to
form an integrated classification model, which mines distinguishable
patterns from sequentially arriving pulse groups of the same radar
and accumulate them to realize MFR recognition. Simulation results
demonstrate the much improved performance of the proposed method
over existing counterparts in different scenarios.
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I. INTRODUCTION

Multifunction radars (MFR) are widely used in civil
and military areas [1]–[4], they usually have multiple modes
such as storm surveillance and tracking [5], target searching
and tracking [6], [7]. Each radar mode is implemented with
pulse groups that may have diversed discrete temporal struc-
tures [8]. MFRs have a high level of agility in transmitted
waveform and antenna beam steering. This flexibility makes
it possible for the radar to change operation strategies on
the fly, as is shown in Fig. 1. MFRs can also modify their
transmitted waveforms from burst to burst over a wide range
of parameters, including carrier frequency, pulsewidth, and
pulse repetitive interval (PRI). From the perspective of
noncooperative receivers, the strong directionality of MFRs
significantly reduces the probability of intercepting radar
waveforms radiated to directions other than the receiver.
Take the scenario in Fig. 1 for example, an airborne receiver
can easily capture the radar signals used to search or track
its carrier aircraft, but it will miss the signals radiated by
the other two MFR beams with high probabilities. The miss
probability depends on the sidelobe level of the oriented
beams along the direction of the receiver. As a result,
noncooperative observation data of agile MFRs are highly
incomplete. They usually contain relatively isolated pulse
groups with different amplitudes. Passive recognition of
MFRs based on rapidly changing and severely incomplete
observation data thus becomes a very demanding task in the
field of electronic intelligence [9].

Two of the main MFR tasks are target searching and
tracking, and some other tasks such as target identifica-
tion [7], recognition [3], and weapon guidance [5], [6] may
also be included. Each radar mode is implemented with
pulse groups consisting of temporally discrete pulses [8].
The PRI pattern of each pulse group is task dependent. For
example, equi-PRI pulse groups with PRIs falling within
different ranges are exploited to perform target searching
tasks at different altitudes in fire-control radars and airborne
pulse-doppler radars [3], and stagger- or jitter-PRI pulse
groups are used for ambiguity elimination and jamming de-
ception [1]–[3]. Some tasks such as searching are regularly
performed by MFR, the corresponding pulse groups with
relatively simple patterns of equi-PRI make up a large part
in noncooperatively observed signals. On the contrary, pulse
groups of some rarely implemented tasks such as target
tracking and weapon guidance take small proportions in
observed signals [6], but these pulse groups contain more
distinguishable patterns between different MFRs.

As MFRs usually vary their signal parameters over
wide ranges, it is very difficult to recognize which class
they belong to according to the statistical characteristics
of their pulses. Canadian researchers proposed to model
MFRs operating modes with a syntactic model, so that
temporal patterns of successive pulses can be described
in a more compact way [7], [10]. This is an early attempt
to apply automatic technologies to process noncooperative
radar signals. However, the establishment of the syntactic
model requires a detailed description of MFR, which is
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Fig. 1. MFR have high flexibilities of beam steering and waveform
modulation.

hardly available from the perspective of noncooperative
radar intelligence [11], [12].

Another major difficulty in MFR recognition is the
temporal discreteness of pulse groups. Both the ordering of
multiple PRIs and the value of each discrete PRI contribute
to the pattern of a pulse group. However, existing machine
learning techniques are seldom designed for extracting
and exploiting patterns from multidimensional and analog-
valued PRI sequences, which may be further contaminated
by data noises such as losing pulses.

Deep learning techniques have attracted much research
interest in various fields in the past few years [13]–[15]. The
data in some of the fields has similar multidimensional and
discrete forms as pulse groups, such as word sequences in
sentiment analysis, machine translation, and text compre-
hension [16], [17]. Some recurrent neural networks (RNNs)
have been specially designed for processing word sequences
and they have achieved great successes in related applica-
tions. The other deep learning techniques, e.g., convolu-
tional neural networks, have fixed-size frameworks, they
do not well fit such tasks due to various reasons including
the variable-length sequential patterns in data sequences.

The author of this article has introduced RNN to classify
radar pulse trains in a previous work [18]. RNN extracts
high-dimensional patterns buried in pulse trains to realize
radar classification, and the method achieves satisfactory
performances in cases of agile pulse parameters and sig-
nificant observation noises [18]. But this method may not
work for MFRs. That is because deep learning methods
usually have strong statistical tendency, i.e., they incline
to learn from and match predominant modes in the given
dataset. However, as is described abovementioned, there
is significant imbalance in observed MFR signals. The
imbalance is defined between pulse groups of regularly used
MFR modes such as target searching and that of infrequently
used modes such as target tracking. The former signals take
a large proportion in noncooperatively received dataset, but
they may contribute very little to MFR recognition due to
their lack of distinguishable patterns. On the contrary, target
tracking pulse group take a small proportion but contains
more abundant patterns available for MFR recognition.

The contradiction between imbalanced MFR data and the
statistical tendency of deep learning techniques blocks the
application of the method in [18] in MFR recognition. It
should be noted that, the classification problem based on
imbalanced data is also an open problem in the field of
computer science [19]–[22].

This article addresses the recognition problem of MFR
by hierarchically mining and exploiting high-dimensional
patterns of pulse groups associated with different radar
modes. The recognition is implemented among more than
one MFR classes, with radars belonging to each class hav-
ing the same modes and different classes of radars have
somewhat diversed modes. By considering that frequently
and infrequently used modes of MFR may differ largely in
discriminability and take much differentiated proportions
in noncooperatively observed signals, this article trains a
series of RNNs hierarchically to cluster the pulse groups
blindly and extract sequential PRI patterns from them to
realize MFR recognition. The clustering process helps to
separate pulse groups in original datasets successively, so
that pulse groups associated with infrequently used modes
but containing more abundant distinguishable patterns will
be unfolded to enhance the availability of recognition. A
series of classifiers are then trained with respect to the pulse
group clusters and cascaded to form an integrated classifi-
cation model. During performance testing, the integrated
model is exploited to extract and accumulate patterns from
sequentially arriving pulse groups to recognize MFR.

