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a Multifeature Convolutional Neural Network and
Morphological Filtering
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Abstract—The automatic extraction of building outlines from
high-resolution images is an important and challenging task. Con-
volutional neural networks have shown excellent results compared
with traditional building extraction methods because of their ability
to extract high-level abstract features from images. However, it is
difficult to fully utilize the multiple features of current building
extraction methods; consequently, the resulting building bound-
aries are irregular. To overcome these limitations, we propose a
method for extracting buildings from high-resolution images us-
ing a multifeature convolutional neural network (MFCNN) and
morphological filtering. Our method consists of two steps. First,
the MFCNN, which consists of residual connected unit, dilated
perception unit, and pyramid aggregation unit, is used to achieve
pixel-level segmentation of the buildings. Second, morphological
filtering is used to optimize the building boundaries, improve the
boundary regularity, and obtain refined building boundaries. The
Massachusetts and Inria datasets are selected for experimental
analysis. Under the same experimental conditions, the extraction
results achieved with the proposed MFCNN are compared with the
results of other deep learning models that have been commonly
used in recent years: FCN-8s, SegNet, and U-Net. The results
on both datasets reveal that the proposed model improves the
F1-score by 3.31%-5.99 %, increases the overall accuracy (OA) by
1.85%-3.07 %, and increases the intersection over union (IOU) by
3.47%-8.82%. These findings illustrate that the proposed method
is effective at extracting buildings from complex scenes.

Index Terms—Building outline extraction, high-resolution
images, morphological filtering, multifeature convolutional neural
network (MFCNN).

I. INTRODUCTION

S A critical component of basic urban geographic infor-
mation, buildings play an important role in population
estimation, change monitoring, urban planning, and smart city
construction [1]-[3]. Consequently, the automatic extraction of
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building outlines from high-resolution images has always been
a fundamental task in the field of remote sensing research [4].

In recent years, as the spatial resolution of remote sensing
images has increased remarkably, remote sensing-based ap-
plications involving building extraction techniques have seen
considerable development [5], [6]. Many building extraction
algorithms have been proposed by scholars [7]-[12]. Depending
on the data sources used, the existing methods can be divided
into the following three categories.

1) Optical image methods [13]-[16].

2) Light detection and ranging point cloud methods [17],

[18].
3) Combinations of optical image and point cloud methods
[19]-[22].

Optical image methods rely on the spatial and spectral char-
acteristics of optical images, such as textural features [14], ge-
ometric features [15], edge features [16], multispectral features
[8], and shadow features [13]. LiDAR point cloud methods rely
mainly on information extracted from point cloud data, such as
elevation information, which can be clearly captured in point
cloud data and used to identify buildings [17], [18]. Methods
of the third type use multisensor data for building extraction.
Such methods can achieve better results through the combined
consideration of complementary features such as spectral in-
formation, spatial features, and elevation [19]. These combined
approaches have achieved certain success in the extraction of
building outlines; however, remote sensing images typically
exhibit nonuniform regions, large intraclass variances, and low
interclass variances, making it impossible to establish a suitable
predefined model for object extraction. Moreover, the types
of objects captured in such images are diverse and complex,
and hence, traditional segmentation, classification, and edge
extraction algorithms lack the ability to perform deep semantic
feature extraction. Nevertheless, it is possible to automatically
extract deep image features through machine learning methods
by constructing deep neural networks.

The theory of deep learning was originally proposed in 2006
by Hinton et al. [23]. Deep learning constitutes the process of
acquiring high-level abstract features from data by constructing
mathematical models to achieve improvements in the classi-
fication accuracy and detection accuracy. In recent years, a
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variety of neural network models have been proposed, including
convolutional neural networks (CNNSs) [24], recurrent neural
networks [25], and deep belief networks [26]. These networks
have been employed for a variety of high-performance computer
vision tasks, such as image classification [24], natural language
processing [27], speech recognition [28], remote sensing image
processing [29], [30] and other applications [31], [32]. Among
these networks, CNNs have achieved superior results in image
classification tasks. Consequently, numerous scholars have de-
veloped many improved algorithms based on CNNs, such as
FCN [33], SegNet [34], U-Net [35], Mask R-CNN [36], and
DeepLab [37]-[39].

On the basis of this research, many neural network algo-
rithms have been applied to remote sensing images for building
extraction. Maggiori et al. used FCN, Skip, and multilayer
perceptron (MLP) models for building extraction experiments
on multiregion aerial images [40]. Zhao et al. used Mask R-CNN
to extract and regularize the boundaries of buildings [41]. Both
of the above-mentioned methods use existing basic models to
extract buildings from images without considering the distinc-
tive characteristics of those buildings in remote sensing images.
In addition, Mhin used the patch CNN method for building
extraction; principal component analysis (PCA) was employed
to reduce the dimensionality of the original images, and the
output was postprocessed by means of conditional random fields
to improve the accuracy [42]. Furthermore, Alidoost et al. used
a patch-based CNN architecture to extract both roads and build-
ings [43]. However, CNN models consider fixed-level features,
limiting their recognition ability, and preventing the effective
extraction of multiscale building features.

