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Deep Learning COVID-19 Features on CXR
Using Limited Training Data Sets

Yujin Oh , Sangjoon Park, and Jong Chul Ye , Fellow, IEEE

Abstract— Under the global pandemic of COVID-19,
the use of artificial intelligence to analyze chest X-ray (CXR)
image for COVID-19 diagnosis and patient triage is becom-
ing important. Unfortunately, due to the emergent nature of
the COVID-19 pandemic, a systematic collectionof CXR data
set for deep neural network training is difficult. To address
this problem, here we propose a patch-based convolutional
neural network approach with a relatively small number of
trainable parameters for COVID-19 diagnosis. The proposed
method is inspired by our statistical analysis of the potential
imaging biomarkers of the CXR radiographs. Experimen-
tal results show that our method achieves state-of-the-art
performance and provides clinically interpretable saliency
maps, which are useful for COVID-19 diagnosis and patient
triage.

Index Terms— COVID-19, chest X-ray, deep learning, seg-
mentation, classification, saliency map.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has become global pandemic in less than four months
since it was first reported, reaching a 3.3 million confirmed
cases and 238,000 death as of May 2nd, 2020. Due to its
highly contagious nature and lack of appropriate treatment and
vaccines, early detection of COVID-19 becomes increasingly
important to prevent further spreading and to flatten the curve
for proper allocation of limited medical resources.

Currently, reverse transcription polymerase chain reaction
(RT-PCR), which detects viral nucleic acid, is the golden
standard for COVID-19 diagnosis, but RT-PCR results using
nasopharyngeal and throat swabs can be affected by sampling
errors and low viral load [1]. Antigen tests may be fast, but
have poor sensitivity.

Since most COVID-19 infected patients were diagnosed
with pneumonia, radiological examinations may be useful for
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diagnosis and assessment of disease progression. Chest com-
puted tomography (CT) screening on initial patient presenta-
tion showed outperforming sensitivity to RT-PCR [2] and even
confirmed COVID-19 infection on negative or weakly-positive
RT-PCR cases [1]. Accordingly, recent COVID-19 radiological
literature primarily focused on CT findings [2], [3]. However,
as the prevalence of COVID-19 increases, the routine use
of CT places a huge burden on radiology departments and
potential infection of the CT suites; so the need to recognize
COVID-19 features on chest X-ray (CXR) is increasing.

Common chest X-ray findings reflect those described by
CT such as bilateral, peripheral consolidation and/or ground
glass opacities [2], [3]. Specifically, Wong et al. [4] described
frequent chest X-ray (CXR) appearances on COVID-19.
Unfortunately, it is reported that chest X-ray findings have
a lower sensitivity than initial RT-PCR testing (69% versus
91%, respectively) [4]. Despite this low sensitivity, CXR
abnormalities were detectable in 9% of patients whose initial
RT-PCR was negative.

As the COVID-19 pandemic threatens to overwhelm health-
care systems worldwide, CXR may be considered as a tool
for identifying COVID-19 if the diagnostic performance with
CXR is improved. Even if CXR cannot completely replace
the RT-PCR, the indication of pneumonia is a clinical mani-
festation of patient at higher risk requiring hospitalization, so
CXR can be used for patient triage, determining the priority
of patients’ treatments to help saturated healthcare system in
the pandemic situation. This is especially important, since
the most frequent known etiology of community acquired
pneumonia is bacterial infection in general [5]. By excluding
these population by triage, limited medical resource can be
spared substantially.

Accordingly, deep learning (DL) approaches on chest X-ray
for COVID-19 classification have been actively explored [6]–
[12]. Especially, Wang and Wong [6] proposed an open source
deep convolutional neural network platform called COVID-
Net that is tailored for the detection of COVID-19 cases
from chest radiography images. They claimed that COVID-
Net can achieve good sensitivity for COVID-19 cases with
80% sensitivity.

Inspired by this early success, in this paper we aim to further
investigate deep convolutional neural network and evaluate
its feasibility for COVID-19 diagnosis. Unfortunately, under
the current public health emergency, it is difficult to collect
large set of well-curated data for training neural networks.
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Fig. 1. Overall architecture of the proposed neural network approach: (a) Segmentation network, and (b) Classification network.

Therefore, one of the main focuses of this paper is to develop
a neural network architecture that is suitable for training with
limited training data set, which can still produce radiologically
interpretable results. Since most frequently observed distribu-
tion patterns of COVID-19 in CXR are bilateral involvement,
peripheral distribution and ground-glass opacification (GGO)
[13], a properly designed neural network should reflect such
radiological findings.

To achieve this goal, we first investigate several imag-
ing biomarkers that are often used in CXR analysis, such
as lung area intensity distribution, the cardio-thoracic ratio,
etc. Our analysis found that there are statistically significant
differences in the patch-wise intensity distribution, which is
well-correlated with the radiological findings of the local-
ized intensity variations in COVID-19 CXR. This findings
lead us to propose a novel patch-based deep neural network
architecture with random patch cropping, from which the
final classification result are obtained by majority voting
from inference results at multiple patch locations. One of the
important advantages of the proposed method is that due to
the patch training the network complexity is relative small
and multiple patches in each image can be used to augment
training data set, so that even with the limited data set the
neural network can be trained efficiently without overfitting.
By combining with our novel preprocessing step to normalize
the data heterogeneities and bias, we demonstrate that the
proposed network architecture provides better sensitivity and
interpretability, compared to the existing COVID-Net [6] with
the same data set.