The contributions of this article are mainly threefold.

1) The problem of MFR recognition is studied by taking
data imbalance between different radar modes into
account, which is common in practical electronic
intelligence systems but has been rarely considered
in previous literature.

2) Unsupervised clustering and supervised classifica-
tion techniques are developed synthetically to mine
and exploit multidimensional patterns from pulse
groups of infrequently used radar modes, which are
deeply hidden beneath mixing observations.

3) MFR recognition is realized by extracting patterns
and accumulating recognition information from
pulse streams instead of static datasets, thus, the
proposed method meets practical online application
requirements well.

The rest of the article consists of five parts. In Section II,
a noncooperative observation model of MFR signals is
presented, some closely related terms are defined, and the
availability of deep learning techniques in MFR recogni-
tion is roughly discussed. In Section III, a new integrated
recognition model is established via hierarchically mining
and exploiting pulse group patterns. Section IV introduces a
method for MFR recognition based on pulse group streams
using the established model. Section V verifies the perfor-
mance of the proposed method via simulations. Section VI
summarizes the article.
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Fig. 2. Illustrative example of the relation and difference between
radiated and observed signals.

II. OBSERVATION MODEL OF MFR SIGNALS

MFR sends pulse signals to space to perform various
modes such as target searching and tracking. Each pulse has
parameters of carrier frequency, pulsewidth and amplitude,
and pulse-to-pulse intervals within a pulse group form a PRI
sequence. A PRI is defined as the differential time-of-arrival
(DTOA) between adjacent pulses. The ordering of PRIs
contains sequential patterns of a pulse group, it is highly
related with radar modes, e.g., the regularly used target
searching mode is usually implemented with equal PRIs [3],
whereas the infrequently used target tracking mode is im-
plemented with stagger or jitter PRIs [1]–[3]. Moreover,
pulse groups consisting of PRIs valued in different ranges
are used to search or track targets on different ranges or
altitudes [3].

In this article, agile radars, which perform sensing
actions to either detect previously undetected targets or
to update track estimates for known targets, are taken as
MFR examples. The radiated signals of such radars form a
sequence of pulse groups as follows:

. . . , {pri(i)
1 , pri(i)

2 , . . . , pri(i)
Li

},
. . . , {pri( j)

1 , pri( j)
2 , . . . , pri( j)

L j
}, . . . (1)

where the PRIs within each brace belong to the same pulse
group, pri(i)

l represents the lth PRI of the ith pulse group,
and Li represents the total number of PRIs in the ith pulse
group. In this model, the other pulse parameters, such as
carrier frequency, pulsewidth, and amplitude, are ignored
to simplify expression. These parameters can be included
in the problem via straightforward model expansion as that
in [18].

From the perspective of noncooperative systems, only
part of MFR signals are received with diversed amplitudes
due to the strong directivity of radar antenna, while the other
pulse groups are lost as a whole as their amplitudes are lower
than the receiver sensitivity. The time-of-arrival of each
radar pulse is measured, and the DTOA between adjacent
pulses within each pulse group is calculated and recorded
as PRIs. In Fig. 2, five successive pulse groups are shown
as an example to illustrate the relation and difference be-
tween radiated and observed signals. The MFR is assumed
to search and track multiple targets by steering its beam
electronically. Target searching tasks are performed with
equi-PRI pulse groups, and the pulse repetition frequency
(PRF, the reciprocal of PRI) takes values in multiple ranges
for targets at different altitudes. Take a fire-control MFR

for example, it uses low PRF pulse groups to look up, and
medium or high PRF pulse groups to look down [3]. Target
tracking tasks are performed with pulse groups consisting
of stagger PRIs. In Fig. 2, five pulse groups are shown in the
radiated pulse stream, they are associated with searching or
tracking tasks at different altitudes. Two of the pulse groups,
i.e., the second and fourth ones, are missed as they have very
low level at the receiver, and the other three pulse groups
are intercepted with different amplitudes. Interpulse PRIs
of intercepted pulse groups are well preserved from radiated
signals to observed data, and adjacent pulse groups are
weakly related as they perform isolated tasks. The observed
data are expressed as follows:

. . . , {pri(i)
1 , pri(i)

2 , . . . , pri(i)
Li

},
{pri( j)

1 , pri( j)
2 , . . . , pri( j)

L j
}, . . . (2)

Compared with the radiated signal stream in (1), the
observations of the ith and jth pulse groups in (2) assumes
that the pulse groups between them are lost due to poor
observation conditions. A high rate of pulse missing greatly
weakens the temporal correlation between adjacent pulse
group observations, and only sequential patterns within the
pulse groups are retained. These roughly independent pulse
groups can be separated from each other in the observations
according to their parameters such as amplitude. This article
studies how to use these relatively independent pulse groups
to recognize MFRs.

The observed pulse groups can be categorized coarsely
into two types according to their frequency of usage. They
are denoted by X and Y as follows:

X = {[prii
1, pri(i)

2 , . . . , pri(i)
Li

]}i=1,...,N1

Y = {[prii
1, pri(i)

2 , . . . , pri(i)
Li

]}i=N1+1,...,N1+N2 (3)

where N1 and N2 denote the number of pulse groups in
the two categories, respectively. For many MFRs, the pulse
groups in X correspond to regular target searching tasks and
take a large proportion in observed signals, whereas these
in Y correspond to infrequently used target tracking tasks
and take a much smaller proportion in observed signals, i.e.,
N1 � N2.

