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ABSTRACT This paper presents an analytical continuous smoothing method for the five-axis toolpath by
simultaneously scheduling the tool position and tool orientation trajectories. In order to ensure the high-order
continuous, the peak-controlled jerk and arclength-parameterized property, a novel curve ‘‘airthoid’’ is
proposed for the first time. The biairthoid is involved to smooth the corners of the tool position in the
workpiece coordinate system (WCS) and the corners of the tool orientation in the machine coordinate system
(MCS), the geometries of which are analytically determined by the user-defined deviation errors. A time
synchronization strategy is proposed to extend the duration of the predetermined cubic acceleration profile
to a specified time.With the kinematic constraints of the tool position and the tool orientation, the transitional
and rotational trajectories are analytically synchronized by sharing the samemotion time. To comply with the
constraints of the linear feed drives, an optimization strategy is conducted by adjusting the kinematics of the
tool position. By doing so, the approximation errors of the tool position and tool orientation in the WCS are
strictly satisfied. The analytical arclength expression of the smoothing curves is more suitable for the on-line
interpolation. Due to the arclength-parametrized transition curve, the feedrate fluctuation is eliminated. With
the proposed time synchronization strategy, the physical limits of the feed drives are all respected. Moreover,
the high-order continuous airthoid makes the motion more smoothing-going. Simulations and experiments
verify the effectiveness of the proposed algorithm.

INDEX TERMS Corner smoothing, airthoid curve, time synchronization, five-axis machining, computation
efficiency.

I. INTRODUCTION
Five-axis machine tools are widely adopted to machine
free-form parts due to the graceful advantages in the cutting
efficiency andmachining reachability. The parametric curves,
such as polynomial splines, B-spline, Bézier or NURBS, are
ideal approaches to describe the toolpaths of the free-form
parts, which have been experimentally proven to be superior
to achieve smooth motion and perfect surface finish [1].
However, most of CNC systems are hard to follow the para-
metric splines directly, since some bottlenecks still exits,
including the poor interpretation ability from CAD to NC [2],
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the complex calculation of path lengths [3] and the unwanted
feedrate fluctuations [4]. Instead, the parametric curve is usu-
ally discretized as the linear segments under the predefined
tolerance, and then, segments are programmed as G01 com-
mands [5]. Although the successive G01 commands can be
easily followed by machine tools, there are also problems
needed to be solved. The tangent vectors at the junction of line
segments are different. This enforces the feed drives to stop
at each segment junction, owing to the limited motor driving
ability. As a result, the machining cycle time increases [6] and
the surface finish quality decreases [7].

To overcome these problems, the corners of the multi-axis
toolpath are smoothed by inserting high-order micro-splines
to achieve the non-stop motion, and then, the feedrate
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scheduling strategy is involved to generate the feedrate profile
with the bounded kinematic constraints. The 5-axis machin-
ing toolpath is composed of two independent subpaths, i.e. the
tool position and tool orientation [8], [9]. Researchers usually
smooth 5-axis linear paths by inserting two different para-
metric splines to attain the geometric high-order continuity,
and at the same time, to guarantee the subspline parameters
synchronization. This is achieved by describing the curved
5-axis toolpath with parametric splines. Beudaert et al. [10]
developed two cubic B-Spline curves to smooth the shape
corners in the workpiece coordinate system (WCS), and
then, a third B-Spline curve was designed to synchronize
the spline parameters. Tulsyan and Altintas [11] inserted
the synchronized quantic and septic curves for the tool tip
position and the tool orientation in the WCS. Bi et al. [12]
proposed an analytical corner smoothing method with dual
cubic Bezier curves in themachine coordinate system (MCS),
which synchronously blended the translational and rotational
paths by adjusting the equivalent ratios between the transition
lengths and the control polygon lengths. Yang and Yuen [13]
developed an quintic B-spline to smooth the tool position
corner in theWCS and the tool orientation corner in theMCS.
The parameter synchronization was analytically guaranteed
by ensuring that the third-order derivation of the tool ori-
entation with respect to the tip position displacement was
continuous. Huang et al. [14] involved two cubic B-splines
to blend the toolpaths in the WCS, the parameters of which
were synchronized by converting the remaining linear seg-
ments into the parametric form. Yang et al. [15] proposed a
smoothing method with PH splines to blend the tool position
corner in theWCS and the tool orientation corner in theMCS.
The synchronization was analytically reached by converting
the remaining linear segments into the B-spline. Following
geometric smoothing, the feedrate profile of the tool tip path
was determined by the transitional kinematic constraints.
The feedrate profile of the orientation path was obtained by
synchronizing the parameter of the tool orientation with tool
position.

It should be noticed that in order to satisfy the real-time
requirement of the CNC system, the advanced local smooth-
ing algorithm with the geometric smoothing and feedrate
scheduling stages should be implemented within fewer
timestamps. Although the parametric curve, such as
high-order polynomials [16], [17], B-splines [11], [13],
[14], [18]–[20], Bézier splines [10], [12], [21], [22], can
be analytically determined in accordance with the specific
geometric constraints, there exists two main challenges.
First of all, the arclength has no analytical expression with
spline parameters, and thus, the estimation of the toolpath
length is based on iterative numerical algorithms [18], [23].
It is computationally expensive for real-time interpolation,
especially when the splines are inserted to smooth the suc-
cessive short linear segments or the arclength occupies the
vast majority of the toolpath. In addition, the feedrate fluc-
tuation can be easily induced [24], [25], due to inaccurate
mapping between the targeted arc displacement and the

updated spline parameter. It degrades the machining quality
and causes motor torque saturation. The feedrate correction
strategies [4], [26], [27] are usually involved to eliminate
the fluctuation through remapping the spline parameters to
the arclength. Pythagorean-hodograph (PH) curve [28] is a
subset of the Bézier spline, but the arclength is the polyno-
mial expression of the spline parameter. It was successfully
introduced to blend and interpolate the successive linear
toolpaths [6], [15], [29], which did greatly improve the calcu-
lation efficiency with the analytical expression of the toolpath
length in the lookahead stage. It is noted that, as inherent of
non-arclength parameterized splines, the feedrate correction
model should be repeatedly executed to revise every inter-
polation position in the fine interpolation stage [6]. It is still
computationally stringent for the real-time interpolation. For
these reasons, to realize real-time interpolation and achieve
smooth motion, it is important to involve other splines, which
possesses the analytical expression of the arclength and the
spline parameter directly based on the arclength.

Recently, clothoid draws more attentions for local corner
smoothing [30], [31], since it is the arclength-parameterized
spline. It provides an analytical expression of the arclength.
Moreover, the feedrate fluctuation can be circumvented with-
out any feedrate correction. It is more friendly for the on-line
smoothing since more computing resources can be released
to handle other tasks [6], [32]. However, the C2 continuity
leads to the discontinues jerk at the junction of the linear and
curvilinear sub-paths and the junction of biclothoid [31]. The
jerk jump at the junction of the biclothoid can be confined
by calculating the critical velocity in the lookahead stage,
whereas the jerk jump at the junction of linear and curvi-
linear splines is hard to control. As a result, it leads to the
uncontrollable jerk jump at the junctions, and thus, easily
violates the predefined the jerk limitation of the feed drive.
In fact, the jerk of the velocity profile of the feed drive is
subject to the responsiveness of the motor. Due to the finite
responsiveness ability, the jerk peak value should be confined.
Otherwise, the exaggerated and discontinuous jerk would
excite the structural vibration and decrease the machining
surface, as experimentally verified by Yang and Yuen [13]
and Fan et al. [22]. Therefore, the arclength parameterized
spline with the controllable jerk profile is essential to achieve
smoother motion, and thus, implement the real-time interpo-
lation. To the best of the authors’ knowledge, the spline has
not been analytically applied to on-line blend the corners of
the multi-axis machining toolpaths.

In the previous researches [10]–[14], the feedrate profile
of the tool position is established on the basis of the tran-
sitional kinematic constraints, and the tool orientation path
was treated as the slave motion scheduled by the param-
eter synchronization. Guided by this fact, the transitional
kinematic constraints are well bounded, whereas the kine-
matic constraints of the tool orientation are left out of
consideration. As a result, the abrupt change of the rota-
tional motion might occur [33], [34], when synchronizing
the parameter of the orientation toolpath to the tool position.
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Then, the torque limitation or the maximum speed of the
linear and rotary drives are violated. Moreover, due to the
nonlinear relationship between the parameter and arclength
of the non-arclength parameterized splines, the feedrate fluc-
tuation of the tool orientation may happen evenly with the
constant increment of the parameter generated by the tool
position [24], [25]. As a consequence, the control stability
of the machine tool is destroyed and the visible poor machine
quality may be confronted. Therefore, the smoothness of the
rotational motion should be carefully conducted.