Furthermore, by extending the idea of the gradient-weighted
class activation map (Grad-CAM) [14], yet another important
contribution of this paper is a novel probabilistic Grad-CAM
that takes into account of patch-wise disease probability in
generating global saliency map. The resulting class activation
map clearly show the interpretable results that are well corre-
lated with radiological findings.

II. PROPOSED NETWORK ARCHITECTURE

The overall algorithmic framework is given in Fig. 1. The
CXR images are first pre-processed for data normalization,
after which the pre-processed data are fed into a segmentation
network, from which lung areas can be extracted as shown
in Fig. 1(a). From the segmented lung area, classification
network is used to classify the corresponding diseases using
a patch-by-patch training and inference, after which the final
decision is made based on the majority voting as shown in
Fig. 1(b). Additionally, a probabilistic Grad-CAM saliency
map is calculated to provide an interpretable result. In the
following, each network is described in detail.

A. Segmentation Network

Our segmentation network aims to extract lung and heart
contour from the chest radiography images. We adopted an
extended fully convolutional (FC)-DenseNet103 to perform
semantic segmentation [15]. The training objective is

argmin
�

L(�) (1)
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where L(�) is the cross entropy loss of multi-categorical
semantic segmentation and � denotes the network parameter
set, which is composed of filter kernel weights and biases.
Specifically, L(�) is defined as

L(�) = −
∑

s

∑
j

λs1(y j = s)log(p�(x j )) (2)

where 1(·) is the indicator function, p�(x j ) denotes the
softmax probability of the j -th pixel in a CXR image x, and y j

denotes the corresponding ground truth label. s denotes class
category, i.e., s ∈ {background, heart, left lung, right lung}.
λs denotes weights given to each class category.

CXR images from different dataset resources may induce
heterogeneity in their bits depth, compression type, image
size, acquisition condition, scanning protocol, postprocessing,
etc. Therefore, we develop a universal preprocessing step
for data normalization to ensure uniform intensity histogram
throughout the entire dataset. The detailed preprocessing steps
are as follows:

1) Data type casting (from uint8/uint16 to float32)
2) Histogram equalization (gray level = [0, 255.0])
3) Gamma correction (γ = 0.5)
4) Image resize (height, width = [256, 256])

Using the preprocessed data, we trained FC-DenseNet103
[15] as our backbone segmentation network architecture.
Network parameters were initialized by random distribution.
We applied Adam optimizer [16] with an initial learning
rate of 0.0001. Whenever training loss did not improve by
certain criterion, the learning rate was reduced by factor
10. We adopted early stopping strategy based on validation
performance. Batch size was optimized to 2. We implemented
the network using PyTorch library [17].

B. Classification Network

The classification network aims to classify the chest X-ray
images according to the types of disease. We adopted the
relatively simple ResNet-18 as the backbone of our classi-
fication algorithm for two reasons. The first is to prevent from
overfitting, since it is known that overfitting can occur when
using an overly complex model for small number of data.
Secondly, we intended to do transfer learning with pre-trained
weights from ImageNet to compensate for the small training
data set. We found that these strategy make the training stable
even when the dataset size is small.

The labels were divided into four classes: normal, bac-
terial pneumonia, tuberculosis (TB), and viral pneumonia
which includes the pneumonia caused by COVID-19 infec-
tion. We assigned the same class for viral pneumonia from
other viruses (e.g. SARS-cov or MERS-cov) with COVID-19,
since it is reported that they have similar radiologic features
even challenging for the experienced radiologists [18]. Rather,
we concentrated on more feasible work such as distinguishing
bacterial pneumonia or TB from viral pneumonia, which show
considerable differences in the radiologic features and are still
useful for patient triage.

The pre-processed images were first masked with the lung
masks from the segmentation networks, which are then fed into

a classification network. Classification network were imple-
mented in two different versions: global and local approaches.
In the global approach, the masked images were resized to
224 ×224, which were fed into the network. This approach is
focusing on the global appearance of the CXR data, and was
used as a baseline network for comparison. In fact, many of
the existing researches employs similar procedure [6]–[9].

In the local patch-based approach, which is our proposed
method, the masked images were cropped randomly with a size
of 224 × 224, and resulting patches were used as the network
inputs as shown in Fig. 1(b). In contrast to the global approach,
various CXR images are resized to a much bigger 1024×1024
image for our classification network to reflect the original pixel
distribution better. Therefore, the segmentation mask from
Fig. 1(a) are upsampled to match the 1024×1024 image size.
To avoid cropping the patch from the empty area of the masked
image, the centers of patches were randomly selected within
the lung areas. During the inference, K -number of patches
were randomly acquired for each image to represent the entire
attribute of the whole image. The number K was chosen to
sufficiently cover all lung pixels multiple times. Then, each
patch was fed into the network to generate network output,
and among K network output the final decision was made
based on majority voting, i.e. the most frequently declared
class were regarded as final output as depicted in Fig. 1(b). In
this experiments, the number of random patches K was set to
100, which means that 100 patches were generated randomly
from one whole image for majority voting.

