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Navigating the Pandemic Response Life Cycle:
Molecular Diagnostics and Immunoassays in the
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(Methodological Review)

Abstract—Coronavirus disease 2019 (COVID-19) is an in-
fectious disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). To counter COVID-19
spreading, an infrastructure to provide rapid and thorough
molecular diagnostics and serology testing is the corner-
stone of outbreak and pandemic management. We hereby
review the clinical insights with regard to using molecu-
lar tests and immunoassays in the context of COVID-19
management life cycle: the preventive phase, the prepared-
ness phase, the response phase and the recovery phase.
The spatial and temporal distribution of viral RNA, anti-
gens and antibodies during human infection is summa-
rized to provide a biological foundation for accurate de-
tection of the disease. We shared the lessons learned and
the obstacles encountered during real world high-volume
screening programs. Clinical needs are discussed to iden-
tify existing technology gaps in these tests. Leverage tech-
nologies, such as engineered polymerases, isothermal am-
plification, and direct amplification from complex matri-
ces may improve the productivity of current infrastructure,
while emerging technologies like CRISPR diagnostics, vi-
sual end point detection, and PCR free methods for nu-
cleic acid sensing may lead to at-home tests. The lessons
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learned, and innovations spurred from the COVID-19 pan-
demic could upgrade our global public health infrastructure
to better combat potential outbreaks in the future.

Index Terms—COVID-19, SARS-CoV-2, molecular diag-
nostics, immunoassay, at-home test.

I. INTRODUCTION

CORONAVIRUS disease (COVID-19) is an infectious dis-
ease caused by the novel virus severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) [1], [2]. Up to April
19th, 2020, there are about 2,331,099 confirmed infection cases,
resulting in approximately 161,030 deaths (fatal rate of 6.90%)
[3], [4]. On March 11th, 2020, the World Health Organization
assessed COVID-19 to be characterized as a pandemic [5].

Due to a combination of high transmission rates [6], high
case-fatality rate [7], [8], a large number of asymptomatic carri-
ers [9] and “pre-symptomatic” transmission [10], COVID-19 has
presented an unprecedented challenge for the diagnostics infras-
tructure. Laboratory quality molecular tests and immunoassays
need to be delivered to a significant fraction of the population
within a mere weeks or months [11], [12]. In some countries and
regions, universal screening schemes tried to cover 100% of the
population [13].

We summarized clinical insights with regard to molecular
tests and immunoassays in the context of COVID-19 manage-
ment life cycle: the preventive phase, the preparedness phase,
the response phase and the recovery phase. The workhorses of
diagnostics are Reverse Transcription - Quantitative Polymerase
Chain Reaction (RT-qPCR) and immune colloidal gold strips
tests, while sequencing and other technologies play supportive
role.

Rapid and reliable diagnostics help track disease epidemiol-
ogy, improve on disease containment and treatment, prioritize
limited healthcare resources, facilitate drug and vaccine devel-
opment, as well as monitor recovered patients. They also play
important roles in areas, such as the decontamination of public
spaces, airport screening [14]–[17], track transmission among
pets or wild animals [18]. In the final stage, universal screening
would expedite the “back to work” and “back to school” process
for economic recovery and post-pandemic social reconstruction.
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The ability to perform diagnostic assays inside every house-
hold has the potential to revolutionize COVID-19 pandemic
management. We also reviewed technologies that have the po-
tential to bring at-home molecular tests to reality. Bottlenecks in
each technology are identified to encourage future engineering
efforts.

Due to the limited scope of this review, biomarkers such
as cytokines, metabolites, which are of paramount importance
during critical condition management and drug metabolism, are
not covered [19]–[22].

II. CLINICAL INSIGHTS INTO COVID-19 TESTS

Nucleic acid amplification tests (NAAT), immunoassays and
next generation sequencing sits at the center of COVID-19
pandemic management.

A. Foundational Test Categories

1) Nucleic Acid Amplification Test: Molecular test detects
the presence of SARS-CoV-2 viral genetic material in a bio-
logical sample. The test work-flow follows four major steps:
sample collection, sample preparation, signal amplification, and
signal detection. RT-qPCR is the gold standard test, and account
for about 97.5% of molecular tests during China’s national sur-
vey [23]. RT-isothermal amplification (0.54% of assays), Next
Generation Sequencing (NGS) (1.07% of assays), PCR Time of
Flight Mass-Spectrometry (TOF-MS) (0.32% of assays), PCR
Microarray (0.54% of assays) and other tests such as digital PCR
(<0.03%) are also applied during this COVID-19 management
[24]–[26]. Most real-time RT-qPCR assays target the ORF1ab
and N gene regions, and were designed via guided alignments
of thousands of sequences on the Global Initiative on Sharing
All Influenza Data (GISAID) and GenBank to account for single
nucleotide variations [27], [28]. RT-qPCR assay has high speci-
ficity and accuracy. However, when combined with technical and
biological uncertainties during sample collection and sample
processing, COVID-19 RT-qPCR has sensitivity of at best 70%
to 80% [29], [30]. Therefore, a single negative RT-qPCR result
does not exclude COVID-19 infection [31]. Repeated testing
from multiple body sites or time points (up to 7–8 times) is
needed during patient monitoring and discharge.