Some researches attempted to treat the angular (i.e. tool
orientation) motion equally with the linear (i.e. tool position)
motion, and simultaneously plan the transitional and rota-
tional trajectories respecting the linear and angular motion
constraints. Huang et al. [35] proposed a time synchroniza-
tion method for the tangent jerk limited velocity profile, and
then the linear and angular kinematic constraints were both
successfully constrained. Liu et al. [9] smoothed the linear
and angular motions based on the finite impulse response
filters technology, and generated two tangent jerk limited
trajectories with the same motion durations. By doing so,
the corresponding kinematic constraints were successfully
constrained with the smooth transition of local corners. It is
noted that the tangent jerk profile in Ref. [9], [35] is bounded
but discontinuous. Actually, the tangent jerk reflects the
smoothness of the path velocity profile. As experimentally
verified by Yang and Yuen [13] and Fan et al. [36], the path
velocity profile with the continuous tangent jerk can obtain
better machining quality and less machine vibrates than the
path velocity profile with the limited but discontinuous jerk.
Therefore, it is an important task to develop a path velocity
scheduling strategy with the continuous tangent jerk based on
the time synchronization for the 5-axis toolpath interpolation.

To simultaneously obtain the real-time high-order contin-
uous interpolation and respect both the kinematic constraints
of the tool position and tool orientation paths, this paper
proposes a novel continuous smoothing method based on the
airthoid curves for the five-axis machining toolpath. First,
a C3 continuous arclength-parameterized curve (airthoid) is
designed. Second, the corner of the tool tip position in the
WCS and the corner of the tool orientation path in the MCS
are analytically blended. The geometries of the smoothing
curves are determined by the predefined approximation errors
and the linear segment lengths. Third, the transitional and
rotational motions with the continuous jerk are analytically
synchronized by sharing the samemotion time and respecting
the linear and angular kinematic constraints. The linear and
angular feedrate profiles based on S-curve-type acceleration
are separately planned to respect the linear and angular kine-
matic constraints. Then, the time synchronization strategy
extends the duration of the faster sub-path to realize the
motion synchronization.

The present article is organized as follows. Characteristics
of the proposed airthoid spline are presented in section II.
Then, the smoothing strategy for corners of the tool posi-
tion and the tool orientation is demonstrated in section III.

The time synchronization is presented in section IV to extend
the duration of the S-curve-type acceleration profile to any
value. Furthermore, a look-ahead corner smoothing method
for the tool position and tool orientation trajectories is devel-
oped in section V. The simulations and experiments are pre-
sented in sections VI and VII, respectively. Finally, the article
is summarized and concluded in section VIII.

II. AIRTHOID SPLINE
The clothoid spline is an arclength-parameterized spline,
where the corresponding curvature increases linearly with
the arclength. The C2 continuity with the uncontrolable and
discontinues jerk leads to motion impact at the junction
of the linear and curvilinear paths. To achieve smoother
and jerk-controlable motion profile, the C3 continuous
arclength-parameterized spline is essential. It can be realized
by designing a new arclength-parameterized spline, named
airthoid. It delivers the derivation of the curvature increases
linearly with the arclength. The curvature of the airthoid
spline is expressed as

κ(θ ) = κ0 + cs2 (1)

where κ0 and s are the initial curvature and the arclength,
respectively. Moreover, c and θ denote the sharpness of
the airthoid spline and the tangent angle, respectively. The
tangent angle θ of the spiral can be calculated through the
integration of the curvature respect to the arclength s.

θ(s) = θ0 +
∫ s

0
κ(t)dt = θ0 + κ0s+

1
3
cs3 (2)

where θ0 is the tangent angle at the start point. It should be
indicated that θ0 and κ0 are zeros, since the spline is inserted
as the smoothing curve to connect the linear segment.

FIGURE 1. The airthoid curve.

Fig. 1 shows the schematic of the airthoid spline, where the
original point of the airthoid is defined as P0. Moreover, t and
n are the tangent and normal unit vectors of the spline at the
point P0, respectively. The coordinate of an arbitrary point on
the spline can be expressed as

P(s) = P0 + Cs(s)t+ Ss(s)n (3)

whereCs(s) =
∫ s

0
cos(θ(t))dt , Ss(s) =

∫ s

0
sin(θ (t))dt are the

components in the direction of t and n, respectively.
Combined with Eq.(2), Cs(s) and Ss(s) can be rewritten as

Cs(s) =
∫ s

0
cos

c
3
t3dt; Ss(s) =

∫ s

0
sin

c
3
t3dt (4)
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The tangent angle of the airthoid is meaningful to design
the geometry of the smoothing curve, because it can be
connected with the corner angle. Defining θ =

c
3
t3, Eq.(3)

can be rewritten as

P(θ) = P0 + aC(θ )t+ aS(θ )n (5)

where a is the scaling parameter in the form below:

a =
3
√
π

c
(6)

and the terms C(θ ) and S(θ ) are shown as

C(θ ) =
1

3
√
9π

∫ θ

0

cos u
3√u2

du; S(θ ) =
1

3
√
9π

∫ θ

0

sin u
3√u2

du (7)

The arclength_P0P is achieved as

s(θ ) =
∫ θ

0

√(
dP
dθ

)(
dP
dθ

)
dθ = a

3
√
3θ
π

(8)

It is noted that the arclength of the airthoid can be deter-
mined with θ , when the geometry is predefined with a.

The curvature at P is the reciprocal of the curvature radius,
obtained as

κ(θ )|P =
1

r(θ )|P
=

3√9πθ2

a
(9)

Theorem 1: The path of the biairthoid at the junction of
the linear and curvilinear splines is G3 continuous.
The proof of theorem 1 is shown in Appendix A.
Theorem 2: The path of the biairthoid at the junction

of the curvilinear splines is G2 continuous, but with the
peak-controlled jerk.

The proof of theorem 2 is shown in Appendix B.

III. FIVE-AXIS TOOLPATH SMOOTHING
A. THE ANALYTICAL SMOOTHING FOR THE
CORNER OF THE TOOL POSITION
The relative velocity between the tool tip and the workpiece
should be strictly controlled in the machining process, since
it directly affects the finished surface quality [1]. Therefore,
the corners of the tool position are blended and the feedrate
profile of the smoothing toolpath is planned in the WCS to
guarantee the objective velocity of the tool tip. To achieve the

high order continuous motion, a biairthoid spline _B0
pB

1
p
is

constructed to smooth the adjoining lines, P1P2 and P2P3,
in the WCS, which consists of back to back symmetrical
airthoids, as shown in Fig. 2. The airthoid pair is connected at
the pointQ, which is defined as the critical point. The tangent
angle atQ is defined asα, which is equal to 0.5(π−ϕ).ϕ is the
corner angle. The length of the transition segments, B0

pP2 and
B1
pP2, is denoted as lp. The lengths of the smoothing curve,
_
B0
pQ and_QB1

p
, are denoted as l0Bp and l

1
Bp, respectively.

FIGURE 2. Corner smoothing of the tool position in the WCS.

1) MAXIMUM DEVIATION ERROR
Due to the symmetrical airthoids, the maximum deviation
error εpw generates at the critical point Q, which can be
analytically expressed as

εpw =
lpS(α)

sinαS(α)+ cosαC(α)
(10)

It should be indicated that the deviation error εpw is only
determined by the transition length lp under the predefined
the corner angle.