More recently, many neural network frameworks have been
specifically adapted to the multiscale features of remote sensing
images. For instance, Yuan designed a deep neural network
with a simple structure for the extraction of buildings from
aerial scenes and generated a large amount of labeled data using
geographic information system building footprint data [44].
Deng et al. used a novel feature extraction method combined
with a multiscale object proposal network and an accurate object
detection network to construct multiscale features for building
extraction [45]. Liu et al. extracted hierarchical building infor-
mation through a multilevel building detection framework based
on deep learning models consisting of the Gaussian pyramid
technique and CNNs [46]. Li ef al. developed a novel deep
adversarial network for determining the high-order regularities
of buildings; the network consists of both a generator and a
discriminator, where the former is a deep CNN and the latter
is an adversarial discriminator network [47]. Bittner et al. ex-
tracted building information from multisource remote sensing
images using an end-to-end FCN that combines spectral and
height information from different data sources and automat-
ically generates a full-resolution binary build mask [1]. Lin
et al. constructed a deep network architecture by combining
residual blocks and dilated convolutions to extract buildings and
improve the computational efficiency [48]. Majd et al. proposed
a novel object-based deep CNN to solve the variation in scale
of objects in very-high-resolution (VHR) images [49]. Liu et al.
used a deep convolutional encoder—decoder with spatial pyramid
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pooling to reduce the loss of detailed information [50]. Although
these works are all notable, the current feature utilization capa-
bility for remote sensing images is still insufficient, as described
by each of the following shortcomings.

1) Imperfectimage feature acquisition. In the encoding stage
of a neural network, additional features can be acquired by
increasing the depth of the network. However, increasing
the network depth can result in a vanishing gradient or
gradient divergence, which will reduce the overall perfor-
mance of the network and lead to imperfect image feature
acquisition.

2) Insufficient acquisition of morphological building features
from remote sensing images. Buildings exhibit several
obvious morphological features. In the encoding stage
of a neural network, shallow features can be acquired
by means of small local receptive fields (e.g., a 3 x 3
kernel). However, it is impossible to effectively learn deep
morphological features, such as the obvious linear and
right-angle features of buildings, from a high-resolution
image.

3) Inadequate consideration of the multiscale features of
remote sensing images. Each layer of a network contains
unique information. In the decoding stage of a neural
network, a single bottom-level feature is convolved up-
wards layer by layer, and the coding features cannot be
effectively integrated with the decoding features. Con-
sequently, the multiscale features of images cannot be
comprehensively captured.

4) Irregularity of extracted building boundaries. The ex-
tracted boundaries of buildings typically exhibit many
sawtooth features due to segmentation based on pixel-level
semantics.

To overcome these limitations, this article proposes a building
extraction framework based on a multifeature convolutional
neural network (MFCNN) that considers the distinctive char-
acteristics of remote sensing images. The network framework
consists of three components. First, arefined residual connection
unit (RCU) is used to improve the ability to learn deep and
complex features during the encoding process. Then, adaptive
dilated perception units (DPUs) are used to better map the mor-
phological features of buildings. Finally, the loss of multiscale
features is avoided by means of a pyramid aggregation unit
(PAU). On this basis, to optimize the regularity of the building
boundaries, a morphological filtering-based building regulariza-
tion method is developed that uses morphological filtering to
optimize the overall contour information to mitigate sawtooth
phenomena along building boundaries. The results obtained
in this way are more consistent with the real boundaries of
buildings.

The rest of this article is organized as follows. The methods
are presented in Section II, including a detailed description of
the neural network framework and the regularization method. In
Section III, the dataset images, parameter settings, and results
are described in detail. The results of comparisons with other
methods and a sensitivity analysis of our method are reported
in Section I'V. Finally, the conclusion and a discussion of future
work are presented in Section V.



1844

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Training Stage

Ground Truth Labels

|

Parameter Update

Loss Function

A

v

MFCNN Architecture

Residual Connect

Pyramid Aggregation

Units

>
>

Units

Y

Images

\

Predicted Labels

/

Dilated Perception Units

Irregularly Shaped Boundary

Boundary Regularization Stage

v

Morphological Filtering

Final

Building Boundary
Regularization

Y

Polygon Rotation

A 4

Prediction

Return Rotation

Y

Fig. 1.

II. METHODS FOR THE EXTRACTION OF BUILDING OUTLINES
IN REMOTE SENSING IMAGERY

In this article, a refined building extraction method for high-
resolution remote sensing images based on the combination of
an MFCNN and morphological filtering is proposed, as shown in
Fig. 1. The proposed method is divided into two parts. The first
part consists of the CNN framework for multifeature fusion; the
MEFECNN structure is symmetric to ensure that the generated out-
puts are of the same size as the inputs. The second part includes
a contour refinement method based on morphological filtering
that resolves the problematic irregular contours generated by
pixel-level segmentation to achieve more refined architectural
outlines.