For network training, pre-trained parameters from Ima-
geNet are used for network weight initialization, after which
the network was trained using the CXR data. As for opti-
mization algorithm, Adam optimizer [16] with learning rate
of 0.00001 was applied. The network were trained for
100 epochs, but we adopted early stopping strategy based
on validation performance metrics. The batch size of 16 was
used. We applied weight decay and L1 regularization to
prevent overfitting problem. The classification network was
also implemented by Pytorch library.

C. Probabilistic Grad-CAM Saliency Map Visualization

We investigate the interpretability of our approach by visu-
alizing a saliency map. One of the most widely used saliency
map visualization methods is so-called gradient weighted class
activation map (Grad-CAM) [14]. Specifically, the Grad-CAM
saliency map of the class c for a given input image x ∈ R

m×n

is defined by

lc(x) = UP

(
σ

(∑
k

αc
k f k(x)

))
∈ R

m×n (3)

where f k(x) ∈ R
u×v is the k-th feature channel at the last

convolution layer (which corresponds to the layer 4 of ResNet-
18 in our case), UP(·) denotes the upsampling operator from a
u×v feature map to the m×n image, σ(·) is the rectified linear
unit (ReLU) [14]. Here, αc

k is the feature weighted parameter
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for the class c, which can be obtained by

αc
k = 1

Z

uv∑
i=1

∂yc

∂ f k
i

(4)

for some scaling parameter Z , where yc is the score for the
class c before the softmax layer and f k

i denotes the i -th pixel
value of f k(x). The Grad-CAM map lc is then normalized to
have value in [0, 1]. The Grad-CAM for the global approach
is used as a baseline saliency map.

However, care should be taken in applying Grad-CAM to
our local patch-based approach, since each patch has different
score for the COVID-19 class. Therefore, to obtain the global
saliency map, patch-wise Grad-CAM saliency maps should
be weighted with the estimated probability of the class, and
their average value should be computed. More specifically,
our probabilistic Grad-CAM with respect to the input image
x ∈ R

m×n has the following value at the i -th pixel location:

[
lc

prob(x)
]

i
= 1

Ki

[
K∑

k=1

rc(xk)Qk
(
lc(xk)

)]
i

(5)

where xk ∈ R
p×q denotes the k-th input patch, Qk : R

p×q �→
R

m×n refers to the operator that copies the p × q-size k-th
patch into the appropriate location of a zero-padded image in
R

m×n , and lc(xk) ∈ R
p×q denotes the Grad-CAM computed

by (3) with respect to the input patch xk ∈ R
p×q , and Ki

denotes the number of the frequency of the i -th pixel in the
total K patches. Additionally, the class probability rc(xk)
for the k-th patch can be readily calculated after the soft-
max layer. Accordingly, the average probability of each pixel
belonging to a given class can be taken into consideration in
Eq. (5) when constructing a global saliency map.

III. METHOD

A. Dataset

We used public CXR datasets, whose characteristics are
summarized in Table I and Table II. In particular, the data in
Table I are used for training and validation of the segmenta-
tion networks, since the ground-truth segmentation masks are
available. The curated data in Table II are from some of the
data in Table I as well as other COVID-19 resources, which
were used for training, validation, and test for the classifi-
cation network. More detailed descriptions of the dataset are
follows.

1) Segmentation Network Dataset: The JSRT dataset was
released by the Japanese Society of Radiological Technology
(JSRT) [19]. Total 247 chest posteroanterior (PA) radiographs
were collected from 14 institutions including normal and
lung nodule cases. Corresponding segmentation masks were
collected from the SCR database [20]. The JSRT/SCR dataset
were randomly split into training (80%) and validation (20%).
For cross-database validation purpose, we used another public
CXR dataset: U.S. National Library of Medicine (USNLM)
collected Montgomery Country (MC) dataset [21]. Total
138 chest PA radiographs were collected including normal,
TB cases and corresponding lung segmentation masks.

TABLE I
SEGMENTATION DATASET RESOURCES

TABLE II
CLASSIFICATION DATA SET RESOURCES

TABLE III
DISEASE CLASS SUMMARY OF THE DATA SET

2) Classification Dataset: The dataset resources for the clas-
sification network are described in Table II. Specifically, for
normal cases, the JSRT dataset and the NLM dataset from the
segmentation validation dataset were included. For comparing
COVID-19 from normal and different lung diseases, data were
also collected from different sources [22], [23], including addi-
tional normal cases. These datasets were selected because they
are fully accessible to any research group, and they provide the
labels with detailed diagnosis of disease. This enables more
specific classification of pneumonia into bacterial and viral
pneumonia, which should be classified separately because of
their distinct clinical and radiologic differences.

In the collected data from the public dataset [22], over
80% was pediatric CXR from Guangzhou Women and Chil-
dren’s Medical Center [24]. Therefore, to avoid the network
from learning biased features from age-related characteristics,
we excluded pediatric CXR images. This is because we aim
to utilize CXR radiography with unbiased age distribution for
more accurate evaluation of deep neural networks for COVID-
19 classification.

Total dataset was curated into five classes; normal, TB,
bacterial pneumoia, viral pneumonia, COVID-19 pneumonia.
The numbers of each disease class from the data set are sum-
marized in Table III. Specifically, a total of 180 radiography
images of 118 subjects from COVID-19 image data collection
were included. Moreover, a total of 322 chest radiography
images from different subjects were used, which include 191,
54, and 20 images for normal, bacterial pneumonia, and
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TABLE IV
DATASET FOR COMPARISON WITH COVID-NET

viral pneumonia (not including COVID-19), respectively. The
combined dataset were randomly split into train, validation,
and test sets with the ratio of 0.7, 0.1, and 0.2.