With the predefined deviation error, the intersection of the
adjoining smoothing curves may occur for the limited length
of the linear segments. Therefore, the maximum transition
length is restricted to less than half length of the origi-
nal linear segment, since each linear segment supports the
smoothing of two neighboring corners. With the geometric
constraints, the transition length should be determined as

lp = min
{
sinαS(α)+ cosαC(α)

S(α)
εpw,

0.5 ‖P1P2‖ , 0.5 ‖P2P3‖

}
(11)

Based on the constraints of the predefined contour devi-
ation error and the limited length of the linear segments,
the geometry of the airthoid is determined through the scaling
parameter ap, which is defined as:

ap =
lp

S(α) tanα + C(α)
(12)

2) LENGTH OF THE SMOOTHING CURVE
The length of the smoothing curve can be analytically cal-
culated through combining Eq.(8) and Eq.(12) in the form
below:

l0Bp = ap
3
√
3α
π

(13)

3) MAXIMUM CURVATURE
The curvature extremum of the smoothing curve occurs at the
critical point, which can be analytically calculated as

κmax =
1
lp

{
3
√
9πα2 [S(α) tanα + C(α)]

}
(14)

The specific derivation process is provided in the
Appendix C.
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B. THE ANALYTICAL CORNER SMOOTHING
OF THE TOOL ORIENTATION
To plan the rotational trajectory, the length of the orientation
toolpath should be obtained. Fig. 3(a) shows that when the
smoothing of the orientation toolpath is accomplished in the
WCS, the smoothing curve should be normalized to lie on
the surface of the unity sphere [11], [14]. The normalization
deteriorates the on-line application, since the length of the
orientation toolpath should be iteratively calculated. Instead,
the problem can be overcome by inserting the biairthoid to
smooth the linear segments of rotary commands in the MCS,
as shown in Fig 3(b). As a result, the analytical calculation of
the smoothing toolpath length can be both realized.

FIGURE 3. Corner smoothing of the tool orientation.

The deviation error of the tool orientation εow should
be strictly constrained to avoid exceeding the predefined
machining error caused by the slope of the tool orientation.
It can be realized by confining the deviation error εom
between the smoothing curve and the linear segments of
rotary commands proposed by Liu et al. [9].
Similar to the transition length of the tool position in

the WCS, the needed transition length lomε of the rotational
toolpath in the MCS is

lomε =
sinβS(β)+ cosβC(β)

S(β)
εom (15)

where β and εom denote the tangent angle with the linear
rotary command and the predefined orientation error toler-
ance in the MCS, respectively. To eliminate the intersection
of the smoothing curves, the maximum transition length lo
should be no more than the half length of the linear segment.

lo = min {lomε, 0.5 ‖O1O2‖ , 0.5 ‖O2O3‖} (16)

where ‖O1O2‖ and ‖O2O3‖ are the length corresponding
to the original linear segments in the MCS. Applying the
above mentioned calculated transition length lo, the scaling
parameter ao of the smoothing curve for the rotational path
in the MCS is

ao =
lo

S(β) tanβ + C(β)
(17)

It is noted that the geometry of smoothing curve based on
the airthoid is confirmed with the scaling parameter ao.

The length of the smoothing curve in the machine coordi-
nate system is analytically calculated as

l0Bo = ao
3
√
3β
π

(18)

IV. TIME SYNCHRONIZATION ALGORITHM BASED ON
THE S-CURVE-TYPE ACCELERATION PROFILE
A. VELOCITY PROFILE BASED ON THE
S-CURVE-TYPE ACCELERATION
The jerk-continuous feedrate profile performs better than
the jerk-limited feedrate profile in reducing the machine
tool vibration and increasing the maching accuracy, which
has been experimentally verified by Refs. [13], [37]. The
S-curve-type acceleration profile is widely utilized to gen-
erate the jerk-continuous motion [6], [11], [38]. Fig. 4 illus-
trates the motion profiles corresponding to the S-curve-type
acceleration. It indicates that, with the given start velocity vs,
end velocity ve and the displacement L, the trajectory is deter-
mined to achieve the shortest motion time with regard to the
jerk and acceleration limitations. The velocity function v(t) is
designed as

v(t) =



vs +
101Va
t3a

t3 −
151Va
t4a

t4 +
61Va
t5a

t5;

for 0 ≤ T ≤ ta, t = T
vm; for ta ≤ T ≤ ta + tc, t = T − ta

vm +
101Vd
t3d

t3 −
151Vd
t4d

t4 +
61Vd
t5d

t5;

for ta + tc ≤ T ≤ ta + tc + td , t = T − ta − tc
(19)

where 1Va and 1Vd are vm − vs and ve − vm, respectively.
ta, td and tc are the durations of the acceleration, deceler-
ation and the constant velocity stages, respectively. Thus,
the transition time of the acceleration and deceleration stages

FIGURE 4. Motion profiles based on the S-curve-type acceleration [6].
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can be determined through integration over the acceleration
limitation Amax and the jerk limitation Jmax, which can be
expressed as

ta = max

(
15(vm − vs)

8Amax
,

√
45(vm − vs)

8Jmax

)
(20)

td = max

(
15(vm − ve)

8Amax
,

√
45(vm − ve)

8Jmax

)
(21)

The distance in the acceleration, deceleration and the con-
stant velocity stages denotes as La, Ld and Lc, which can be
obtained from the following term:

La =
vs + vm

2
ta; Ld =

vm + ve
2

td ; Lc = vmtm (22)

Detailed discussion of the above material is available
in Ref. [38].

B. TIME SYNCHRONIZATION
The time synchronization method proposed by Huang
et.al. [35] focuses on extending the motion duration of the
jerk limited acceleration profile to any value. To confront jerk
continuous motion, a new time synchronization strategy is
proposed to extend the duration of the S-shape-acceleration
motion to any specified time. Fig. 5 shows that the five syn-
chronization types Ai(i = 1, 2, 3, 4, 5) are involved to extend
the trajectory to the goal duration Te. It indicates that synchro-
nization types can be divided into the following categories:
(i) the acceleration, uniform and decelerationmotions; (ii) the
acceleration and uniform motions; (iii) only the acceleration
motion; (iv) the deceleration and uniform motions; (v) the
deceleration, uniform and deceleration motions, respectively.

FIGURE 5. Time synchronization schematic.

1) DETERMINING THE DURATION THRESHOLD
Three duration thresholds Ti(i = 1, 2, 3) are involved to
determine the revised motion profile types with the given the
goal duration Te. The duration threshold T1 is defined as

T1 = T1a +
L − 0.5(vs + ve)T1a

ve
(23)

where T1a is the duration of the transition velocity from
vs to ve with the driving limitations, which is equal to

max
(
15(ve−vs)
8Amax

,

√
45(ve−vs)
8Jmax

)
.

The duration threshold T2 is the transition interval for the
distance L.

T2 =
2L

vs + ve
(24)

The duration threshold T3 is calculated according to
Eq.(25), when only the uniform motion exists.

T3 =
L
vs

(25)

2) REVISING THE FEEDRATE PROFILE
When Te < T1, the motion trajectory is revised as type A1,
which includes the accelerating and decelerating motions,
and the motion with the uniform velocity. Durations of the
acceleration motion ta and the deceleration motion td remain
unchanged, and then the duration of the motion with the
uniform velocity extends to Te − ta − td . The velocity vm at
the uniform stage is deduced to

vm =
L − 0.5vsta − 0.5vetd
Te − 0.5ta − 0.5td

(26)

It should be noted that the kinematic constraints in the
acceleration and deceleration stages are respected well due to
the reduced vm and invariable ta and td . The revised velocity
function v(t) after synchronization is constructed according
to Eq.(19). Without losing generality, the revised velocity
function is established with the similar procedures in follow-
ing synchronization types.