In order to facilitate further discussions, some terms
closely related to the concerned problem are explicitly
defined as follows.

MFR mode: Predefined functions of MFR. Two ubiqui-
tous modes, i.e., target searching and tracking, are usually
contained in MFR mode list. Some other functions such
as weapon guidance and jamming deception may also be
included. In this article, only the two ubiquitous modes are
considered.

Pulse group: Several successive pulses radiated by a
MFR at a beam position to perform particular modes, such
as target searching or tracking. Pulses within the same group
have similar amplitudes, thus they are generally detected or
missed as a whole by the receiver. Therefore, the observed
data consists of a series of pulse groups with diversed
intergroup DTOAs.
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Pulse group pattern: The value range, ordering and
switching law of agile PRIs within a pulse group, and
the particular values of the PRIs are excluded in a broad
definition of pulse group pattern. It is assumed that pulse
groups corresponding to the same MFR mode share iden-
tical patterns, and pulse groups corresponding to different
MFR modes have distinct patterns. The patterns of pulse
groups containing more than one PRI is also termed as
high-/multidimensional patterns.

Data imbalance: Pulse groups of regularly used modes
such as target searching and these of infrequently used
modes such as target tracking take much diversed propor-
tions in observed data. The number of regular searching
pulse groups is larger or even overwhelming over that of in-
frequent pulse groups. This imbalance greatly increases the
difficulty of MFR recognition, since stagger or jitter PRI se-
quences of infrequent pulse groups generally contain more
distinguishable patterns, but these patterns are concealed
beneath the large number of regular and indistinguishable
pulse groups used for target searching.

Sequential recognition: The noncooperatively received
pulse groups are assumed to arrive one by one. The pulse
stream of a MFR has been segregated from noisy signals
according to emitter location, and it has been separated into
pulse groups according to signal amplitudes. The observed
pulse groups are not tagged with radar mode labels as they
are not known at noncooperative receivers. The receiver can
hardly recognize a MFR correctly based on a single pulse
group, it extracts distinguishable features from sequential
pulse groups and accumulate them to improve recognition
probability gradually.

Noncooperative pulse observations of MFR usually
have agile parameters and high pulse missing rates. It is very
difficult to directly extract reliable statistical parameters
from the observations to recognize MFRs. For example, if
a MFR has two searching modes performed with equi-PRIs
of AAA and BBB (A and B stand for particular PRIs),
together with a tracking mode performed with stagger-PRIs
of AAB, while another MFRs have the same searching
modes but a slightly different tracking mode performed
with stagger-PRIs of ABB. The two MFRs cannot be distin-
guished from each other from a statistical perspective unless
the high-dimensional pattern in the tracking mode is mined
and exploited.

As pulse group patterns are usually consist of multiple
discrete PRIs, they are very difficult to be handled by ma-
chines, which prefer binary data and continuous vectors, in
their original forms. RNNs have shown their superiority in
processing discrete sequences. Typical applications include
sentiment analysis, machine translation, and text compre-
hension [16], [17]. Words are basic information units in
these applications, they have discrete one-hot formulations
in a word dictionary. RNN first transform discrete words to
continuous vectors, and then process phrases or sentences as
a vector stream. Some specially designed neural networks
are able to extract and remember high-dimensional patterns
in data sequences [16], [17].

Fig. 3. Deep neural network structure used for radar classification
in [18].

At first sight, the PRI sequences in pulse groups have
similar formulations as word sequences. Both of them are
consist of multiple discrete values. Therefore, the RNN is a
prospective technique for processing radar pulse sequences.
In [18], a RNN is established to extract high-dimensional
temporal features of the pulses, and a deep learning-based
method is proposed for radar recognition. The deep learning
model used in [18] is shown in Fig. 3, which includes
modules of PRI quantization, vectorization, recurrent pro-
cessing, and classification. A gated recurrent unit (GRU),
which has shown superior performances in many sequence
processing applications [23], is used for recurrent process-
ing of PRI sequences, so as to extract and exploit sequential
patterns in radar pulse streams. The GRU model, instead
of the long-short term memory one [15], is chosen because
it has fewer parameters and performs comparably with the
latter.

The model and method proposed in [18] can well ex-
tract high-dimensional sequential patterns hidden in pulse
trains with agile parameters, and have shown satisfactory
performances in recognizing radars that are hardly distin-
guishable according to their statistical parameters. They
are also robust to various nonideal factors including data
noises and small pulse numbers. However, the regularly
used target searching mode of MFRs is usually implemented
with equi-PRI pulse groups. Such PRI sequences are hardly
distinguishable between different MFRs if their PRIs have
the same or overlapped ranges. Therefore, it is very difficult
to recognize MFRs according to their overall sequential pat-
terns. Different from the regular modes, infrequently used
radar modes such as target tracking are implemented with
pulse groups having more distinguishable patterns, such as
stagger or jitter PRI sequences [1]–[3]. These pulse groups
are expected to contribute more largely to MFR recognition,
but their patterns are difficult to extract as they take a
much smaller proportion in observed pulse streams. As deep
learning methods generally have statistical tendency, the
strong imbalance between frequently and infrequently used
pulse groups makes RNN-based MFR recognition a very
demanding task.

Based on the abovementioned considerations, this arti-
cle proposes to first cluster radar pulse groups according to
their sequential patterns, so that pulse groups with diversed
patterns are separated from each other. Distinguishable
features of pulse groups belonging to different clusters

4662 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 56, NO. 6 DECEMBER 2020



Fig. 4. Establishing process of the integrated classifier consisting of
hierarchical clustering and classification models.

are then extracted and accumulated to realize robust radar
recognition.