3) Dataset for Comparison With COVID-Net: We prepared a
separate dataset to compare our method with existing state-
of-the art (SOTA) algorithm called COVID-Net [6]. COVID-
19 image data collection was combined with RSNA Pneu-
monia Detection Challenge dataset as described in [6] for a
fair comparison between our method and COVID-Net. The
reason we separately train our network with the COVID-Net
data set is that RSNA Pneumonia Detection Challenge dataset
provide only the information regarding the presence of pneu-
monia, rather than the detailed diagnosis of disease, so that
the labels were divided into only three categories including
normal, pneumonia, and COVID-19 as in Table IV. More
specifically, there were 8,851 normal and 6,012 pneumonia
chest radiography images from 13,645 patients in RSNA Pneu-
monia Detection Challenge dataset, and these images were
combined with COVID-19 image data collection to compose
a total dataset. Among these, 100 normal, 100 pneumonia, and
10 COVID-19 images were randomly selected for validation
and test set, respecitvely as in [6]. Although we believe our
categorization into normal, bacterial, TB, and viral+COVID-
19 cases is more correlated with the radiological findings and
practically useful in clinical environment [18], we conducted
this additional comparison experiments with the data set in
Table IV to demonstrate that our algorithm provides com-
petitive performance compared to COVID-Net in the same
experiment set-up.

B. Statistical Analysis of Potential CXR
COVID-19 Markers

The following standard biomarkers from CXR image analy-
sis are investigated.

• Lung Morphology: Morphological structures of the seg-
mented lung area as illustrated in Fig. 2(b) was evaluated
throughout different classes.

• Mean Lung Intensity: From the segmented lung area,
we calculated mean value of the pixel intensity within
the lung area as shown in Fig. 2(c).

• Standard Deviation of Lung Intensity: From the intensity
histogram of lung area pixels, we calculated one standard
deviation which is indicated as the black double-headed
arrow in Fig. 2(c).

• Cardiothoracic Ratio (CTR): CTR can be calculated by
dividing the maximal transverse cardiac diameter by the
maximal internal thoracic diameter annotated repectively
as red and blue double-headed arrows in Fig. 2(a).
Cardiothoracic Ratio (CTR) is a widely used marker to

Fig. 2. (a) Segmentation result. Each lung and heart segment are
overlapped on CXR coloring in blue and red, respectively. Green line
represent the ground truth. (b) Extracted lung areas, and (c) correspond-
ing lung area pixel intensity histogram.

diagnosis cardiomegaly [25], [26]. We hypothesized that
if cardiothoracic boundary become blurred by rounded
opacities or consolidation in COVID-19 CXR [2]–[4],
distinct off-average CTR value can be utilized as an
abnormality alarm.

Statistical analysis for the potential biomarkers was per-
formed using MATLAB 2015a (Mathworks, Natick). Kol-
mogorov Smirnov test was used to evaluate the normal dis-
tribution of marker candidates. For non-normally distributed
variables, Wilcoxon signed rank test was used to compare seg-
mentation performance with identical data size, and Wilcoxon
rank sum test was used to compare COVID-19 marker can-
didates to those of other classes with different data sizes.
Statistical significance (SS) levels were indicated as asterisks;
* for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

C. Classification Performance Metrics

The performance of the classification methods was evalu-
ated using the confusion matrix. From the confusion matrix,
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) values were obtained, and 5 metrics for
performance evaluation were calculated as below:

1) Accuracy = (T N + T P)/(T N + T P + F N + F P)
2) Precision = T P/(T P + F P)
3) Recall = T P/(T P + F N)
4) F1 score = 2(Precision × Recall)/(Precision + Recall)
5) Specificity = T N/(T N + F P)

Among these, the F1 score was used as the evaluation metric
for early stopping. The overall metric scores of the algorithm
were calculated by averaging each metric for multiple classes.

IV. EXPERIMENTAL RESULTS

A. Segmentation Performance on Cross-Database

Segmentation performance of anatomical structure was eval-
uated using Jaccard similarity coefficient. Table V presents
the Jaccard similarity coefficient of each contour on the
validation dataset. The results confirmed our method provides
comparable accuracy to previous works using the JSRT dataset
and the NLM(MC) dataset [27], [28].

To evaluate segmentation performance on cross-database,
we tested either original or preprocessed images of the
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TABLE V
CXR SEGMENTATION RESULTS

NLM dataset as inputs. The result shows that our univer-
sal preprocessing step for data normalization contributes to
the processing of cross-database with statistically significant
improvement on segmentation accuracy (Jaccard similarity
coefficients from 0.932 to 0.943, p < 0.001). This result
indicates that preprocessing is crucial factor to ensure seg-
mentation performance in cross-database.