If T1 < Te < T2, the motion feedrate profile is revised as
type A2, and then the duration of the accelerating phase ta is
extended as

ta =
2(veTe − L)
ve − vs

(27)

It is noted that ta should be rounded as ceil(ta/Ts) ·Ts. The
duration of the uniform stage is Te − ta, then ve is modified
as

ve =
L − 0.5vsta
Te − 0.5ta

(28)

If T2 < Te < T3, the feedrate profile is updated as type A3
so that the duration of the acceleration stage extends to Te.
Moreover, ve depends on Te, which is calculated as

ve =
2L − vsTe

Te
(29)

If T3 < Te, the profile is revised as type A4, and the
duration of the deceleration stage td is obtained as

td = max

(
15vs
8Amax

,

√
45vs
8Jmax

)
(30)

After rounding td , the duration of the uniform stage is
designed as Te − td . The end velocity ve is revised as

ve =
L − 0.5vstd
Te − 0.5td

(31)

negative calculated end velocities. Moreover, the end velocity
ve must be zero in some cases, especially in the last segment
of the toolpath. To obtain the time synchronization in these
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cases, type A5 is considered for designing the motion profile.
If the sum of td1 and td2 in Eq. (32) is not higher than Te,
the duration of the stage with the constant velocity is
Te−td1−td2, while the constant velocity vm is calculated as

td1 = max

(
15vs
8Amax

,

√
45vs
8Jmax

)
; td2 = td1;

vm =
L − 0.5vstd1
Te − td1

(32)

When td1 + td2 > Te, the Newtown-Raphson method
is applied to iteratively calculate the constant velocity vm,
the termination condition of which is |Tev − Te| ≤ Ts.
It should be indicated that upper and lower boundaries are
set to 0 and vs, respectively.

td1 = max

(
15(vs − vm)

8Amax
,

√
45(vs − vm)

8Jmax

)
+ Ts;

td2 = max

(
15vm
8Amax

,

√
45vm
8Jmax

)
+ Ts;

Tev =
L − 0.5vstd1 + 0.5vm(td1 + td2)

vm

(33)

Hold td1 and td2 and set Te as the motion duration of
type A5 by modifying the constant velocity vm according
to Eq.(34).

vm =
L − 0.5vstd1

Te − 0.5(td1 + td2)
(34)

where td1 and td2 are obtained from the acceleration and
jerk limitations and the additional interpolation cycle Ts.
Otherwise, the driving limitation in one of the deceleration
stages would be violated, since the difference value of the
velocity increases caused by the modification the velocity
in Eq. (34).

V. FEEDRATE SCHEDULING FOR
THE FIVE-AXIS TOOLPATH
Following the geometry smoothing, the velocity profile along
the toolpath is scheduled to generate the smooth motion. The
toolpath between adjoining critical points and the midpoints
of the smoothing curves is regarded as a block unit, which
composes two adjacent smoothing curves and the remaining
linear segment. The velocity profile of the transitional tool-
path is planned in the WCS, which is determined by the nor-
mal and tangent constraints. Furthermore, the trajectory of the
rotational toolpath is processed in the MCS, which involves
the kinematic constraints based on the driving ability of the
rotation motion axis to avoid the motor torque saturation.
After planning of two trajectories separately, different dura-
tions are synchronized by extending the short duration to the
longer time.

A. TRANSITIONAL AND ROTATIONAL
VELOCITIES AT CRITICAL POINTS
1) THE CRITICAL VELOCITY IN THE POSITION TOOLPATH
Fig. 6 shows that the velocity ve at the critical point Ep is
determined by the tangent/normal kinematic constraints and

FIGURE 6. Bidirectional scanning of the tool position in the WCS.

the initial velocity. It is noted that the initial velocity vs at the
point Sp is determined by a similar process in the last block.
When Sp is the start point of the whole path, vs is set to zero.

Considering constraints of the predefined tangent accel-
eration, the velocity vea at the critical point Ep satisfies the
following inequality.

vea ≤

√
v2s +

16
15
AtpLp (35)

where Atp and Lp are the maximum acceleration limitation of
the tool position and the length between the adjacent critical
points, respectively.

Considering the constraint of the tangent jerk, the velocity
at the critical point vej satisfies the following inequality:

v3ej + v
2
ej · vs − vej · v

2
s − v

3
s −

32
45
J tpL

2
p ≤ 0 (36)

where J tp is the tangent jerk limitation. The derivations
of Eqs.(35) and (36) are provided in Appendix D.

The velocity at the critical point ve is defined as

ve = min

vm, vea, vej,
√
Anp
κp
,

3
√
Jnp
κ2p
,

9
√

Jn3p a6p
24π2αp

 (37)

where Anp and Jnp are the normal acceleration and jerk con-
straints of the tool position, respectively. Moreover, vm and κp
denote the maximum feedrate and the curvature at the critical
point, respectively. ap and αp are the scaling parameter and
the tangent angle at the corner, respectively. It is noted that
the last iterm is used to constrain the value of the jerk jump
at the junction of the biairthoid.

2) CRITICAL VELOCITY IN THE ORIENTATION TOOLPATH
Fig. 7 shows that the orientation toolpath smoothing in the
MCS is constrained by the driving ability to avoid exceeding
the motor saturation. Such constraints include the tangent/
normal acceleration/jerk limitations and the maximum
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FIGURE 7. Bidirection scanning of the tool orientation in the MCS.

motion velocity. Similar to Eq.(35), the rotating velocity ωea
at the critical pointEo with the specific acceleration limitation
is

ωea ≤

√
ω2
s +

16
15
AtoLo (38)

where Ato, ωs and Lo are angular acceleration limitation deter-
mined by the driving ability of the rotation motion axis,
the initial velocity and the length of the smoothing seg-
ment between two adjoining critical points of the orientation
toolpath, respectively.

Considering the predefined jerk limitation, the angular
velocity ωej at the critical point Eo should satisfy the follow-
ing inequality:

ω3
ej + ω

2
ej · ωs − ωej · ω

2
s − ω

3
s −

32
45
J toL

2
o ≤ 0 (39)

where J to is the jerk limitation of the rotational toolpath in
the MCS, which is determined by the driving ability of the
motion axis.

The angular velocity ωe is determined by

ωe = min

ωm, ωea, ωej,
√
Ano
κo
,

3
√
Jno
κ2o
,

9
√

Jn3o a6o
24π2αo

 (40)

where ωm is the maximum rotational velocity of the orien-
tation toolpath. Moreover, Ano, J

n
o and κo denote the normal

acceleration and jerk constraints of the tool orientation, and
the curvature at the critical point, respectively. ao and αo are
the scaling parameter and the tangent angle at the corner,
respectively.

B. KINEMATIC CONSTRAINTS OF LINEAR FEED DRIVES
Previous section discussed how to respect the kinematic con-
straints of the tool position inWCS and the tool orientation in
MCS. By doing so, the physical constraints of the rotary axis
are well bounded. However, due to the nonlinear transforma-
tion between theWCS and theMCS, the fair feedrate schedul-
ing of the tool position in the WCS might lead to violate the

linear feed drive constraints. It results in the oversize position
error or instability of the motion control. To overcome the
problem, a real-time optimizing strategy is developed for the
feedrate profiles in this sub-section.

Firstly, designate some observation points of the five-axis
toolpath, which includes the two critical points and some
equally spaced points of the current block. Second, the posi-
tions of those points in the MCS are obtained through the
inverse kinematics transformation (IKT) of the five-axis
machine tool [39], [40]. Then, by differentiating the forward
kinematics transformation (FKT) with respect to time,
the relationship between the velocity of the tool tip in the
WCS and axial velocities is conducted as

 ṖxṖy
Ṗz

 =

∂Px
∂X

∂Px
∂Y

∂Px
∂Z

∂Py
∂X

∂Py
∂Y

∂Py
∂Z

∂Pz
∂X

∂Pz
∂Y

∂Pz
∂Z


︸ ︷︷ ︸

JT

 ẊẎ
Ż



+


∂Px
∂A

∂Px
∂C

∂Py
∂A

∂Py
∂C

∂Pz
∂A

∂Pz
∂C


︸ ︷︷ ︸

JR

[
Ȧ

Ċ

]
(41)

where JT and JR are the first order differential of the tool
position relative to the linear drive displacements and the
rotational drive displacements, respectively.

Denote (Ẋ , Ẏ , Ż )T and (Ȧ, Ċ)T as v and w, respectively.
Eq. (41) is rewritten as

Ṗx = JT1v+ JR1w
Ṗy = JT2v+ JR2w
Ṗz = JT3v+ JR3w

(42)

Take the i-th observation point hereby to illustrate the
proposed optimizing strategy, and similar procedures hold for
other points. To respect the velocity constraints of the linear
and rotational axes, the path velocity f ir at the i-th observation
point in the WCS is determined by

f ir cosα
i
f ≤ JiT1vi + JiR1wi

f ir cosβ
i
f ≤ JiT2vi + JiR2wi

f ir cos γ
i
f ≤ JiT3vi + JiR3wi

(43)

where (cosαif , cosβ
i
f , cos γ

i
f ) is the unit vector of f ir in the

WCS. JiTk and JiRk (k = 1, 2, 3) are obtained by substituting
the position values ofX,Y, Z, A, C -axis at the i-th observation
point. vi and wi are (Ẋi, Ẏi, Żi)T and (Ȧi, Ċi)T , which are
the maximal velocities for the linear and rotational drives,
respectively.