III. HIERARCHICAL CLUSTERING AND CLASSIFICA-
TION OF PULSE GROUPS

A. Framework Establishment of Integrated Classifier

An integrated classifier will be established in this article
for MFR recognition. It consists of hierarchical clustering
and classification models trained on a large amount of pulse
group observations. Each pulse group is tagged with a
radar class label but no radar mode label. The clustering
models and classification ones are built by mining and
exploiting sequential patterns in pulse groups. The process
for establishing the framework via hierarchical clustering is
shown in Fig. 4. Three kinds of operations are included in the
process. First, PRI sequence clustering models are trained
with module “hierarchical clustering of pulse groups” based
on a dataset including a large amount of pulse groups,
and RNN models (Ri) that are able to cluster pulse groups
according to their patterns will be obtained. Pulse groups
whose patterns well match the model are separated from the
original dataset to form Dataseti, whereas the other pulse
groups form Dataset−i. Second, train a radar classifier Ci

based on Dataseti for i = 1, . . . , I , and output a classifi-
cation confidence DOCi (DOC: degree of confidence) for
each classifier, which indicates the reliability of the clas-
sification result outputted by the corresponding classifier.
Third, select the next step according to the data amount in
Dataset−i. If the amount of remaining pulse groups is large,
return to (1) to start a new iteration; otherwise, terminate
the iterations.

The hierarchical processing framework is designed
mainly to separate pulse groups corresponding to different
radar modes, and then extract more distinctive patterns from
infrequently used pulse groups. The simulation results in

Fig. 5. Illustration of the prediction model used for pulse group
clustering.

Section V will provide strong evidence of this hierarchi-
cal processing framework that, when compared with an
indiscriminative process, it has significant advantages in
pattern extracting in mixed pulse group datasets consisting
of frequently and infrequently used modes.

B. Pulse Group Clustering

Pulse groups performing different radar modes gener-
ally have diversed PRI patterns. They can be categorized
by mining the discriminating features. Agile range and
switching law of successive PRIs within a pulse group are
important parts of the pattern. Therefore, diversed patterns
can be distinguished according to a prediction model that
can be formulated as follows:

pril+1 = arg max
DTOA

pi(DTOA|hl )gi(hl |pri1, . . . , pril )

l = 1, . . . , Li − 1 (4)

where gi(hl |pri1, . . . , pril ) is a sequence-to-vector function
that extracts sequential features from the l preceding PRIs,
and pi(DTOA|hl ) is a projection function that predicts the
upcoming PRI value. The subscript i in the two functions is
identical with the index of radar mode, and it is used to indi-
cate that diversed prediction models should be established
for different radar modes. Li stands for the number of PRIs
in the pulse group.

The prediction model can be illustrated intuitively in
Fig. 5. The PRIs pri1, . . . , priL of a pulse group are read
in by the model one by one. They are processed recurrently
and their sequential pattern is embedded in a vector hl when
the lth pulse has been processed. A well-trained prediction
model is expected to forecast the upcoming interpulse in-
terval pril+1 precisely. When the pulse group terminates, no
prediction will be outputted.

The prediction model, shown in (4) and Fig. 5, is estab-
lished to interpret pulse group patterns in more compact
forms. As pulse groups associated with frequently and
infrequently used radar modes have diversed patterns, they
will be separated into different clusters by training a series of
prediction models. This process can be deemed as unsuper-
vised pulse group clustering. After pulse group separating,
the difficulty of pattern mining from infrequent pulse groups
caused by data imbalance will be greatly reduced.

The discreteness and analog-value of PRI sequences
largely block machine processing. The prediction model
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Fig. 6. Detailed structure of PRI prediction model.

in Fig. 5 should be modified to facilitate PRI forecasting. A
major modification lies in the vectorization of the inputted
and predicted PRIs. Based on the modification, a more de-
tailed illustration of the PRI prediction model is established
and shown in Fig. 6. The deep neural network processes
PRIs within each pulse group sequentially, and it is trained
by improving the accuracy of PRI predictions. Similar to the
model in [18], this deep neural network consists of layers
for PRI quantization, vectorization, recurrent processing,
and prediction.

The PRI quantization layer reads in the DTOA between
the current pulse and the previous one, and converts it to
a one-hot vector d l ∈ R

M×1 according to a certain quanti-
zation unit. The vector has only one nonzero element of 1
at a position according to the PRI value. The vectorization
layer reduces the dimension of d l via embedding to obtain a
low-dimensional dense vector el ∈ R

m×1 with m � M [24]

el = Ed l (5)

where E ∈ R
m×M is an embedding matrix. The recurrent

processing layer uses a RNN to process multiple successive
PRIs one-by-one [23], in order to extract sequential patterns
implied in PRI sequences. The RNN unit of GRU has the
same structure as that shown in Fig. 3. In addition to an input
vector el and a state vector hl ∈ R

h×1, the GRU also contains
three intermediate vectors, namely, update vector zl , reset
vector rl , and memory vector f l . The sequential updating
procedures of the vectors are implemented as follows:

zl = σ
(
W (z)el + U (z)hl−1 + b(z)

)
(6)

rl = σ
(
W (r)el + U (r)hl−1 + b(r)

)
(7)

f l = tanh
(
W ( f )el + rl � U ( f )hl−1 + b( f )

)
(8)

hl = zl � f l + (1 − zl ) � hl−1. (9)

where W (z), W (r), W ( f ) and U (z), U (r), and U ( f ) are weight-
ing matrices; b(z), b(r), and b( f ) are offset vectors, and their
dimensions can be determined according to their contexts;
σ (•) is an element-wise sigmoid function; tanh(•) is an
element-wise hyperbolic tangent function; and � represents
dot-product between vectors.