B. Morphological Analysis of Lung Area

To analyze morphological characteristics in the segmented
lung area, a representative CXR radiograph for each class
was selected for visual evaluation. Lung contour of each
class showed differentiable features and showed mild tendency.
In normal and TB cases (the first and the second row of
Fig. 3, respectively), overall lung and heart contour were
well-segmented. In the bacterial case, however, the segmented
lung area was deformed due to wide spread opacity of bacterial
pneumonia as shown in the third row of Fig. 3, and both
the right cardiac and thoracic borders were lost. In overall
bacterial infection cases, similar findings were occasionally
observed which caused degraded segmentation performance.
This suggests that abnormal morphology of the segmentation
masks may be a useful biomarker to differentiate the severe
infections. In the fourth row of Fig. 3, viral infection caused
bilateral consolidations [29], thus partial deformation of lung
area was observed. In the COVID-19 case of the fifth row of
Fig. 3, despite the bi-basal infiltrations [30], lung area was
fully segmented. In overall cases of the viral and the COVID-
19 classes, lung areas were either normally or partially-
imcompletely segmented, so morphological features of the
segmentation masks may not be sufficiently discriminatory
markers for viral and COVID-19 classes. Based on these
morphological findings in segmented lung area, we further
investigated other potential COVID-19 biomarkers.

C. Statistical Significancy of Potential
COVID-19 Bio-Markers

We hypothesized that CXR appearance influenced by con-
solidations or infiltration of COVID-19 may be reflected in
intensity of the radiograph. Thus, intensity-related COVID-
19 marker candidates were extracted and compared.

1) Lung Areas Intensity: Mean pixel intensity of each lung
area is shown in the scatter plot of Fig. 4(a). COVID-19 cases
showed lower mean intensity compared to other cases with
statistical significance level ( p < 0.001 for normal and bacte-
rial, p < 0.01 for TB). Table VI describes the corresponding
statistical result. Despite the statistical significance, the scatter
plot showed broad overlap between several classes.

Fig. 3. Preprocessed images, corresponding segmentation results, and
the extracted lung contours are shown along with the column-axis. Each
row depicts different categorical class.

TABLE VI
LUNG AREAS INTENSITY STATISTICS

2) Lung Areas Intensity Variance: Standard deviation of pixel
intensity of each lung area are scattered in plot in Fig. 4(b).
For both the COVID-19 and the viral cases, the variance values
were higher than other classes with statistical significance
(p < 0.001 for all). Table VII describes the corresponding
statistical result.

To investigate the effect of scanning protocol on statistics,
we performed additional study by excluding anteroposterior
(AP) Supine radiographs from entire dataset with docu-
mented patient information. Recall that AP Supine protocol
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Fig. 4. Scatter plot (Left) and corresponding mean values with one
standard deviation error bars (Right). All the parameter values are
normalised to an arbitrary unit.

is an alternative to standard PA or AP protocol depending on
patient condition. Since AP Supine protocol is not common
in normal cases, supine scanning with different acquisition
condition may have potential for considerable heterogeneity in
data distribution, causing biased results in statistical analysis,
so we investigated this issue. The result shown in Table VIII
compared to Table VII showed minor difference in both the
COVID-19 and the viral and cases. The result indicates that
for both the COVID-19 and viral classes, the highly intensity-
variable characteristic in the lung area is invariant to scaning
protocol.

3) Cardiothoracic Ratio: CTR values of each lung area is
scattered in Fig. 4(c). Despite there exist statistical differences
between the COVID-19 cases to other classes ( p < 0.001 for
normal and TB, p < 0.05 for Bacteria), the scatter plot showed

TABLE VII
LUNG AREAS INTENSITY VARIANCE STATISTICS

TABLE VIII
LUNG AREAS INTENSITY VARIANCE STATISTICS BY EXCLUDING AP

SUPINE RADIOGRAPHS

TABLE IX
CARDIOTHORACIC RATIO STATISTICS

broad overlap between several classes. Table IX describes the
corresponding statistical result.

Based on the statistical analysis of potential bio-marker
candidates, we found that intensity distribution pattern within
the lung area may be most effective in the diagnosis, which
highly reflects the reported chest X-ray (CXR) appearances
of COVID-19, i.e., multi-focally distributed consolidation and
GGO in specific region such as peripheral and lower zone
[2]–[4].

However, care should be taken, since not only the locally
concentrated multiple opacities can cause uneven intensity
distribution throughout entire lung area, but also different
texture distribution within CXR may cause the similar intensity
variations. For example, multi-focally distributed consolidation
from COVID-19 could make the intensity variance differenti-
ating factor from other classes, but also bacterial pneumonia
generates opacity as well, whose feature may lead to the simi-
lar intensity distributions as results of different characteristics
of opacity spreading pattern.

To decouple these compounding effects, we further inves-
tigated the local and global intensity distribution. For the
correctly classified patches from our classification network,
we computed their mean intensity and standard deviation
(STD) values. We refer to the distribution of mean inten-
sity of each patch as the inter-patch intensity distribution
(Fig. 5(a)) and the STD of each patch as intra-patch intensity
distribution (Fig. 5(b)). As shown in Fig. 5(a), the inter-
patch intensity distribution of the unified COVID-19 and viral
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Fig. 5. Scatter plot (Left) and corresponding mean values with one
standard deviation error bars. Each scatter depicts a patch which was
correctly classified to the ground truth label. All the parameter values
were normalised to an arbitrary unit. Statistically differentiable classes
from the COVID-19 and viral cases (p < 0.001) are marked at each error
bar.

class showed distict lower intensity values (p < 0.001 for
all) to other classes and highly intensity-variant characteris-
tics which can be represented as the large error bar. This
result is in accordance with the result of lung area intensity
and intensity variance (Fig. 4(a), (b)). Intra-patch intensity
distribution, however, showed no difference compared to the
normal class (p > 0.05). From these intra- and inter-patch
intensity distribution results, we can infer that intra-patch
variance, which represents local texture information, was not
crucially informative, whereas the globally distributed multi-
focal intensity change may be an important discriminating
feature for COVID-19 diagnosis, which is strongly correlated
with the radiological findings.