A. Semantic Segmentation Model for the Extraction of
Building Outlines

To overcome the limitations of the existing network frame-
works for the extraction of building outlines from remote sensing
images, this article proposes a building extraction framework
based on an MFCNN, as shown in Fig. 2. The MFCNN is an
end-to-end symmetric training structure consisting of an encoder
network and a decoder network. The encoder portion consists
of an RCU and multiple DPUs. In Fig. 2, each wide blue arrow
represents an RCU, and the DPUs are represented by D1 and
D2. The PAU is included in the decoder portion.

1) Residual Connected Unit: To extract rich features from
remote sensing images, we use an RCU in the encoder portion
of MFCNN, as shown in Fig. 3. The residual mapping struc-
ture connects the input layer to the next layer through a skip
connection to allow the changes between layers to be considered

Framework of our proposed approach: The training stage and the boundary regularization stage.

during training. Compared with a traditional mapping structure,
a residual mapping structure converges more easily and can
help to avoid degradation in network performance due to an
increase in the network depth [51]. To prevent overfitting, a batch
normalization layer and a rectified linear unit layer are added
along with the residual structure to establish a refined residual
mapping [52], [53]. These refined residual units are used in the
encoder to increase the nonlinear expression capability of the
network and enable the network to obtain rich information from
remote sensing images.

2) Dilated Perception Unit: To achieve both a large receptive
field and a high spatial resolution, we build two DPUs by
combining several dilated convolutions, as shown in Fig. 4. The
DPUs are applied following the layers corresponding to the 1/4
and 1/8 scales in the encoding process to obtain morphological
building features (e.g., linear and right-angle features) from a
larger field of view. As the number of pooling layers increases,
the spatial resolution of the image decreases. The shape char-
acteristics of buildings also change with a change in the image
resolution [54]. To adapt to the appearance of morphological
building features at different resolutions, a group of adaptive
dilated convolutions is constructed to better map these features.
Each set of dilated convolutions consists of a 1 x 1 convolutional
layer and four 3 x 3 dilated convolutional layers. The 1 x 1
convolutional layer can enhance the nonlinear expression ability
of the network while reducing the feature dimensions [55].
Different rate values are set for feature maps at different levels.
The 1/4-scale feature map size is 64, and the rate values of the
corresponding dilated convolutions are set to 1, 6, 12, and 18
[see Fig. 4(a)]; the 1/8-scale feature map size is 32, and the rate
values of the corresponding dilated convolutions are set to 1,
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4, 8, and 12 [see Fig. 4(b)]. Thus, adaptive dilated convolution
dilation rates are established for differently sized feature maps.
Thus, the morphological features of buildings in deep feature
maps are obtained using receptive fields of different sizes, and
these fields play an active role in the effective extraction of these
features.
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Fig. 5.

3) Pyramid Aggregation Unit: To better acquire multiscale
features, we establish a PAU, as shown in Fig. 5. The output of
the first layer is upsampled to the original scale to predict the final
output, and the outputs of the 1/2-, 1/4-, and 1/8-scale layers are
also upsampled to the original scale for physical aggregation
operations. In our method, bilinear sampling is adopted for
upsampling operations. In this multiscale aggregation operation,
all of the information from the different scales is utilized in both
a separate and an integrated manner. Compared with a single
multiscale weighted output, this physical combination strategy
enables the aggregation of all multiscale features, thereby im-
proving the optimization of the network [56]. Moreover, with
this method, the output features depend only on the original
network, and almost no additional calculation time is added.

B. Morphological Filtering Algorithm for Building
Outline Optimization

When a neural network is used for pixel-level semantic seg-
mentation, the output building boundaries are irregular. This arti-
cle proposes a morphological filtering method for the refinement
of building outlines that consists of three steps: polygon rotation,
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building boundary regularization, and return rotation. In this
method, a building boundary is optimized based on its overall
contour information. The detailed flow chart of the algorithm is
shown in Fig. 6.

1) Polygon Rotation: First, the binarized result is obtained
for each building, and the boundary vector outline of the building
is obtained via the boundary tracking algorithm [57]. Then,
the barycentric coordinates of the resulting polygon are rotated
through rotation angles of 0° to 90° in steps of 5°, as shown in (1).
The corresponding rotation angle and minimum-area bounding
rectangle of the polygon are obtained at each rotation. Finally,
after the rotation process is complete, all values are compared to
obtain the minimum area and the corresponding rotation angle.
The angle corresponding to the minimum area is considered to
be the horizontal or vertical direction of the polygon

~9 ol 9
T _ cos sin {x} 0
cos 6

Y1 sin 6 Y

where (z,y) are the original coordinates, (x1,y;) are the coor-
dinates after rotation, and 6 is the angle of rotation.

2) Building Boundary Regularization: First, the outline of
the building is rotated to the horizontal or vertical direction
through polygon rotation. Then, a raster line is created at the
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Fig. 7. Results of morphological filtering on a building boundary. (a) There
are many sawtooth features in the originally extracted building boundary.
(b) After morphological filtering, no sawtooth features remain.
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Fig. 8. Comparison among the grid fill results. (a) Initial raster result after
extraction. (b) Original image after direct raster normalization. (c) Regularized
result after rotation. (d) Result of rotation back to the original image angle after
regularization.

pixel scale (gray line), and the number of corner points on the
building boundary (blue line) and the building area are obtained.
After analysis, we found that the number of corner points of
buildings with different areas has different value intervals. Fi-
nally, the sawtooth features are determined by the building area
and the number of corner points. If there are many sawtooth
features [as shown in Fig. 7(a)], raster fill operations (open and
close operations) are performed to obtain a regularized boundary
[as shown in Fig. 7(b)].