The recurrent processing module is expected to extract
sequential patterns from the PRI sequence [pri1, . . . , pril ],
and predict the value of pril+1. The prediction process is
implemented by mapping hl as follows:

p̂l = s
(
W (p)hl + b(p)

)
(10)

where W (p) is a weighting matrix, b(p) is an offset vector,
and s(•) is a softmax function. The outputted normalized
vector p̂l has the same dimension as d l+1, and each element
in p̂l represents the probability that the value of pril+1 falls
within the corresponding quantization unit. In the ideal case,
p̂l = d l+1, but in practice, there is often an estimation error
between them. This error can be used as a cost function to
optimize the unknown parameters of the prediction model
in Fig. 6.

As d l has a one-hot form, the prediction error of d l

can be expressed as −log2( p̂l−1(dl )), where dl represents
the coordinate of the nonzero element in d l , and p̂l−1(dl )
represents the probability when d l is accurately predicted.
The prediction errors of the whole pulse group are averaged,
and the overall prediction loss of a pulse group is

loss(predictor) = − 1

L − 1

L∑
l=2

log2

(
p̂l−1 (dl )

)
(11)

where L represents the number of PRIs in the pulse group,
and the summation begins at l = 2 where the first prediction
is available. At an early stage of model training, the pa-
rameters are randomly initialized, and the prediction error
will be very large. By iteratively optimizing the parameters
via back-propagation according to the loss, the prediction
error can be continuously reduced [25], [26]. The parameter
updating process is given as follows:

αnew = αold − η
∂loss(predictor)

∂α
(12)

where α represents any unknown variable in (5)–(10), and
η represents an iteration weight.

By optimizing the model parameters continuously, the
prediction error of PRI sequences will become smaller
and smaller. The iterative process is terminated when the
prediction loss does not reduce any more, and the model
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(denoted as Ri) is now able to predict the PRI sequences of
pulse groups having similar patterns. The level of pattern
matching is reflected by the PRI prediction error, and a
clustering decision can be made by evaluating whether a
pulse group matches the learned PRI prediction model in
Fig. 6. The evaluation criterion is given as follows:

loss(predictor) < T hr (13)

where T hr is a preset threshold.
Deep learning techniques generally prefer to learn pat-

terns of data with larger amounts. Therefore, after sufficient
training, the model in Fig. 6 can well describe the PRI
pattern of pulse groups (Dataseti in Fig. 4) corresponding
to more frequently used radar modes, and it will produce
large prediction errors for pulse groups of infrequently
used radar modes. In this way, pulse groups are roughly
clustered according to their associated radar modes in the
absence of mode labels. After data clustering, pulse groups
corresponding to radar modes with more distinguishable
features but smaller amounts (Dataset−i in Fig. 2) can be
gradually revealed. By repeating the training process, a
series of clustering models will be obtained hierarchically,
and the original dataset will be separated into multiple
clusters.

C. Pulse Group Classification

In the previous section, pulse groups of frequently and
infrequently used radar modes are clustered and separated
according to their diversed PRI patterns. However, no infor-
mation for radar classification is obtained in this process.
In order to realize MFR recognition, a classifier should be
trained based on the clustered pulse groups in Dataseti.
The structure of the classifier is the same as that shown in
Fig. 3, and the processing of the PRI sequences follows the
guideline in (5)–(9). After outputting the final GRU state
hL corresponding to the last PRI of priL, the pulse group is
classified via the fully connected layer on the right-side of
Fig. 3. The classifying process is realized as follows:

ĉ = s
(
W (o)hL + b(o)

)
(14)

where W (o) is a weight matrix, b(o) is an offset vector, and
ĉ = [ĉ1, . . . , ĉK ]T ∈ R

K×1 is the probability distribution
vector of this pulse group along all radar classes, which
has been normalized by a softmax function s(•).

Similar to the sequence prediction model in the previous
section, the classifier in Fig. 3 also contains a large number
of unknown parameters, which need to be optimized by
taking the classification error as a cost function. The loss
function is

loss(classifier) =− 1

K

K∑
k=1

[ck log2(ĉk ) + (1 − ck ) log2 (1 − ĉk )]

(15)

where K represents the number of radar classes, ck and ĉk

represent, respectively the true and estimated probabilities
when the pulse group is emitted by the kth radar. If the

pulse group comes from the kth radar, ck = 1; otherwise,
ck = 0. By minimizing the loss function, the parameters
of the classification model can be optimized gradually,
and a classifier with good classification performance can
be obtained (denoted by Ci). The parameter optimization
process is implemented as follows [25], [26]:

αnew = αold − η
∂loss(classifier)

∂α
(16)

During the previous clustering process, pulse groups in
the training dataset have been separated into several clusters.
Pulse groups in different clusters have diversed patterns,
which generally contribute differently to radar recogni-
tion. Although pulse groups corresponding to frequently
used radar modes, such as target searching, have a large
amount, they are generally performed with simple equi-PRI
sequences and very few useful features can be extracted
from them to support radar recognition. As a result, the loss
function of the classifier in (15) has large values in these
indistinguishable pulse group clusters. Pulse groups cor-
responding to infrequently used radar modes have smaller
amounts, but they are generally more distinguishable from
the perspective of MFR recognition, and the loss function
of (15) is small. In order to measure the reliability of the
recognition results of different classifiers, a DOC is defined
for each classifier as follows

DOCi = 1 − loss(classifier). (17)

When multiple pulse groups are received from a MFR,
each pulse group will be categorized into one of the clusters
according to the PRI prediction models, and the classifier
associated with this cluster will produce a recognition re-
sult for the pulse group. As different pulse groups may
have diversed distinguishabilities, the recognition results
are weighted according to their DOCs defined in (17) and
summed up to obtain overall recognition probabilities for
each class, which finally indicate a radar recognition result.