Repeating the process, the allowable path velocity fm at
the block is determined by considering the axis kinematic
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velocities and the predefined objected linear path velocity fl .

fm = min
(
f 1r , f

2
r , · · · , f

N
r , fl

)
(44)

Differentiating Eq.(42) with respect to time, the accelera-
tion of the tool tip in the WCS can be determined as follows.

P̈x = JTT1v+ JT1v̇+ JRR1w+ JR1ẇ
P̈y = JTT2v+ JT2v̇+ JRR2w+ JR2ẇ
P̈z = JTT3v+ JT3v̇+ JRR3w+ JR3ẇ

(45)

where JTTk and JRRk (k = 1, 2, 3) are the differential of JTk
and JRk to the drive displacements, respectively. v̇ and ẇ are
(Ẍ , Ÿ , Z̈ )T and (Ä, C̈)T , respectively.

Different from the path velocity, the path acceleration of
the toolpath is the comprehensive expression of the tangent
and normal accelerations. Still, take the i-th observation point
as the example. The path acceleraion air at the i-th observation
point in the WCS should satisfy the following inequality.

air cosα
i
a ≤ JiTT1vi + JiT1v̇i + JiRR1wi + JiR1ẇi

air cosβ
i
a ≤ JiTT2vi + JiT2v̇i + JiRR2wi + JiR2ẇi

air cos γ
i
a ≤ JiTT3vi + JiT3v̇i + JiRR3wi + JiR3ẇi

(46)

where (cosαia, cosβ
i
a, cos γ

i
a) is the unit vector of air in the

WCS. JiTk , J
i
Rk , J

i
TTk , and JiRRk (k = 1, 2, 3) are obtained by

substituting the position values of X, Y, Z, A, C -axis at the
i-th observation point. vi,wi, v̇i and ẇi are the maximal veloc-
ities and accelerations for the linear and rotational drives,
respectively. It is noted that air is the composite vector of the
tangent and normal accelerations, when the i-th observation
point locates at the curvilinealpath, otherwise, air is equal
to the tangent acceleration. Based on the solution of the
inequalities, the reasonable tangent acceleration airt at the i-th
observation point can be obtained.
The allowable tangent acceleration am of the tool position

in the WCS is the intersection of the axis kinematic acceler-
ations and the scheduled tangent acceleration alm.

am = min
(
a1rt , a

2
rt , · · · , a

N
rt , alm

)
(47)

Thus, the prefedined normal acceleration aln is corrected
as the allowable normal acceleration an, which is equal
to am

alm
·aln. Following similar procedures to determine the path

acceleration, the path tangent and normal jerk constraints can
be obtained analogously.

C. REAL-TIME LOOKAHEAD SCHEDULING BASED
ON THE TIME SYNCHRONIZATION
1) BACKWARD SCANNING
The bidirectional scanning, consisted of the backward and
forward scanning, is combination of the traditional scanning
method and the time synchronization strategy. The back-
ward scanning stage executes the feedrate planning from
the final block to the start block based on the length of the
smoothing unit and the curvature extremum at the critical
point. First, velocities at the critical points, motion durations
of the tool position and the tool orientation, are separately
obtained. Second, referring the different durations, the time

synchronization strategy is involved to eliminate the
unmatched motion and then updates the backward critical
velocities. Finally, the geometry massages and the obtained
backward critical velocities are stored into thememory buffer.
This process is repeated until the start point. Details of the
backward scanning are demonstrated as the following:

1) Set i = N , vbi = 0, ωbi = 0.
2) If i = 1, go to 3). Otherwise, set vbe = vbi and ω

b
e = ω

b
i ,

then go to 2a).
2a) Calculate the maximum kinematic constraints of

the tool position path, if the predefined linear feed
drive constraints are violated, in accordance with
section V-B.

2b) Achieve geometrymassages, normal/tangent con-
straints for the position toolpath in the WCS and
the initial velocity vbe ; calculate the backward
transitional velocity vbs and the transitional dura-
tion Tp in accordance with section V-A(1) and
section IV-A, respectively.

2c) Achieve geometrymassages, normal/tangent con-
straints for the orientation toolpath in the MCS,
and the initial velocityωbe ; calculate the backward
rotational velocity ωbs and the rotational dura-
tion To in accordance with section V-A(2) and
section IV-A, respectively.

2d) Involve the time synchronization strategy to share
the same duration and update the backward tran-
sitional/ rotational critical velocity, vbs and ωbs ,
in accordance with section IV-B.

2e) Let vbi = vbs , ω
b
i = ω

b
s , i = i− 1 and go to 2).

3) Store vbi and ω
b
i (i = 1, . . . ,N ) into the buffer.

2) FORWARD SCANNING
Forward scanning is performed from the start point to the end.
In this scheme, the forward critical velocity is obtained based
on the toolpath length and the tangent kinematic constraints.
The critical velocity is the minimum of the backward and
forward velocities, which is repeatedly implemented for the
tool position and tool orientation sub-paths. Then, the final
critical velocities of two paths are determined by the time
synchronization strategy. Finally, the maximum velocity and
acceleration of linear feed drives are evaluated and opti-
mized to conform the physical limits. The critical velocities,
the maximum velocities and the durations of the acceleration,
uniform and deceleration stages, in the two paths are stored.
The aforementioned procedures are repeated for all blocks,
from the start block to the end block. The details are provided
as following.

1) Set i = 1, vi = 0, ωi = 0.
2) If i = N , go to 3). Otherwise, set vfs = vi and ω

f
s = ωi,

go to 2a).
2a) Achieve the length and tangent constraints of the

position toolpath. Calculate the forward transi-
tional velocity vfe . Then, the transitional velocity
is revised as min(vfe, vbi ). Based on it, calculate the
transitional duration Tp.

VOLUME 8, 2020 89193



X. Huang et al.: Novel Local Smoothing Method for Five-Axis Machining

2b) Achieve the length and tangent constraints for
the orientation toolpath. Obtain the forward rota-
tional velocity ωfe . Then, the rotational velocity is
revised as min(ωfe , ωbi ). Based on it, calculate the
rotational duration To.

2c) Introduce the time synchronization strategy to
match the motion time, Ti = max(Tp,To), and
update the transitional/rotational critical veloci-
ties, vfe and ω

f
e , in accordance with section IV-B;

2d) Let vi = vfe , ωi = ω
f
e , i = i+ 1 and then go to 2).

3) Store vi,ωi, v
i
m,ω

i
m and Ti(i = 1, . . . ,N ) in thememory

buffer.

VI. SIMULATION
The proposed smoothing algorithm is employed to round the
corners of the five-axis toolpath. To evaluate the advantages
of the proposed method over the conventional schemes, it is
intended to perform appropriate simulations in this section.
The approximation errors for the linear and angular paths in
the WCS are set to 80 µm and 60 µrad, respectively. The
linear constraints are specified as the following: the desired
feedrate, normal/tangent accelerations, normal/ tangent jerks
are F = 12 mm/s, Anp/A

t
p = 100 mm/s2, and Jnp /J

t
p =

1000 mm/s3, respectively. The maximum velocity, acceler-
ation and jerk of linear feed drives are Vl = 24 mm/s,
Al = 150 mm/s2, and Jl = 2000 mm/s3, respectively. Angu-
lar constraints are represented as the following: the desired
feedrate, tangent/normal accelerations and tangent/normal
jerks are ω = 0.1 rad/s, Ano/A

t
o = 1 rad/s2, and Jno /J

t
o =

10 rad/s3, respectively. The maximum velocity, acceleration
and jerk of the rotational feed drives are Vr = 0.1 rad/s,
Ar = 1.5 rad/s2, and Jr = 20 rad/s3. The interpolation period
is set as 1 ms. The smoothing strategy is performed in the
MATLAB environment on a computer with 3.1GHz CPU.

In the five-axis spline interpolation, the forward and
inverse kinematic transformations between the machine coor-
dinate system and the workpiece coordinate system are dedi-
cated to a specific machine tool model [39], [40]. The simula-
tion in the study is performed on a table-tilting 5-axismachine
tool model. The forward kinematics transformation can be
expressed as

Px = −CCX − CASCY + SASCZ − SASCLTa,z
Py = SCX − CACCY + SACCZ − SACCLTa,z
Pz = SAY + CAZ − CALTa,z − Lac,z
Oi = SASC
Oj = SACC
Ok = CA

(48)

where
[
Px ,Py,Pz

]T and
[
Oi,Oj,Ok

]T are the tool tip posi-
tion and tool orientation in the WCS. [X ,Y ,Z ,A,C]T are
the cutter location in the MCS. SA, CA, SC and CC are sinA,
cosA, sinC and cosC , respectively. LTa,z and Lac,z denote the
offsets from the origin of the WCS to the intersection of the
rotary axes.