3) Return Rotation: First, the building is rotated back to its
original orientation based on the rotation angle and center-of-
gravity coordinates obtained in the polygon rotation step, thus
ensuring that the output will be consistent with the input. Then,
the final raster boundary is determined via the ray method.

To illustrate the effect of the proposed method, a single build-
ing is selected to show the details of this procedure, as shown
in Fig. 8. There are many sawtooth features in the originally ex-
tracted raster boundary of the building, as shown in Fig. 8(a). The
result of applying morphological filtering directly to the original
image is shown in Fig. 8(b). Although this operation has the
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(d)

Fig. 9. Close-ups of the images from the datasets and their corresponding
ground-truth building masks. (a) Massachusetts. (b) Austin. (¢) Chicago. (d)
Kitsap County. (e) West Tyrol. (f) Vienna.

effect of optimizing the boundary (note the regions highlighted
with red and blue boxes), sawtooth phenomena are still evident.
The result of morphological filtering after rotation is shown in
Fig. 8(c), which illustrates that the noise has been essentially
eliminated. Fig. 8(d) shows the result of rotation back to the
original image angle after morphological filtering. This figure
indicates that after the grid filling and regularization processes,
the occurrence of redundant points (highlighted with red boxes)
and hole noise (highlighted with blue boxes) is reduced. Thus,
the proposed method can eliminate sawtooth phenomena along
extracted building boundaries and yield finer building outlines.

III. EXPERIMENT RESULTS
A. Dataset Descriptions

In the building extraction tests reported in this article, two
standard datasets (including satellite imagery and aerial im-
agery) were employed to verify the effectiveness of the proposed
method. The pixels in these images are categorized with two
labels, namely, building and nonbuilding, as shown in Fig. 9.

1) Massachusetts: The Massachusetts building dataset was

presented by Mnih [42]. This dataset contains 151 images
of buildings throughout Boston, Massachusetts. The size
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of each image is 1500 x 1500 pixels, the spatial resolution
is 1 m, and the images consist of three channels: red, green,
and blue. The dataset was split into three groups of 137
training images, four validation images, and ten testing
images; there were no overlapping areas. In addition, for
ease of network training, each training and validation
image was cropped into grid patches with dimensions of
256 x 256 pixels, and the data were augmented in our
experiments. Finally, 7835 training samples and 862 test
samples were generated.

2) Inria: The Inria dataset was presented by Maggiori et al.
[40]. This dataset contains 360 aerial images, each of
which covers a large area of 810 km? in ten different
cities and includes different settlements and landscapes.
The images have dimensions of 5000 x 5000 pixels with
a spatial resolution of 0.3 m. The ground truth is provided
only for the training set, which covers five cities (Austin,
Chicago, Kitsap County, West Tyrol, and Vienna). For
comparability, we split the dataset as described by Mag-
giori et al. [40] and created a validation set by excluding
the first five tiles of each area from the training set (images
1-5 of each location for validation and images 6-36 for
training) [40]; i.e., 155 images were retained for training,
25 images were set aside for validation, and the remaining
180 images were utilized for testing. As was done for
the Massachusetts dataset, each training and validation
image was cropped into grid patches with dimensions of
256 x 256 pixels, and the data were augmented in our
experiments, yielding 93000 and 15000 image tiles for
training and validation, respectively.

B. Experimental Configuration

1) Training Environment Description: The size of the train-
ing dataset for each experiment reported in this article was 3
X 256 x 256. All training and testing were implemented using
TensorFlow and Keras on the Windows 10 platform with an
Nvidia GeForce RTX 2080Ti 11G graphics card.

2) Hyperparameter Settings: All hyperparameters used in
this experiment were optimal parameters selected by experts
in remote sensing based on comparisons among the results of
repeated trials. The number of epochs was set to 100, the batch
size was set to 10, and the initial learning rate was set to 0.001.
By monitoring the value of the loss function, the learning rate
was reduced by 0.95 after every 5 consecutive epochs in which
the performance did not improve. The MFCNN has four output
levels, and the final loss function is defined as shown in the
following equation:

Loss = Z MiL; 2)
i=1
where n =4, A = 1, and each individual loss function component

L is defined as a cross-entropy loss function [58], as shown in
the following equation:

L;;gilnpiJr(lgi)ln(lpi) A3)
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where p’ is the predicted probability distribution for category i,
g is the probability distribution of the corresponding ground-
truth label, and m is the total number of training images.

To reduce overfitting and improve the generalization ability
of the network, random cropping, random rotation, and fuzzy
and random noise operations were performed on all data in the
two datasets. Finally, the samples were balanced by the number
of building pixels in both datasets.