One common finding among the marker candidates was
no difference between the COVID-19 and the viral case
(p > 0.05 for all the markers), which is also correlated
with radiological findings [18]. Therefore, in the classification
network, the COVID-19 and viral classes were integrated into
one class.

D. Classification Performance

The classification performances of the proposed method
are provided in Table X. The confusion matrices for the (a)

TABLE X
CLASSIFICATION RESULTS FROM THE GLOBAL APPROACH AND THE

PROPOSED PATCH-BASED CLASSIFICATION NETWORK

TABLE XI
SENSITIVITY OF THE GLOBAL APPROACH AND THE LOCAL

PATCH-BASED CLASSIFICATION NETWORK

global method and the (b) local patch-based method are shown
in Fig. 6. The proposed local patch-based approach showed
consistently better performance than global approach in all
metrics. In particular, as depicted in Table XI, our method
showed the sensitivity of 92.5% for COVID-19 and viruses,
which was acceptable performance as a screening method,
considering the fact that the sensitivity of COVID-19 diagnosis
by X-ray image is known to be 69% even for clinical experts
and that the current gold standard, RT-PCR, has sensitivity
of 91% [4]. Moreover, compared to the global approach,
the sensitivity of other classes are significantly high, which
confirms the efficacy of our method.

E. Interpretability Using Saliency Map

Fig. 7 and Fig. 8 illustrate the examples of visualization of
saliency map. As shown in Fig. 7(a), the existing Grad-CAM
method for global approach showed the limitation that it only
focuses on the broad main lesion so that it cannot properly
differentiate multifocal lesions within the image. On the other
hand, with the probabilistic Grad-CAM, multifocal GGOs
and consolidations were visualized effectively by our local
patch-based approach as shown in Fig. 7(c), which was in
consistent with the findings reported by clinical experts. In
particular, when we compute the probabilistic Grad-CAM for
the COVID-19 class using patient images from various classes
(i.e., normal, bacterial, TB, and COVID-19), a noticeable
activation map was observed only in the COVID-19 patient
data set, whereas almost no activations were observed in
patients with other diseases and conditions as shown in Fig. 8.
These results strongly support our claim that the probabilistic
Grad-CAM saliency map from our local patch-based approach
is more intuitive and interpretable compared to the existing
methods.

V. DISCUSSION

A. COVID-19 Features on CXR

In the diagnosis of COVID-19, other diseases mimick-
ing COVID-19 pneumonia should be differentiated, including
community-acquired pneumonia such as streptococcus pneu-
monia, mycoplasma and chlamydia related pneumonia, and
other coronavirus infections.
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Fig. 6. Confusion matrices for the (a) global approach, and (b) the
proposed local patch-based approach.

In radiological literature, most frequently observed dis-
tribution patterns of COVID-19 are bilateral involvement,
peripheral distribution and GGO [13]. Wong et al. [4] found
that consolidation was the most common finding (30/64, 47%),
followed by GGO (21/64, 33%). CXR abnormalities had a
peripheral (26/64, 41%) and lower zone distribution (32/64,
50%) with bilateral involvement (32/64, 50%), whereas pleural
effusion was uncommon (2/64, 3%).

Our statistical analysis of the intensity distribution clearly
showed that the globally distributed localized intensity vari-
ation is a discriminatory factor for COVID-19 CXR images,
which was also confirmed with our saliency map. This clearly
confirmed that the proposed method clearly reflects the radi-
ological findings.

B. Feasibility as a ‘Triage’ for COVID-19

In pandemic situation of infectious disease, the distribution
of medical resources is a matter of the greatest importance.
As COVID-19 is spreading rapidly and surpassing the capacity
of medical system in many countries, it is necessary to make
reasonable decision to distribute the limited resources based on
the ‘triage’, which determine the needs and urgency for each
patient. In general, the most common cause of community

Fig. 7. Examples of saliency maps for COVID-19 patient. (a) Grad-CAM
saliency map for the global approach, (b) original X-ray image, and (c) our
probabilistic Grad-CAM saliency map for local patch-based approach.

acquired pneumonia is bacterial infection [5]. Specifically,
most studies reported that S. pneumoniae is the most fre-
quent causative strain (15 − 42%), after which H. influenza
(11 − 12%) and viral pneumonia follow as the second and the
third most common causes of pneumonia, respectively [5].
In addition, depending on the geological region, substantial
proportion of pneumonia may be diagnosed as TB (up to 10%)
[5]. Summing these up, the proportion of bacterial pneumonia
and TB is suspected to be still large even in this pandemic
situation of COVID-19. In this respect, the disease such as
bacterial pneumonia or TB as well as normal condition can
be excluded primarily, to preserve limited medical resources
such as RT-PCR or CT only for those who suspected to be
infected with COVID-19.