D. Termination of Model Training

As the hierarchical clustering process continues, more
and more pulse groups are separated from the origi-
nal training dataset, and they form I clusters named
{Dataset1, Dataset2, . . . , DatasetI}. The PRI prediction
models associated with the clusters are denoted by
{R1, R2, . . . , RI}. The number of remained pulse groups in
Dataset−I becomes smaller and smaller, and the learning
process is terminated when the number is smaller than a
preset threshold. The threshold is set according to the scale
of the PRI prediction model, and empirical values can be
used to avoid insufficient training of new models.

Each of the clusters in {Dataset1, Dataset2, . . . , DatasetI}
contains a large number of pulse groups belonging
to different MFR classes, and a classifier set of
{C1,C2, . . . ,CI} is trained for the clusters with recognition
confidences of {DOC1, DOC2, . . . , DOCI}. These pulse
group prediction models, classifiers, and recognition
confidences are obtained via offline training based on
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Fig. 7. Recognition process of MFR based on sequential pulse groups.

training dataset. They form a set {Ri,Ci, DOCi} for
i = 1, . . . , I . If the PRI sequence of a pulse group can be
well predicted by the prediction model Ri, the associated
classifier Ci is used to classify this pulse group according
to the K radar classes, and the recognition result has
a DOCi.

IV. RECOGNITION OF MULTIFUNCTION RADARS
BASED ON PULSE STREAMS

Suppose that a series of pulse group prediction mod-
els, classifiers, and confidence degrees, which are denoted
by {Ri,Ci, DOCi}i=1,...,I , have been obtained via offline
training based on big data, they can then be exploited to
recognize MFRs by processing sequentially arriving pulse
groups. As a single pulse group may not contain sufficient
information for MFR recognition, distinguishable features
should be extracted from pulse streams continuously and
accumulated together to improve recognition accuracy. In
this section, a MFR recognition process based on sequential
pulse groups is proposed.

The MFR recognition process is shown in Fig. 7. When
a new pulse group (indexed by j) arrives, its processing can
be decomposed into three steps.

1) Match the PRI sequence of the jth pulse group with
prediction models in {R1, R2, . . . , RI} iteratively.
Once the prediction error falls belowmentioned a
preset threshold, terminate the iteration and sort this
pulse group to the corresponding cluster, with the
cluster index denoted by i j .

2) Use the associated classifier Ci j to classify the pulse
group, which obtains a classification probability vec-
tor c j . The classification result is then weighted with
DOCi j and accumulated sequentially.

3) When all pulse groups have been received, the se-
quential clustering and classification process will be
terminated and the recognition result will be out-
putted; otherwise, return to (1) to start a new iteration
for processing the ( j + 1)th pulse group.

Specifically, the PRI prediction model of the jth pulse
group is selected as follows:

i j = arg min
i

(
loss(predictor)

i < T hr
)

(18)

where loss(predictor)
i is the prediction error when testing the

PRI sequence of the pulse group with the prediction model
Ri according to (11). T hr is a preset bias threshold for
prediction model selection, which is identical with the
threshold in (13). Suppose that the i j th model is the first
one whose prediction error is smaller than the threshold,
the jth pulse group is sorted to the i j th cluster.

After that, classifier Ci j is used to extract and exploit
distinguishing patterns contained in the PRI sequence of
this pulse group. The classification probability vector is
denoted by ĉ j , which is weighted by DOCi j and summed to
the overall classification probability of the preceding j − 1
pulse groups. When all J pulse groups have been processed,
a final classification probability vector is outputted as

ĉ =
J∑

j=1

DOCi j × ĉ j . (19)

The index of the maximal value in ĉ indicates the recognition
result of the pulse group stream.

V. SIMULATION RESULTS AND ANALYSES

A. Parameter Settings

In this section, multiple simulations will be carried out
to verify the performance of the proposed method. MFRs
with agile parameters are considered, they perform sensing
modes to either detect previously undetected targets or to
update track estimates for known targets. The regularly used
searching mode of all radars is performed with equi-PRI
pulse groups, which account for a large proportion in the
observed data. The PRI range of this mode of different
radars is identical, so this type of pulse group does not
contain distinguishable features for radar recognition. In-
frequently used modes of the radars are implemented with
stagger-PRI pulse groups, they have low ratios of usage,
but their patterns are more distinguishable between differ-
ent radar classes. In order to improve MFR recognition
performance, the negative influence of indistinguishable
pulse groups should be excluded as much as possible, and
the more distinguishable pulse groups should be identified
from the observations to extract and exploit their features
fully. In the simulations, the method in [18] is selected for
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performance comparison, and its RNN structure is set the
same as the classifier in the proposed method. However,
the process of pulse groups clustering is excluded in the
method of [18], and the features extracted from multiple
pulse groups are summed up directly. The proposed method
and the method in [18] are labeled as cascaded classifiers
and over-all classifier, respectively.

The PRI quantization unit in the proposed method is
set to 2 us, and the PRI prediction range between adjacent
pulses is [0, 1200] us, thus the dimension of the one-hot
PRI vector d l is M = 601. The dimension of the embed-
ded PRI vector el is set to m = 64, and that of the RNN
state vector hl is h = 64. When training PRI prediction
models for the pulse groups, the prediction vector p̂l has
a dimension of M = 601, which equals that of d l+1. In the
last layer of the classifiers, the probability vector of each
radar, i.e., ĉ, is calculated from hL, and its dimension is set
to K = 2 or 3 according to the number of radar classes. In
the PRI prediction model shown in Fig. 6, the dimensions
of unknown variables can be inferred from their contexts,
and the weighted matrices and offset vectors are initialized
randomly.