3) Evaluation Metrics: To quantitatively evaluate the per-
formance of the proposed method in extracting buildings from
remote sensing images and to compare that performance with
the results of other researchers, an accuracy evaluation is pre-
sented based on the IOU (4). The IOU, which can consider
both incorrect detections and missed detections, has become
the standard evaluation metric for semantic segmentation [33].
The OA (5) is also used in this article as a global accuracy
evaluation metric. In addition, three common evaluation criteria,
namely, the F1-score (6) and the precision and recall (7), are also
evaluated. To facilitate an accurate analysis of the extraction
results, the results are visually displayed as follows: as shown
below, correctly classified building pixels (TP) are marked in
green, missed building pixels (FN) are marked in red, the pixels
incorrectly identified as building pixels (FP) are marked in blue,
and correctly classified nonbuilding pixels (TN) are marked in
white

TP
OV = T Fp+oN “@
TP + FP
OA:TP+FN1FP+TN )
F1:2><§j_g )
TP TP
P=1p1rp "= TPiEN @

where TP, FN, FP, and TN are the pixel classification results
evaluated by comparing the extracted building pixels with the
ground-truth points.

TP: True positive, i.e., the number of correctly extracted build-

ing pixels.

FN: False negative, i.e., the number of missed building pixels.
FP: False positive, i.e., the number of erroneously detected
building pixels.

True negative, i.e., the number of correctly extracted non-
building pixels.

TN:

C. Analysis of the Experimental Results

1) Introduction of the Baseline Models: We selected three
baseline models for comparison: FCN-8s, SegNet, and U-Net.
These baseline models and their parameter settings are intro-
duced as follows.

1) FCN-8s: The FCN family of models was proposed by
Long et al. [33]. Pixel-level semantic segmentation is
realized by changing the last fully connected layer into
a convolutional layer, and the images are restored to
their original size through upsampling. The different FCN
models are referred to as FCN-32s, FCN-16s, and FCN-8s
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based on their different numbers of pooling layers. We
used the best-performing FCN-8s model for building ex-
traction and initialized the network with VGG-16. The
stochastic gradient descent (SGD) algorithm was applied
to solve the optimization problem during training.

2) SegNet: SegNet is an end-to-end semantic segmentation
method that was originally proposed by Badrinarayanan
et al. [34]. This method is based on the VGG-16 frame-
work; however, the fully connected layer is removed to
construct a symmetric encoder-decoder network structure.
The network performance is improved by performing
upsampling operations followed by the downsampling of
each layer in the coding network by the corresponding
layer in the decoding network. Again, we used the SGD al-
gorithm to solve the optimization problem during training.

3) U-Net: U-Net, proposed by Ronneberger et al. [35], is
an improved symmetric network based on the FCN. This
method overcomes the insufficient detail segmentation
capability of the FCN by means of a splicing-based fea-
ture fusion method. In addition, U-Net realizes multiscale
image feature recognition by partially fusing the extracted
output features during the upsampling process. As before,
we used the SGD algorithm to solve the optimization
problem during training.

2) Massachusetts Building Dataset: Fig. 10 shows a qual-
itative comparison among the results obtained by the different
methods on the Massachusetts test dataset. Two different images
are selected for the comparison, and the results obtained by each
method are initially compared at the pixel level. The results
shown in Fig. 11 correspond to the regions within the red
rectangles in Fig. 10. In general, the results of the proposed
method are significantly better than those of the other three
methods.

In the first row of Fig. 10, the building areas are small, and the
roof texture information of the buildings is similar to the road
texture information. In the second row of Fig. 10, the building
areas are relatively large, and the roof texture information of the
buildings is complex. The boundaries of the buildings in the two
images are not only affected by the buildings’ own shadows but
also densely distributed. The pixel comparison results show that
the boundaries are more clearly delineated in the MFCNN output
than in the FCN-8s, SegNet, or U-Net output. In particular, as
shown by the black boxes in the first row of Fig. 11, the basic
information of small buildings can be accurately obtained by
the proposed method even under complex conditions, while the
other methods result in more missed and incorrect extractions at
the boundaries. As highlighted by the boxes in the second row
of Fig. 11, for densely distributed large buildings, the proposed
method can also more effectively distinguish the boundaries and
obtain more refined boundary representations. Finally, the pixel-
level results show that the results of the proposed method contain
less noise.

Table I shows the quantitative evaluation results for the pro-
posed method and the other deep learning methods on the same
dataset and under the same computer performance conditions.
The IOU is used as a standard evaluation metric for semantic
segmentation. Comparisons among the IOU values reveal that
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Fig. 10.  Results of roof segmentation using four methods in different experimental areas of the Massachusetts building test dataset (zoomed-in views with more
details are provided in Fig. 11). (a) Input image. (b) Output of FCN-8s. (c) Output of SegNet. (d) Output of U-Net. (e) Output of the MFCNN.

(b)

Fig. 11. Comparison among the building extraction results of different algorithms in local areas (the smaller areas in the red rectangular frames in Fig. 10).
(a) Input image. (b) Output of FCN-8s. (c) Output of SegNet. (d) Output of U-Net. (e) Output of the MFCNN.