The detailed triage workflow that utilizes the proposed
algorithm is described in Fig. 9. Specifically, our neural
network is trained to classify other virus and COVID-19 in the
same class. This is not only because it is strongly correlated
with the radiological findings [18], but also useful as a triage.
More specifically, by excluding normal, bacterial pneumonia,
and TB at the early stage, we can use RT-PCR or CT for only
those patients classified as other virus and COVID-19 cases for
final diagnosis. By doing this procedure, we can save limited
medical resources such as RT-PCR or CT to those patients
whose diagnosis by CXR is difficult even by radiologists.

C. Training Stability

In order to investigate the origin of the apparent advantages
of using local patch-based training over the global approach,
we investigate the training dynamics to investigate the pres-
ence of overfitting. This is especially important, given that
the training data is limited due to the difficulty of systematic
CXR data collection for COVID-19 cases under current public
health emergency.

Fig. 10 shows the curves for accuracy and F1 score of
(a) the global approach and (b) the proposed local patch-
based approach for each epoch. Note that both approaches
use the same number of weight parameters. Still, thanks to the
increasing training data set from the random patch cropping
across all image area, our local patch-based algorithm did not
showed any sign of overfitting even with the small numbers
of training data, while the global approach showed significant
overfitting problem. This clearly indicates that with the limited
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Fig. 8. Examples of probabilistic Grad-CAM of COVID-19 class for (a) normal, (b) bacterial, (c) tuberculosis, and (d) COVID-19 pneumonia patients.

Fig. 9. Potential triage workflow that utilizes the proposed algorithm in
the diagnosis of COVID-19 patient.

data set the patch-based neural network training may be a
promising direction.

D. Comparison With COVID-Net

Since the proposed patch-based neural network architecture
is designed by considering limited training data set, we investi-
gated any potential performance loss in comparison with other
SOTA deep learning approach that has been developed without
such consideration. Specifically, COVID-Net [6] is one of the
most successful approaches in COVID-19 diagnosis, so we
chose it as the SOTA method.

The comparison between our method and COVID-Net is
shown in Table XII. With the same dataset, our method
showed overall accuracy of 91.9 % which is comparable to
that of 92.4 % for COVID-Net. Furthermore, our method
provided significantly improved sensitivity to COVID-19 cases

Fig. 10. Training and validation accuracy and F1-score for each
epoch. (a) Global approach, and (b) the proposed patch-based approach.

compared to the COVID-Net. In addition, it is also remarkable
that our method uses only about 10% number of parameters
(11.6 M) compared to that of COVID-Net (116.6 M), because
the proposed algorithm is developed based on less complex
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TABLE XII
COMPARISON OF OUR METHOD WITH COVID-NET

TABLE XIII
LUNG SEGMENTATION RESULTS COMPARISON

network architecture without increasing the complexity of the
model. This may bring the advantages not only in the aspect
of computational time but also in the aspect of performance
and stability with small-sized dataset.

E. Cross-Database Generalization Capability

We are aware that the current study has limitations due to
the lack of well-curated pneumonia CXR dataset. Specifically,
our CXR data set come from a single or at most two sources
(see Table II). Moreover, publicly available COVID-19 dataset
[23] are largely extracted from online publications, website,
etc, so they are not collected in a rigorous manner.

To mitigate the issue of potential bias from the limita-
tion of the database, we employed a universal preprocessing
step for data normalization for the entire dataset as dis-
cussed before. We investigated the effects of our preprocess-
ing step on cross-database generalization by investigating
the COVID-19 dataset, which poses the most severe intra-
dataset heterogeneity. As shown in Fig. 11(b), each original
CXRs of the COVID-19 class showed highly-varying intensity
characteristics among each segmented anatomies. Thanks to
our preprocessing step, the mean pixel intensity distribution
between lung and heart regions of the preprocessed COVID-
19 dataset (see Fig. 11(c)) became similar to the normal
class in Fig. 11(a). The problem of heterogeneity can be also
mitigated as shown in the intensity histograms (see Fig. 11(d)-
(f)). The results confirmed that the original COVID-19 data
could be well preprocessed to have comparable intensity
distribution to that of well-curated normal data.

F. Segmentation Network Analysis

1) Comparison With U-Net: Recall that we chose FC-
DenseNet103 as a backbone segmentation network architecture
thanks to its higher segmentation performance with smaller
number of parameters (9.4 M) [31]. To demonstrate the
effectiveness of CXR segmentation by the FC-Densenet103,
we trained U-Net [32] under identical training conditions
and compared the results. There was no significant difference
between the networks result.

We further analyzed the effect of the different segmentation
methods on classification performance. The proposed segmen-
tation method with the FC-DenseNet103 resulted consistently

Fig. 11. Intensity distribution of segmented anatomies of (a) normal,
(b) original COVID-19, and (c) preprocessed COVID-19 CXRs. Repre-
sentative intensity histogram of each (d) normal, (e) original COVID-19,
and (f) preprocessed COVID-19 CXR.

TABLE XIV
CLASSIFICATION RESULTS WITH DIFFERENT SEGMENTATION

METHODS

better classification performance in all metrics than the U-
Net. When compared with the FC-DenseNet67, which has
smaller number of parameters (3.5 M) [15], the performance
improvement by our method is significant. Given the better
trade-off between the complexity versus performance, we
adopted FC-DenseNet103 as our segmentation network.