FIGURE 8. The toolpath consisting of 5 cutter data with the proposed
smoothing method.

Solving Eq. (48), the inverse kinematic transformation
from the WCS to the MCS is obtained as

X = −CCPx + SCPy
Y = −CASCPx − CACCPy + SAPz + SALac,z
Z = SASCPx+SACCPy+CAPz+CALac,z + LTa,z
A = arccos (Ok)
C = arctan

(
Oi,Oj

)
(49)

To verify the proposed algorithm for corner smoothing,
a 5-axis toolpath composed of 4 linear segments and 3 cor-
ners is employed, as shown in Fig. 8. Fig. 9(a) shows the
smoothing path of the tool position in the WCS. Fig. 9(b)
shows the original and smoothing paths of the tool orienta-
tion in the MCS. The original linear segments of the rotary
command are achieved from the cutter location data through
the inverse kinematic transformation. It can be seen that, after
performing the local smoothing, the corners are interpolated
smoothly. The approximation errors of the tool position and
tool orientation in the WCS are shown in Fig. 10. It is found
that the corresponding errors are constrained well within the
predefined tolerances.

To demonstrate the time synchronization handling ability,
Fig. 11 shows the linear velocity of the tool tip position in
the WCS and the angular velocity of the tool orientation
in the MCS. When planed separately, the velocity profile
of the tool tip position considers only the normal and tan-
gent kinematic constraints of the tool position and ignores
the angular kinematic constraints. The velocity profile of
the tool orientation performs the same action. As a result,
the durations of the linear and rotational trajectories in each
block are different, as shown in Table 1. It is noted that the
durations of the linear and rotational motions without the
time synchronization are 7.886 s and 9.289 s. To address
the problem, the proposed synchronization strategy shares
the motion times through stretching the shorter duration to
the longer one. Five synchronization types, as previously
mentioned in section IV-B, are employed to accomplish the
goal. It is found that the durations of the linear motion for
the first and third blocks are longer than those of the angular
motion, as presented in Table 1. Fig. 11(b) shows that the

89194 VOLUME 8, 2020



X. Huang et al.: Novel Local Smoothing Method for Five-Axis Machining

FIGURE 9. The corner smoothing results with the proposed smoothing method.

FIGURE 10. The maximum approximation errors caused by corner
smoothing in the WCS.

angular trajectory is extended to share the same duration
by using the synchronization type A1. For the second and
fourth blocks, the durations of the angular motion are longer.
The synchronization type A2 and type A5 are involved to
stretch the linear trajectory to synchronize with the angular
motion, as can be observed from Fig. 11(a). After synchro-
nization, the durations of the linear and angular trajectories
in each block are the same, as illustrated in Table 1. The
total times are equal to 9.518 s, which are longer than any

TABLE 1. Motion durations of the smoothing toolpath.

trajectory planed separately. What is more, Fig. 12(a) shows
the acceleration and jerk profiles of the tool position in the
WCS. Fig. 12(b) illustrates the acceleration and jerk profiles
of the tool orientation in the MCS. It should be indicated
that although the motion profiles of the subpaths are revised,
the accelerations and jerks are constrained well under the
predefined limitations.

To evaluate the advantages of the proposed method to
conform the linear and rotational kinematic constraints,
the traditional smoothing method with the quintic B-spline
is employed. The feedrate profile of the tool position in the
comparison method involves only the tool position kinematic
constraints, including the normal/tangent accelerations and

FIGURE 11. Linear and angular velocity profiles planned with the time synchronization and planned separately.
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FIGURE 12. Tangent acceleration and jerk profiles planned with the time synchronization.

FIGURE 13. Tangent velocity and acceleration profiles planned with the traditional smoothing method.

jerks, desired velocity and chord error. Moreover, the tool
orientation interpolation is considered as the slave motion,
which is synchronized to the tool position motion by shar-
ing the curve parameter. Fig. 13(a) shows the velocity and
acceleration profiles of the tool position in the WCS, and
Fig. 13(b) presents the velocity and acceleration profiles of
the tool orientation in the MCS. It is found that the tool
position kinematic constraints are well bounded. However,
the situation is quite different for the tool orientation. The tool
orientation kinematic constraints are aggressively violated in
some blocks. The reason is caused by the curve-parameter
synchronization procedure and regardless the rotary con-
straints.

Fig. 14(a) shows the axial velocities and accelerations with
the proposed method. Due to the tool orientation kinematic
constraints and the time synchronization, the velocity and
acceleration profiles of the rotational axis follow the specified
limitations of the rotational motor.With the proposed strategy
to confine the linear axial kinematic constraints, the velocity
and acceleration of the linear axis feed drives are bounded.
The axial velocities and accelerations with the traditional
feedrate scheduling method are shown in Fig. 14(b). It is

observed that the axis velocities and accelerations of A and C
axes violate the limitations, whichmay result in exceeding the
specified limitations of the rotational motor. Thus, the control
stability of the feed drive will be destroyed and the visible
mark on the workpiece may be confronted. Obviously, it is
adverse to the machining process.

VII. EXPERIMENT
To verify the geometric smoothing method and the veloc-
ity planning strategy further, a 5-axis motion platform is
designed, as shown in Fig. 15. The system is equipped with a
computer, a motion controller dSPACE 1005 and an in-house
five-axis motion table. The computer interprets NC codes
and executes the interactive operation. The dSPACE hard-
ware system is used to smooth the toolpath, generate axial
commands and position control. For the in-house-developed
five-axis machine tool, the X-axis feed system carries the
Y-axis and a rotary table, and the C-axis is mounted on the
A-axis. The general schematic diagram of the linear or
rotational feed system in the five-axis machine tool is
shown in Fig. 16. The feed drive is controlled by the tradi-
tional proportional, integral, and derivative (PID) controller,
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FIGURE 14. Axial velocity and acceleration profiles with the time synchronization and with the traditional smoothing method.

FIGURE 15. Five-axis machine tool used in the experiment.

FIGURE 16. Block diagram of the feed drive in the experiment.

which is composed of three independent feedback loops,
namely position, velocity and current loops. Besides, an addi-
tional velocity feedforward controller is involved to improve
the response performance. Kp, Kvp and Kvi are the gain of
position controller, the proportional and integral gains of
velocity controllers, respectively. Kfv is the gain of velocity
forward controller. Kt is the torque constant of the motor.
J and B are the equivalent inertia and viscous damping of

TABLE 2. Summary of parameters of the feed drives.

the feed drive, respectively. Rg is the transmission ratio from
the motor to the worktable. The tracking error caused by the
friction is eliminated with the friction forward compensation
strategy [41], [42]. Unless special stated, the main parameters
are presented in Table 2.

The C3 continuous arclength-parameterized curve is
involved to smooth the tool position and tool orientation paths
in this study. The arclength-parameterized curve can analyt-
ically calculate the toolpath length and effectively eliminate
the feedrate fluctuation. Moreover, the smoothing path with
airthoid curve generates smoother jerk profiles than the tra-
ditional C2 continuous trajectory. To verify these, the cutter
location data generated by CAM is conducted as the testing
toolpath, as shown in Fig. 17. The approximation errors for
the linear and angular paths in the WCS are set to 80 µm and
60 µrad, respectively. The adopted kinematical constraints
are listed as follows. The linear constraints are designed as the
following: F = 20 mm/s, Anp/A

t
p = 100 mm/s2, and Jnp /J

t
p =

5000 mm/s3, respectively. Angular constraints are set as the
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FIGURE 17. The five-axis toolpath consisting of 27 cutter data.

following: ω = 0.5 rad/s, Ano/A
t
o = 10 rad/s2, and Jno /J

t
o =

100 rad/s3, respectively. To ensure the tested algorithms
shared a similar feedrate profile of the tool position, the axial
kinematic constraints are set as high values so that they are
always respected in the experiment. Moreover, two compar-
ison methods are involved. The comparison method(M1) is
achieved by combining the geometric smoothing with the
quintic B-spline and velocity scheduling with the parametric
synchronization, as mentioned in section VI. The another
comparison method(M2) with the cubic B-splines is con-
ducted to blend the corners of the tool position in the WCS
and the tool orientation in the MCS. The S-curve-type accel-
eration profile and time-shared synchronization strategy are
utilized to plan the motion of the five-axis machine tool.