TABLE I
COMPARISON AMONG THE RESULTS OF DIFFERENT METHODS ON THE MASSACHUSETTS BUILDING TEST DATASET

Dataset Method OA (%) P (%) R (%) F1 (%) 10U (%)
FCN-8s 92.65 81.72 78.51 80.39 69.97
SegNet 93.16 82.12 80.17 81.14 70.03
Massachusetts
U-Net 93.56 83.11 83.14 83.07 71.38
MFCNN 95.41 88.65 84.13 86.38 74.85

the proposed method achieves the best performance in extracting
buildings with high complexity. Compared with the other algo-
rithms, the IOU of the MFCNN is increased by 3.47%—4.88%.
At the same time, the OA, precision, recall, and F1-score for the
MFCNN are also significantly higher than those for the other

networks, further proving the effectiveness of the algorithm

proposed in this article.

3) Inria Building Dataset: A qualitative evaluation of the
results of applying the proposed algorithm to the Inria dataset
is shown in Fig. 12. Two images, one from an urban area and
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Results of roof segmentation using four methods in different experimental areas of the Inria building dataset (zoomed-in views with more details are

provided in Fig. 13). (a) Input image. (b) Output of FCN-8s. (c) Output of SegNet. (d) Output of U-Net. (e) Output of the MFCNN.

e and

(b)

Fig. 13.

Comparison among the building extraction results of different algorithms in local areas (the small areas in the red rectangular frames in Fig. 12). (a)

Input image. (b) Output of FCN-8s. (c) Output of SegNet. (d) Output of U-Net. (e) Output of the MFCNN.

one from the outskirts of a city, are selected for comparison,
and zoomed-in views of the regions within the red rectangles in
Fig. 12 are presented in Fig. 13 to show more details.

The first row of Fig. 12 contains the results for the subur-
ban image. The buildings in this figure are dense and heavily
occluded by vegetation cover. Consequently, it is difficult to
distinguish the boundary information. The second row in Fig. 12
shows the results for the urban image, which contains noise such
as artificial nonbuilding features and shadows. Noise presents
an important challenge in building extraction. The pixel-level
comparison results in Fig. 12 demonstrate that the qualitative
results of the proposed algorithm are significantly better than
those of the other algorithms. Considering the details shown in
Fig. 13, the black boxes in the first row of Fig. 13 indicate that
the proposed algorithm can effectively obtain the fine boundaries

of buildings in areas affected by vegetation. By contrast, in the
results of the other methods, there are many cases of missed
detection. The black boxes in the second row of Fig. 13 show that
the extracted boundary information can also be clearly expressed
in regions with large confounding entities such as shadows.

Table II shows the results of the accuracy evaluation for the
different methods tested on the same dataset and under the same
computer performance conditions. The reported results include
the OA, precision, recall, Fl-score, and IOU. The IOU of the
MFCNN is increased by 8.82%, 8.25%, and 5.96% compared
with those of the FCN-8s, SegNet, and U-Net single-layer out-
puts, respectively. This finding also confirms that the dilated
convolution and pyramid aggregation strategies introduced in
the proposed network help to improve the building extraction
accuracy.
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TABLE II
COMPARISON AMONG THE RESULTS OF DIFFERENT METHODS ON THE INRIA BUILDING DATASET

Dataset Method OA (%) P (%) R (%) F1 (%) 10U (%)
FCN-8s 93.75 83.46 82.41 82.89 70.53
SegNet 93.83 85.47 81.96 83.70 71.10
Inria
U-Net 94.20 87.16 82.14 84.52 73.39
MFCNN 96.82 88.58 87.91 88.38 79.35

\’7\@
s

©
Fig. 14.  Regularized building boundary output. (a) Results of vectorizing the

original output. (b) Results of morphological filtering. (¢) Result of overlapping
building boundaries.

(a) (b)

4) Refined Building Boundary Output: Morphological filter-
ing is used as a postprocessing method to improve the extrac-
tion results. By considering the linear and right-angle features
of buildings, the problem arising from polygon irregularities
generated through segmentation is resolved to refine the ex-
tracted boundaries. The final building boundaries are obtained
by vectorizing the final extraction results. In Fig. 14(a), the first
column shows the results of vectorizing the original output.
Many serrations can be observed on the boundaries that do not
overlap with the original building boundaries. The results after
the morphological filtering process are shown in the second
column of Fig. 14(b). These boundaries are basically linear
and coincide well with the true boundaries. To better show the
differences in the results, the vectorized building boundaries in
the first two columns are superimposed in the third column of
Fig. 14(c). After postprocessing, the concave and convex parts of
the building boundaries are clearly flatter. The proposed method
effectively eliminates sawtooth phenomena along the building
boundaries (as highlighted by the green frames in the figure),
and the resulting shapes tend to be more regular.