2) Effect of Trainset Size: To demonstrate the robustness
of the proposed segmentation network with limited training
dataset, we performed the ablation study by reducing training
dataset size. Lung segmentation performance was evaluated
on the cross-database NLM(MC) dataset. For the preprocessed
NLM(MC) dataset, Jaccard similarity coefficients remain sta-
ble until 50% of trainset was used for training as shown in
Table XV; however, in the original NLM(MC) dataset with-
out preprocessing step, segmentation performance decreased
steeply as the size of trainsets decreased. This results support
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TABLE XV
EFFECTS OF TRAINSET SIZE

that proposed segmentation network endures limited train-
ing dataset size by matching intensity distribution of cross-
database CXRs thanks to our preprocessing step.

3) Segmentation Effects on Marker Analysis and Classifica-
tion: The proposed segmentation network was trained with
normal subject set that have segmentation mask as shown
Table V, XV, and showed comparable performance with the
SOTA for the normal subjects. However, when CXR images
with severe consolidation are used, segmentation performance
degradation is unavoidable, since such images have been never
observed during the training.

For example, the radiograph from a bacterial pneumonia
case in Fig. 3 was under-segmented due to widely spread
severe opacity. To further investigate this issue, we exam-
ined all cases of under-segmentation by defining the under-
segmentation as a segmentation mask in which over 1/4 of the
entire lung region is deformed. Our investigation showed that
the under-segmentations are only outliers that are observed in
some patient data set (7 of 54 bacterials cases (13%,), 2 of
57 cases for TB (3.5%), and 5 of 200 cases for COVID-19 and
viral pneumonia (2.5%)), whereas no under segmentation were
observed from 191 healthy subjects.

To confirm that the difference in the segmentation results
can be a morphological marker for classification, we evalu-
ated whether it is possible to distinguish normal and abnor-
mal images (including bacterial pneumonia, TB, COVID-19
and other viruses) using only binary segmentation masks
(not X-ray images). With a separately trained neural network
using only binary masks, it was possible to distinguish between
normal and abnormal images with 86.9% sensitivity. This con-
firms that the morphology of the segmentation mask is a dis-
criminatory biomarker between normal and the patient groups.
Then, we conducted additional experiments to evaluate how
classification performance is affected by excluding or includ-
ing under-segmentation cases. Although the differences in
other labels were not significant, the overall sensitivity for bac-
terial pneumonia were better when the under-segmented sub-
jects were excluded. Therefore, the under-segmentation still
has some effects on the classification between the diseases.

Finally, we performed an additional experiment for the
comparison of classification with and without segmentation
masks. The results in Table XVI clearly confirmed that despite
the under-segmented outliers the use of segmentation mask
significantly improved the classification performance on the
whole. This suggests that there are rooms to improve the
performance of the proposed method, if the segmentation
network could be further trained using patient cases with
correct segmentation labels.

TABLE XVI
CLASSIFICATION RESULTS WITH AND WITHOUT SEGMENTATION MASK

Fig. 12. Accuracy of the algorithm according to the dataset size in
(a) absolute and (b) relative scales.

TABLE XVII
CLASSIFICATION RESULTS USING DIFFERENT PATCH SIZES

G. Classification Network Analysis

1) Effect of Patch Size on the Performance: To evaluate the
effect of the patch size on the performance of the classification
algorithm, we tested various patch sizes, such as 112 × 112,
and 448×448. Using half-sized (112×112) patches, the results
were worse as shown in Table XVII. With double-sized (448×
448) patches, the results were not better than those with patch
size of 224 × 224, as depicted in Table XVII. In summary,
there seems to be a clear drawback in reducing the patch size,
and there was also no benefit with increasing the patch size.
Therefore, we chose the value in between.

2) Effects of Trainset Size: We analyzed the effect of dataset
size in terms of classification performance, since we aimed
to develop the method that has the advantage of maintaining
robustness even when only limited data are available. The
classification performances with decreasing dataset sizes are
provided in Fig. 12. The global approach using whole image,
which is similar to most classification methods, showed promi-
nent decrease in accuracy with decreasing dataset size, but the
proposed local patch-based method showed less compromised
performance, showing the robustness to the reduced dataset
size as shown in Fig. 12(a). These results were more prominent
when comparing them by relative scale as shown in Fig. 12(b).
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VI. CONCLUSION

In the rapidly evolving global pandemic of COVID-19,
the use of CXR for COVID-19 diagnosis or triage for patient
management has become an important issue to preserve
limited medical resources and prevent further spreading of
the virus. However, the current diagnostic performance with
CXR is not sufficient for routine clinical use, so the need
of artificial intelligence to improve diagnostic performance of
CXR is increasing. Unfortunately, due to the emergent nature
of COVID-19 global pandemic, systematic collection of the
large data set for deep neural network training is difficult.

To address this problem, we investigated potential biomark-
ers in the CXR and found the globally distributed localized
intensity variation can be an discrimatory feature for the
COVID-19. Based on this finding, we propose a patch-based
deep neural network architecture that can be stably trained
with small data set. Once the neural network was trained,
the final decision was made based on the majority voting from
multiple patches at random locations within lungs. We also
proposed a novel probabilistic Grad-CAM saliency map that is
tailored to the local patch-based approach. Our experimental
results demonstrated that the proposed network was trained
stably with small data set, provided comparative results with
the SOTA method, and generated interpretable saliency maps
that are strongly correlated with the radiological findings.
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