With the proposed smoothing method, the actual approxi-
mation errors of the tool position and tool orientation smooth-
ing toolpath with airthoids in the WCS are shown in Fig. 18.
It is found that the errors of the tool position and tool orien-
tation are constrained within the responding tolerances.

Table 3 presents the calculation time for the smoothing
arclength in the first three corners of the tool position and
tool orientation paths. It is found that the computation time
of the airthoid is much shorter than that of the B-spline’s.
The reason is that the arclength of the airthoid is analytically
obtained, while the value of B-splines should be iteratively
calculated with the numerical method until the predefined
approximation accuracy is satisfied. The specified tolerance
of the B-spline in the case is set as 10−14 mm. It illustrates
that the proposed airthoid spline is more efficient to on-line
smooth the corners, when the original toolpath consists of a
large number of short linear segments or the length of the

FIGURE 18. Actual corner errors in the WCS, where ‘‘PE’’ and ‘‘OE’’ are
the abbreviation of the corner errors in the tool tip and tool orientation
paths, respectively.

inserted spline occupies the vast majority of the smoothing
toolpath.

Fig. 19 shows the path linear velocity of the tool position
in the WCS and the path angular velocity of the tool orien-
tation in the MCS with three smoothing methods. As can be
observed from Fig. 19 (b), the rate of angular velocity change
with the M1 method is higher than the other methods. This
phenomenon can be explained as follows. For the parameter
synchronizationmethod, themovement of the tool orientation
is designed as the slave motion of the tool position. The
abrupt motion change of the tool orientation leads to the
large acceleration and jerk of the rotational axis. As a result,
the kinematics of the tool orientation may be violated.

Fig. 20 presents the feedrate fluctuation profiles based
on the non-arclength parameterized splines with two tradi-
tional interpolation methods. One interpolation method is the
second-order Taylor’s expansion to approximately calculate
the interpolation points for the given arclength [25]. The other
one is a feedback interpolation method accurately mapping
the interpolation points with the object arclength [27]. The
feedrate fluctuation is the ratio of the difference between
the desired feedrate and the actual feedrate to the desired
feedrate. Fig. 20 (a) shows the feedrate fluctuation profiles of
the tool position and tool orientation with theM1method, and
the updated parameter is obtained based on the second-order
Taylor’s expansion and the arclength of the tool position.
Fig. 20 (b) shows the profiles with the M1 method, and
the updated spline parameter is determined by a feedback
correction scheme to map the arclength of the tool position.
As can be seen, the feedrate fluctuation of the tool position is

TABLE 3. Calculation time of the inserted smoothing curve length.
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FIGURE 19. Linear and angular velocity profiles planned under the different smoothing methods.

FIGURE 20. Feedrate fluctuation profiles for M1 and M2 with two parametric interpolation methods, where ‘‘FV’’ is the
abbreviation of feedrate fluctuation ratio.

TABLE 4. Mean calculation time for the fine interpolation points.

evidently eliminated, whereas the fluctuation of the tool ori-
entation has no significant change. It can be understood by the
following reason. Though the updated parameter is revised on
the basis of the arclength of the tool position, the incremental
arclength of the tool orientaion is still unsmooth, which leads
to the feedrate fluctuation of the tool orientation. In addition,
Fig. 20 (c) presents the feedrate fluctuation profiles of the
tool position and tool orientation with theM2method, and the
updated parameters of two sub-paths are severally obtained
based on the individual arclength owing to the second-order
Taylor’s expansion. The feedrate fluctuation profiles with the
feedback correction scheme is shown in Fig. 20 (d). It is
noticed that the M2 method with the feedback correction
scheme exhibits a better feedrate accuracy. However, the price

to be paid for the achievement is computationally stringent,
as shown in Table 4. It is noted that Table 4 illustrates the
mean calculation time for the non-arclength parameterized
splines with the interpolation methods, and the proposed
smoothing strategy with the airthoid. The proposed method
achieves shorter calculation time since it directly conducts the
commands without the parameter correction module, as men-
tioned in Table 4. In addition, the feedrate fluctuation of the
proposed method is zero, since the spline parameter is based
on the arclength. It indicates that the proposed method with
the arclength-parameterized airthoid can achieves smoother
motion and release more computing resources to handle other
tasks in the fine interpolation stage, which is friendlier to the
CNC for the on-line executing smooth motion.
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FIGURE 21. Acceleration and jerk profiles of the feed drives under the different smoothing methods.

Fig. 21 shows the axis acceleration and jerk profiles with
three smoothing methods. As can be seen from Fig. 21(a),
the axis accelerations with the M1 method in some blocks
are much larger than the values generated with the time
synchronization, which is more severe in X-, Y- and C- axis
profiles. As a result, the axis jerk profiles of the M1 method
exceed the scale range. This phenomenon can be explained as
follows. For the parameter synchronization method, the tan-
gent angular acceleration and jerk of the M1 method is
extremely high, which leads to abrupt change of the rota-
tional drives. Due to the kinematic transformation between
the MCS and the WCS, the linear axis of the machine tool
also be influneced. In contrast, M2 method generates lower
amplitude accelerations and jerks in all the axes, as shown
in Fig. 21(a) and (b). This result conforms to the fact that
the kinematic constraints of the tool orientation are involved.

In addition, the proposed method generates the similar accel-
eration and jerk profiles with the M2 method due to the
same consideration of the constraints of the tool orientation,
as observed from Fig. 21(a) and (b). Moreover, the proposed
airthoid achieves the C3 continuity at the junction of the
linear and curvilinear path and the jump-controlled jerk at
the junction of the biairthoids than the M2 method. What is
more, the airthoid spline can avoid the feedrate fluctuation,
since it is an arclength-parameterized curve. As it can be seen
in the Fig. 21(c), it is found that the proposed method with
airthoid generates lower jerk profiles. Verification test illus-
trates that the proposed method with the airthoid spline and
the jerk-continuous feedrate scheduling conducts smoother
and bounded axial kinematics.

Fig. 22 shows the mean values of the absolute tracking
errors for the all motion axes. It is observed that the proposed
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FIGURE 22. Average tracking errors of the linear and rotational drives.

method with the airthoid curve performs better in reducing
the position errors. This confirms that the proposed method
provides smoother motion and higher tracking accuracy.

VIII. CONCLUSION
This paper develops a high-order continuous smoothing
method based on the airthoid for the five-axis toolpaths.
The high-order continuity, the peak-controlled jerk, the con-
straints of the geometry deviation, the motion synchroniza-
tion of the tool position and the tool orientation, the kinematic
constraints of the feed drives are guaranteed. On the one
hand, a high-order continuous spline, airthoid, is proposed,
the parameter of which is based on the arclength. The deriva-
tion of curvature increases linearly with the arclength. When
inserted as the smoothing curve, it is analytically determined
respecting the user-defined deviation errors of the tool posi-
tion and the tool orientation. Compared with the numerical
calculation in previous works, the arclength of the toolpath
is analytically obtained. Moreover, without any iterative cor-
rection of the updated spline parameter at each interpola-
tion timestamp, the feedrate fluctuation is eliminated for the
arclength-parameterized expression of the airthoid. The high
calculation efficiency and smooth motion make it more suit-
ful to the real-time interpolation. On the other hand, instead
of regarding as the slave motion, the rotational motion is syn-
chronously scheduled with the transitional motion by sharing
the motion time. Thus, the angular kinematic constraints are
strictly respected, which avoids exceeding the physical limits
of the rotary feed drives. To comply with the constraints
of the linear feed drive, an on-line optimization strategy is
involved. As a result, the proposed method successfully plans
the velocity profiles under the physical limits of the machine
tool. Furthermore, the high-order continuous airthoid with
the peak-constrained jerk improves the smoothness of the
toolpath. It generates lower and smoother jerk profiles of the
drives than the traditional C2 interpolation. The experiments
verify that the proposed smoothing algorithm achieves higher
tracking accuracy.