To quantify the impact of morphological filtering regulariza-
tion on the extraction of building boundaries, we further compare
the raw output and the results after regularization in Table III.
The root mean square (RMS) and Hausdorff distance are added
to the original accuracy evaluation metrics [59]. The RMS is the
root mean square of the closest distance from each point on the
boundary to the minimum-area bounding rectangle and is used
to express the degree of regularity of the building. The Hausdorff
distance, which is often used as an evaluation metric for building
regularization results, is used as the criterion to evaluate the
shape similarity. An accuracy comparison reveals that the IOU
achieved with the proposed method is basically equal to the
IOU score produced by the original network framework, but
compared with the original output, the RMS values for the
Massachusetts and Inria datasets are reduced by 0.65 m and
0.32 m, respectively, after postprocessing, and the Hausdorff
distance is reduced by 0.76 m and 0.28 m, respectively. The lower
RMS after morphological filtering indicates that the building
boundaries are more regular, and the decrease in the Hausdorff
distance verifies that the extracted boundaries are more similar
to the boundaries of the original buildings.

IV. DISCUSSION

A. Comparison of the Building Extraction Results With
Recent Research

In this section, we summarize several studies conducted on the
Massachusetts dataset and the Inria dataset in recent years and
compare the results with those of our method. Accuracy com-
parisons for the Massachusetts dataset and the Inria dataset are
shown in Tables IV and V, respectively. For the Massachusetts
dataset, we focus on comparing the Fl-score and OA. The
F1-score, a weighted average of the precision and recall, is a sta-
tistical indicator used to measure the accuracy of a classification
model. From the comparison, relative to the best results from
the existing studies, the F1-score of the MFCNN is improved
by 2.31%-2.88%, and the OA is improved by 0.81%—1.29%.
Hence, the F1-score and OA of the proposed method are superior
to those of the other methods, as shown in Table IV.

In contrast to the Massachusetts dataset, the Inria dataset has
a resolution of 0.3 m and contains five different cities with
more obvious spectral and spatial dissimilarities; thus, the results
obtained on this dataset can serve as a good indicator for the
generalizability of a method. We compare the accuracy of the
MFCNN with the accuracies achieved in recent research on
the same validation dataset, as shown in Table V. As seen from
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TABLE III
ORIGINAL OUTPUT VERSUS REGULARIZED OUTPUT

Dataset Method OA (%) F1(%) 10U (%) RMS (m) Hausdorff distance (m)
MFCNN 95.41 86.38 74.85 1.93 2.52
Massachusetts
MFCNN-+ Postprocessing 95.63 86.13 74.52 1.28 1.76
MFCNN 96.82 88.38 79.35 1.35 1.87
Inria
MFCNN-+ Postprocessing 96.39 88.46 79.43 1.03 1.59

TABLE IV
COMPARISON AMONG THE MASSACHUSETTS DATASET RESULTS

Method Postprocessing Fl-score (%) OA (%)
Aleshehhi et al. [60] SLC 94.60
Cascaded multitask [61] 83.50 94.12
U-Net with Xception and 84.07 94.23
multitask [61]
MFCNN 86.38 95.41
TABLE V

VALIDATION ACCURACY OF DIFFERENT MODELS ON THE INRIA AERIAL IMAGE
LABELING DATASET

Methods 10U (%) OA (%)
FCN [40] 53.82 92.79
MLP [40] 64.67 94.42
SegNet (Single-Loss) [62] 72.57 95.66
SegNet with multitask loss [62] 73.00 95.73
2-levels U-Net+Aug. [63] 74.55 96.05
MFCNN 79.35 96.82

the results, the IOU is improved by 4.80%—-25.53% compared
with the existing studies, and the OA is improved by 0.77%-—
4.03%, further confirming that the accuracy of the proposed
method is improved compared to that of the existing methods.

B. Effectiveness of the MFCNN

1) Introduction of the Model Without the RCU, DPU, or PAU:
To effectively extract building information from remote sensing
images, CNNs are still being explored as a popular class of deep
learning algorithms. The network depth, the size of the field of
view, and the multiscale nature of the output are all important in
the building extraction process. Therefore, to improve the ability
of our neural network to extract building features from images,
we construct the neural network by combining three basic units,
namely, the RCU, DPU, and PAU. To highlight the role of each
type of basic unit, the influencing factors were analyzed by
utilizing a control variable. The details of the modified network
without the RCU, DPU, or PAU are introduced as follows.

1) Without the RCU: To investigate the role of the RCU, we
deleted this unit and replaced it with a 3 x 3 convolution
structure in the encoder portion while leaving the rest of
the network unchanged.

2) Without the DPU: The DPU includes two sets of dilated
convolutions, both of which are removed to examine the
influence of the DPU on MFCNN, while the remainder of
the network is unchanged.

Without the PAU: To compare the differences between the
single output level and the four output levels, the PAU is
replaced by a single-layer output structure, and the rest of
the network is unchanged.

2) Building Extraction Results Without the RCU, DPU, or
PAU: For comparison, three versions of the method proposed
in this article from which the RCU, DPU, or PAU are excluded
are tested under the same experimental conditions on both the
Massachusetts dataset and the Inria dataset, and the results are
compared in Table VI. Evidently, the RCU, DPU, and PAU are
all beneficial to the results. The OA values on the Massachusetts
dataset are increased by 1.47%-2.22%, and the IOU values
are increased by 4.07%—5.20%. Furthermore, the OA values on
the Inria dataset are increased by 2.99%-3.86%, and the IOU
values are increased by 8.43%-9.12%. Thus, it is obvious that
the proposed network architecture has a positive effect on the
extraction of building outlines.