The parameter optimization processes of the deep neural
networks used for PRI prediction and pulse group classifi-
cation are automatically implemented with PyTorch [27].
The number of batch size during model training is set to 64,
and the weight coefficient of back propagation is μ = 0.3.
In (13) and (18), the threshold of PRI prediction error during
pulse group clustering is set to T hr = 0.1.

Training datasets and test datasets are obtained indepen-
dently via simulations. The numbers of training pulse group
and test pulse group of each class of radar are 50 000 and
5000, respectively. Unless otherwise stated, the observation
error of each PRI is zero-mean and Gaussian distributed
with a standard deviation of σPRI = 0.2 us. The radar mode
of each pulse group is determined randomly according to a
preset proportion in the simulation process, and there may
be a small deviation between the distributions of simulated
pulse groups and the preset proportions due to sample finite.
Radar recognition performance is tested based on pulse
group streams. In each stream, several pulse groups are
randomly selected from the 5000 test pulse groups of a radar
class, and they are processed sequentially by the classifiers.
Thirty thousands of batches, with each containing 64 pulse
groups randomly chosen from the 50 000 training samples
for each radar class, are used for training clustering models.
Five thousands of batches, with each containing 64 pulse
groups randomly chosen from the clustered pulse groups,
are used for training each classifier. The statistical recog-
nition performance of each type of radar is obtained by
testing 6400 pulse group trains, and the correct recognition
probability is obtained by averaging over all radar classes.
The sequential training process of clustering and classifi-
cation models in Fig. 4 is terminated when the number of
remaining pulse groups is smaller than 1000. The classifier
in [18] used for performance comparison has the same RNN
structure as that of the integrated classifiers in the proposed

TABLE I
PRI Patterns of MFR Pulse Groups in

Scenario 1 (τ ∈ [300 us, 400 us])

TABLE II
Results of Hierarchical Clustering and Classification

method. It sums up the classification vector of each pulse
group equally to obtain a final classification vector.

B. Scenario 1: Two Classes of MFR With Each Having
Two Modes

This simulation tests the recognition performance be-
tween two MFR classes, with the MFR of each class having
two modes. The PRI patterns of each mode are shown
in Table I, where τ ∈ [300 us, 400 us]. When generating a
pulse groups, the value of τ is chosen randomly in the range
of [300 − 400 us] to bring in the factor of parameter agility,
and then the PRI sequence in the pulse group is determined
accordingly.

First, σPRI is set to 0 to eliminate the influence of
measurement errors, and the regular mode of each radar,
i.e., mode 1 in Table I, accounts for 90% in the training and
testing datasets. Then, the hierarchical clustering and clas-
sification methods proposed in this article is implemented
on the training dataset, and the number of clustered pulse
groups, their distributions and degrees of classification con-
fidence obtained during the first two iterations are shown
in Table II. After two rounds of clustering, the number
of remaining pulse groups is smaller than 1000, and the
iteration is terminated.

As can be seen in Table II, the two-round clustering pro-
cess has trained two PRI prediction models, which realizes
the separation of pulse groups associated with the regular
and infrequently used radar modes. The classifiers trained
based on the two pulse group clusters have much diversed
DOC. Pulse groups that fall in the first cluster have equi-PRI
patterns, no matter which radar class they belong to. They
also share the same PRI range and therefore contain negli-
gible features for distinguishing the two classes of radars.
Thus, the corresponding recognition confidence is close
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Fig. 8. Classification performances of two dual-mode MFR when mode-1 pulse groups take a proportion. (a) 50%. (b) 70%. (c) 90%. (d) 95%.

to 0. The second cluster of pulse groups has stagger-PRI
patterns with different switching laws and agility ranges,
which contain much more distinguishable features between
the two classes of radars. The corresponding classification
confidence is thus close to 1, which is much higher than
that of the first classifier. The different confidence degrees
indicate that, recognition results obtained from pulse groups
belonging to the first cluster are not reliable, while that
obtained from pulse groups belonging to the second cluster
have higher reliability. The difference also supports the
idea of weighting the recognition results of different pulse
groups before accumulating them in (19) in this article. Such
a weighting process is excluded in the previous counterpart
in [18]. As pulse groups of regular radar modes take larger
proportions but contain fewer distinguishable features, the
weighting-excluded accumulation process generally leads
to deteriorated recognition performances. This simulation
partially supports the great potential of the proposed method
in improving MFR recognition performance.

The PRI measurement errors are then included by setting
σPRI = 0.2 us and the proportions of mode-1 pulse groups
in Table I are set to 50%, 70%, 90%, and 95%, respectively.
When the number of pulse groups in the testing pulse
stream increases, the correct recognition probabilities of the
proposed method and the method in [18] are shown in Fig. 8.
As the proposed method separates pulse groups of different
modes first, and attaches higher weights to pulse groups
having abundant distinguishing patterns, its recognition
performance is far better than the method in [18].

When the proportion of indistinguishable mode-1 pulse
groups increases from 50% to 95%, the occurrence prob-
ability of mode-2 pulse groups, which have higher dis-
crimination degrees, becomes lower and lower in the test
data. As a result, the recognition performances of both
methods decline significantly. With the increase of the
number of sequential pulse groups, the proposed method
gains greater recognition performance advantages over
the method in [18]. Its recognition performance improves
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Fig. 9. Classification performances of three dual-mode MFR when mode-1 pulse groups take a proportion. (a) 50%. (b) 70%. (c) 90%. (d) 95%.

steadily even when the proportion of distinguishable pulse
groups is as low as 5%. That is because, the proposed
method can identify mode-2 pulse groups once they emerge,
although they have very low proportions, and enhance
the recognition results by attaching high weights to them.
The highly weighted recognition results of mode-2 pulse
groups greatly reduce the uncertainty in the accumulated
classification results caused by indistinguishable mode-1
pulse groups. When more and more pulse groups arrive, the
probability that at least one mode-2 pulse group is received
increases continuously, and the probability of correct MFR
recognition increases accordingly.