APPENDIX A
G3 CONTINUITY AT THE CONJUNCTION OF THE
LINEAR AND CURVILINEAR SPLINES
This is an analytical discussion on the jerk continuity at the
conjunction of the original linear segment and the airthoid

FIGURE 23. Schematic of the corner at the junction of the linear and
curvilinear splines.

spline. As shown in Figure. 23, the corner, constructed by
lines P1P2 and P2P3, is smoothed by a biairthoid spline
_B1B2 , which comprises two symmetric airthoid splines.
A local coordinate system {t− n} is built at the conjuction
B1. Combined with Eq.(3), the time derivatives of the curve
are expressed as

Ṗ =
dP (s)
ds

ṡ

P̈ =
d2P (s)
ds2

(ṡ)2 +
dP (s)
ds

s̈

...
P =

d3P (s)
ds3

(ṡ)3 + 3
d2P (s) ṡ
ds2

s̈+
dP (s)
ds

...
s

(50)

where ṡ, s̈,
...
s are the path velocity, acceleration and jerk of

the toolpath.
Combined with Eq.(4), the first, second and third order

differentials of the airthoid with respect to the arclength at
the conjunction are

dP(s)
ds

∣∣∣∣
s=0+
=

(
cos

1
3
cs3t+ sin

1
3
cs3cn

)
= t

d2P(s)
ds2

∣∣∣∣
s=0+
=

(
−cs2 sin

1
3
cs3t+ cs2 cos

1
3
cs3n

)
= 0

d3P(s)
ds3

∣∣∣∣
s=0+
=

(
−2cs sin

1
3
cs3 − c2s4 cos

1
3
cs3
)
t

+

(
2cs cos

1
3
cs3−c2s4 sin

1
3
cs3
)
n = 0

(51)

Substituting Eq.(51) into Eq.(50), the differentials of the
airthoid with respect to the time at the conjunction are

Ṗ
∣∣
s=0+ = ṡt; P̈

∣∣
s=0+ = s̈t;

...
P
∣∣
s=0+ =

...
s t (52)

The differentials of the linear segment with respect to the
time at the conjunction are

Ṗ
∣∣
s=0− = ṡt; P̈

∣∣
s=0− = s̈t;

...
P
∣∣
s=0− =

...
s t (53)

The result indicates that the G3 continuity is proved with
the continues velocity, acceleration and jerk at the joint point.

APPENDIX B
G2 CONTINUITY AT THE CONJUNCTION
OF THE BIAIRTHOID
Based on Figure. 23, an another local coordinate system{
t′ − n′

}
is built at the conjuction B2, as shown in Figure. 24.
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FIGURE 24. Schematic of the corner at the junction of the biairthoid
spline.

The relationship between the two local coordinate systems is{
n′ = − sin 2αt+ cos 2αn
t′ = − cos 2αt− sin 2αn

(54)

Combined with Eq. (2), Eq. (54) is rewritten as
n′ = − sin

2
3
cs3t+ cos

2
3
cs3n

t′ = − cos
2
3
cs3t− sin

2
3
cs3n

(55)

The arclengths between the conjuctionC andB0 andB1 are

s+j and s−j , respectively. The length of
_B0B1 is equal to stotal.

The relationship between them is

s−j = stotal − s
+

j (56)

The first, second and third order time derivatives of the
equation are expressed as

ṡ−j = −ṡ
+

j ; s̈
−

j = −s̈
+

j ;
...
s −j = −

...
s +j (57)

The first, second and third order differentials of the airthoid
with respect to the arclength at the conjunction in the coordi-
nate frame {t− n} are

dP(s)
ds

∣∣∣∣
s=s−j

=

(
cos

1
3
cs3t+sin

1
3
cs3cn

)
d2P(s)
ds2

∣∣∣∣
s=s−j

=

(
−cs2 sin

1
3
cs3t+cs2 cos

1
3
cs3n

)
d3P(s)
ds3

∣∣∣∣
s=s−j

=

(
−2cs sin

1
3
cs3−c2s4 cos

1
3
cs3
)
t

+

(
2cs cos

1
3
cs3−c2s4 sin

1
3
cs3
)
n

(58)

Similarly, combined with Eq. (54), the first, second and
third order differentials of the airthoid with respect to the
arclength at the conjunction in the coordinate frame

{
t′ − n′

}

are

dP(s)
ds

∣∣∣∣
s=s+j

=

(
− cos

1
3
cs3t− sin

1
3
cs3cn

)
d2P(s)
ds2

∣∣∣∣
s=s+j

=

(
−cs2 sin

1
3
cs3t+ cs2 cos

1
3
cs3n

)
d3P(s)
ds3

∣∣∣∣
s=s+j

=

(
−2cs sin

1
3
cs3+c2s4 cos

1
3
cs3
)
t

+

(
2cs cos

1
3
cs3+c2s4 sin

1
3
cs3
)
n

(59)

Combined with Eq. (50), (58) and (59), the difference
between the first-order time derivative of the curve at the
conjunction C is

Ṗ
∣∣
s=s+j
− Ṗ

∣∣
s=s−j
= 0 (60)

Similarly, the difference between the second-order time
derivative of the curve at the conjunction C is

P̈
∣∣
s=s+j
− P̈

∣∣
s=s−j
= 0 (61)

However, the difference between the third-order time
derivative of the curve at the conjunction C is

...
P
∣∣
s=s+j
−

...
P
∣∣
s=s−j
= −4 csv3 sin

1
3
cs3t+ 4 csv3 cos

1
3
cs3n

(62)

So far, the G2 continuity is obtained at the conjunction C,
which achieves the continuous velocity and acceleration, but
the discontinous jerk. Moreover, the jerk jump vector is per-
pendicular to the tangent line of the conjunction. The jump
value can be calculated as∥∥∥∥ ...P∣∣s=s+j − ...

P
∣∣
s=s−j

∥∥∥∥ = 4csv3 (63)

Combined with Eq. (6), Eq. (63) is rewritten as∥∥∥∥ ...P∣∣s=s+j − ...
P
∣∣
s=s−j

∥∥∥∥ = v3
4π
a2

3
√
3α
π

(64)

To constrain the peak jerk, the jerk jump is no more than
two times the normal jerk Jn. Therefore, the velocity at the
conjunction should be restricted as

v ≤
9
√

J3n a6

24π2α
(65)

APPENDIX C
THE DETERMINATION OF THE SMOOTHING SPLINE
Set Pi is the original point of the planar coordinate system.
As mention before, the curvature maximum generates at the
critical pointQ. The radius of curvature is defined as rα . The
coordinates of the center point are{

xc = x(α)− rα sinα = aC(α)− rα sinα
yc = y(α)+ rα cosα = aS(α)+ rα cosα

(66)
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FIGURE 25. A biairthoid curve in the corner smoothing.

where x(α) and y(α) are the horizontal and vertical
coordinates, respectively. The tangent of the angle α can be
expressed as

tanα =
k
n
=
lp − xc
yc

(67)

Substituting Eqs.(5), (9) and (66) into Eq.(67), rα can be
derived as

rα =
lp

3√9πα2 [S(α) tanα + C(α)]
(68)

The curvature extreme κα is obtained as

κα =

3√9πα2

lp
[S(α) tanα + C(α)] (69)

In addition, the deviation error εp can be deduced as

εp =
n

cosα
− rα =

lpS(α)
sinαS(α)+ cosαC(α)

(70)

Combined with Eq.(9), the scaling parameter ap is
calculated as

ap =
lp

S(α) tanα + C(α)
(71)

It is noted that the geometry of the airthoid is determined by
the transition length lp, when the corner angle is predefined.

APPENDIX D
DERIVATIONS OF EQS.(35), (36), (37) AND (38)
According to section IV-A, when the trajectory accelerates
from the start velocity vs to the end velocity ve with the given
distance L, the relationship is expressed as

vs + ve
2

te = L (72)

The duration of the acceleration stage te can be stated by

te =
2L

vs + ve
(73)

Constrained by the acceleration limitation At , the maxi-
mum acceleration should be respected as

At ≥
15(ve − vs)

8te
(74)

By introducing Eq. (73) to Eq. (74), the end velocity ve
yields

ve ≤

√
16AtL
15
+ v2s (75)

In addition, the maximum tangent jerk should be lower
than the jerk limitation Jt .

Jt ≥
45(ve − vs)

8t2e
(76)

Substituting Eq. (73) into Eq. (76), the relationship
between ve and vs is rewritten as

v3e + v
2
e · vs − ve · v

2
s − v

3
s −

32
45
JtL2 ≤ 0 (77)

Thus, with the jerk constraint and displacement, the end
velocity ve is acquired.
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