The degree of neural network learning determines the ad-
vantages and disadvantages of the final extraction results. The
RCU can better learn deep and rich information from remote
sensing images. For the network structure lacking the RCU,
the OA values on the Massachusetts and Inria datasets are
decreased by 1.47% and 3.86%, respectively, and the IOU
values are correspondingly decreased by 4.07% and 9.12%. The
acquisition of deeper information helps to improve the nonlinear
representation capability of the network; hence, the extraction
results obtained on the two datasets are improved.

The distinctive morphological characteristics of buildings
play an important role in the ability to completely capture
building boundaries. The DPU helps to obtain a larger field
of view without losing resolution information, thus allowing
the morphological features of buildings to be more effectively
acquired. In remote sensing images, each building has its own
size and characteristics, and a single field of view cannot capture
all of its distinctive features. Hence, the construction of dilated
convolution groups corresponding to the feature map allows the
IOU to be increased by 2.76% and 6.60% on the Massachusetts
and Inria datasets, respectively, thus helping to improve the
building extraction performance.

The effective integration of multiscale features has always
constituted a problem that needs to be solved for the extraction
of ground objects from remote sensing images [56]. To avoid
the loss of features caused by multilayer weighted outputs, the

3)
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TABLE VI
COMPARISON OF THE RESULTS WITHOUT THE RCU, DPU, OR PAU

Dataset Method OA (%) P (%) R (%) F1 (%) 10U (%)
Without the RCU 93.94 82.73 78.73 80.52 70.78
Without the DPU 94.28 87.90 81.31 84.36 72.09
Massachusetts .
Without the PAU 93.19 84.46 77.12 80.14 69.65
All 95.41 88.65 84.13 86.38 74.85
Without the RCU 92.96 83.33 81.87 82.47 70.23
) Without the DPU 94.05 84.99 83.78 84.41 72.75
fnria Without the PAU 93.83 85.47 80.96 83.17 70.92
All 96.82 88.58 87.91 88.38 79.35

proposed network preserves all extracted features at different
scales by means of physical aggregation. Compared with the
single-layer output obtained without the PAU, the OA values are
increased by 2.22% and 2.99% on the Massachusetts and Inria
datasets, respectively, and the IOU values are correspondingly
increased by 5.20% and 8.43%, thus showing that better output
results are obtained.

C. Morphological Filtering

The large number of jagged boundary features generated
through pixel-level semantic segmentation results in irregularly
shaped boundaries. Therefore, to improve the regularity of the
extracted boundaries, we improve the classification results by
means of morphological filtering to obtain refined building
boundaries. We fine-tune each boundary by means of simple
rotation and morphological filtering operations to remove the
large amount of aliasing caused by pixel-level segmentation. The
results obtained after morphological filtering are more regular
and more similar to the real building boundaries, as shown in
Fig. 14. The effectiveness of the proposed method at refining the
extracted boundaries through morphological filtering is demon-
strated by the higher degree of regularity.

V. CONCLUSION AND FUTURE WORKS

Extracting buildings from high-resolution images has always
been an important and challenging problem. In recent years,
with the development of deep learning, CNNs have been ef-
fectively used for the extraction of building boundaries. In this
article, we have proposed a building extraction framework for
applications involving high-resolution remote sensing images
with multiscale features. The effectiveness of the proposed
algorithm framework has been validated on datasets containing
images with different resolutions and complex scenes. Based on
the characteristics of remote sensing images, a neural network
architecture is constructed to include a refined residual structure,
adaptive scaled dilated convolution groups, and a multiscale
pyramid aggregation scheme. The proposed algorithm has been
implemented to achieve the effective extraction of rich features
from remote sensing images, effectively learn the morpholog-
ical features of buildings, and accurately extract buildings of
different scales. The extraction results show that the generated
building boundaries have complete structures and areduced level
of noise, such as holes and other discontinuities. To solve the

problem of sawtooth phenomena along the boundaries generated
through pixel-level semantic segmentation, a method for build-
ing boundary regularization based on morphological filtering has
been proposed. The morphological filtering process is performed
after the boundary is rotated to a standard orientation, and
the distinctive linear and right-angle features of buildings are
effectively utilized. As seen from the accuracy of the results, the
regularity of the boundaries is effectively improved. As shown in
this article, our method can reduce the numbers of erroneously
detected building pixels and missed detections. Then, through
a separate postprocessing method, refined building contours
can be effectively obtained that are better suited to practical
engineering applications.

With the development of remote sensing technology, the
number of high-resolution remote sensing images available will
continue to increase, data acquisition will become easier, and
the applications of such images will become more extensive.
This article has proposed an effective method for improving the
extraction of buildings from remote sensing images. However,
the extraction of buildings with fuzzy boundaries and uncommon
shapes is still difficult, and the extraction accuracy still needs to
be improved. In future studies, we will further optimize deep
neural networks to improve the efficiency and accuracy. At the
same time, the generalizability of the network model to different
data sources and different regions will be further studied to allow
the building extraction results to be more effectively applied to
practical engineering problems.
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