C. Scenario 2: Three Classes of MFR With Each Having
Two Modes

Based on the scenario corresponding to Fig. 8, the
number of radar classes is increased to three, and each class
of radar still has two modes, with their PRI patterns listed
in Table III. Pulse groups belonging to the first mode are

indistinguishable between different radar classes. Mode-2
pulse groups have stagger PRI patterns, and their PRI
ranges are very similar to that of mode-1 pulse groups.
The other parameters remain unchanged from that in
Scenario 1.

The proportion of mode-1 pulse groups is set to 50%,
70%, 90%, and 95%, respectively. The correct recognition
probabilities of the proposed method and the method in [18]
when the number of sequential pulse groups increases are
shown in Fig. 9. It can be seen that the performance compar-
isons of the two methods are quite similar to Fig. 8. One of
the differences is that, when the proportion of mode-1 pulse
groups is as high as 95%, the correct recognition probability
of the method in [18] drops from 50% in Fig. 8 to about 33%
in Fig. 9 (both are 1/K). This difference indicates that, as
the distinguishable pulse groups have a very small amount
and are concealed beneath the indistinguishable ones, the
over-all classifier fails to extract effective features from
pulse groups to realize reliable MFR recognition.
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TABLE III
PRI Patterns of MFR Pulse

Groups in Scenario 2
(τ ∈ [300 us, 400 us])

D. Scenario 3: Two Classes of MFR With Each Having
Three Modes

Based on the simulation corresponding to Fig. 8, the
number of MFR modes is increased to 3, whereas the
number of radar class is fixed at 2. The PRI patterns of
each mode are shown in Table IV. The proportions of pulse
groups associated with the three modes are set to 70%, 20%,
and 10%, respectively. The correct recognition probabilities
of the proposed method and the method in [18] are shown
in Fig. 10.

The performance comparisons of the two methods are
similar to that in Figs. 8(b) and 9(b), where indistinguishable
mode-1 pulse groups take the same proportion of 70%.
The proposed method still shows significant performance
advantages over the method in [18].

E. Scenario 4: Two Classes of Radars With Each Having
Nine Modes

In the previous simulations, the number of MFR modes
has been significantly reduced when compared with practi-
cal systems [3], [7]. Although both regular and infrequent
modes are included, some other factors for radar waveform
design have been ignored, such as target altitude [3]. The
simplifications are introduced to make the simulation results
more concise and intuitive.

In this group of simulations, target altitude is taken into
consideration to subdivide MFR radar modes according to
the design of fire-control radars in [3]. Each class of radar
still has three major categories of modes, one equi-PRI
mode and two stagger-PRI modes. The modes have patterns
similar to that shown in Table IV, except that their PRI
range is subdivided to three ranges of [200 us, 250 us],
[300us, 350 us], and [400 us, 450 us] according to look-up
or look-down radar beams. The three PRI ranges are set
corresponding to high, medium, and low PRFs, respec-
tively [3]. By subdividing the PRI range, each MFR now
have nine modes altogether.

Pulse groups of different MFR modes take similar pro-
portions as that in Scenario 3, except that each mode is
further divided into three equal parts with low, medium, and
high PRFs. Based on the settings, pulse groups of the mode
with a PRI pattern of [τ, τ ] take a proportion of 1/3 × 70%
for each τ range shown inTable V, that of the mode with a
PRI pattern of [τ, τ + 20] or [τ, τ + 30] take a proportion
of 1/3 × 20% for each τ range, and that of the mode with a

TABLE IV
PRI Patterns of MFR Pulse Groups in Scenario 3

(τ ∈ [300 us, 400 us])

Fig. 10. Classification performances of two classes of three-mode MFR.

TABLE V
PRI Ranges of Pulse Groups With Different PRF

Fig. 11. Classification performances of two classes of nine-mode MFR.

PRI pattern of [τ, τ + 40] or [τ, τ + 60] take a proportion
of 1/3 × 10% for each τ range.

In this scenario, the correct recognition probabilities of
the proposed method and the method in [18] are shown in
Fig. 11. The proposed method again exceeds its counterpart
largely in this simulation, which indicates that it can be well
applied to the recognition of MFR with more complicated
modes.
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VI. CONCLUSION

This article addresses the recognition problem of MFR,
whose regular modes may be weakly distinguishable.
An integrated classifier is established by synthesizing
hierarchical clusters and classification models of pulse
groups. Pulse group clustering is realized according to their
sequential PRI patterns that are designed for different MFR
modes, and different classifiers are trained for each cluster to
extract distinguishable features from pulse groups. DOC are
calculated for each classifier to indicate the reliability of its
recognition results. In the MFR recognition process based
on pulse group streams, each pulse group is sorted to one
of the pretrained clusters, then the corresponding classifier
is used to distinguish this pulse group, and the recognition
result is weighted with the classifiers DOC. The overall
recognition result is finally obtained by accumulating the
weighted results of each pulse group. Simulation results
show that the proposed method can well cluster pulse groups
with different PRI patterns, and give them reasonable
weights according to the significances of their patterns in
MFR recognition. By handling sequential pulse groups
with the integrated clustering and classification models, the
proposed method obtains much better performances than its
counterpart in the considered scenarios, and it can be well
extended to the recognition of MFRs with more complicated
modes.
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