2) Immunoassay: COVID-19 immunoassay, either anti-
body based or antigen based, detects the presence of anti-viral
antibodies or viral proteins (antigens). Immune colloidal gold
strips tests with SARS-CoV-2 specific IgM and IgG allows for
rapid screening within 10-15 minutes. Antibody levels against
the SARS-CoV-2 internal nucleoprotein (NP) or surface spike
protein receptor binding domain (RBD) increase for most pa-
tients at 10 days or later after symptom onset. For both IgG
and IgM, the onset of seropositivity is earlier for anti-RBD
than anti-NP. They are detected 5–10 days after the onset of
symptoms [32]. The lag time of antibodies results in a window
period where the patient may have a negative IgM/IgG, but still
have COVID-19. After 14 days or longer after symptom onset,
over 90% patients demonstrated seropositivity [32]. There’s a
whole portfolio of application areas for serologic testing beyond

each individual. Besides serving as an adjunct to the swab
molecular testing, serology can identify donors of plasma from
recovered patients. Potent and high titer therapeutic serum can be
transfused into COVID-19 patients as a potential treatment. The
antibody assays could be used to estimate the timing of infection.
Dating when people were infected distinguish people recently in
close contact with the virus from people infected early during the
outbreak [30]. Antibody assays could evaluate whether viruses
induce neutralizing antibody responses temporarily over 1–2
year time course, or long lasting protective effects that would
lead to accumulation of herd immunity. For vaccines, serologic
tools could discriminate whether certain vaccination scheme
takes effect in individuals, or even differentiate vaccine-induced
antibodies and natural infections [30].

3) Next Generation Sequencing: De novo sequencing
technologies allow accurate determination of strain subtypes.
Next generation sequencing and nanopore sequencing based
metagenomics facilitates unbiased detection of any expected or
unexpected co-infection pathogen. They play critical role in an-
ticipating potential sequence mutations during viral spreading,
studying genotype phenotype relationships of SARS-CoV-2,
and facilitating the development of drug (target binding site)
or vaccine (immunogenic epitopes).

B. Molecular Test and Immunoassay Sample Types

Nasopharyngeal and throat swabs are commonly taken for
COVID-19 molecular tests [33]. Other sample types that has
been studied include: sputum, blood, stool, urine and cere-
brospinal fluid [34], [35]. Samples from bronchoalveolar lavage
and tracheal aspirates produce the most accurate diagnosis,
but relies on specialized instrument and medical staffs have
high exposure risks during sample collection, due to aerosol
generation [36]. The antibody immunoassays look for protective
antibodies in whole blood, serum, plasma or a finger prick of
blood [32]. Antigen (Ag) detection test is done on a deep sputum
or nasopharyngeal swab, although its application in the current
COVID-19 pandemic is rare. Environmental samples include air
[37], household surfaces [36], raw sewage [38] and non-potable
water [39].

C. Spatial and Temporal Distribution of SARS-CoV-2

Whole body assessment based on RT-qPCR and viral culture
established site specific virological information with regard
to virus presence and infectivity [40]. During disease onset,
infectious isolated virus could be obtained from throat and lung.
Stool samples contain high viral RNA concentration but was
harder to yield active virus [41]. Blood and urine do not contain
active virus. Viral RNA persists in sputum beyond the end
of clinical symptoms [40]. Current molecular diagnostics do
not readily differentiate actively replicating virus and its viral
genetic material.

Temporal behavior of viral load was also studied: In the
first two weeks after symptom onset, SARS-CoV-2 could most
reliably be detected in sputum followed by nasal swabs, whereas
throat swabs were unreliable 8 days after symptom onset. The
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Fig. 1. Foundational COVID-19 assays include nucleic acid amplification tests, immunoassays and next generation sequencing. Leverage
technologies improve the quality and capacity of current test infrastructure. Emerging technologies offer potential for at-home molecular tests.

virus RNA load range from 1 × 103 to 1 × 109 copies per
whole swab. The pharyngeal viral load is high during the five
days after symptom onset. Saliva was shown to contain high
viral load during the first week, ranging from 9.9 × 102 to 1.2
× 108 copies/mL [25], [32], and subsequently declined with
time. The high viral load during the first 5 days of symptom
onset in both saliva and throat swab hints potential for direct
amplification molecular tests.

D. Combined Molecular Tests and Immunoassays
Results

When molecular tests and immunoassays are interpreted to-
gether, the results not only provide cross validation and improve
sensitivities, but also informs the stage of COVID-19 patient’s
disease progression.

People with Nucleic Acid Amplification (NAA)+, IgM−,
IgG− results may be in the initial window period of infection.
People with NAA+, IgM+, IgG− may be in the early stage of
infection. People with triple positive signal could be in an active
stage of infection. During late or recurrent stage, people could
exhibit NAA+, IgM−, IgG+. Occasionally, NAA−, IgM+,
IgG− has been observed, this is likely due to false positive
of IgM immunoassays or false negative results from NAA
molecular tests. If some patients are tested negative for both
NAA and IgM, but positive for IgG, the patient may have had
a past infection and is entering into recovery phase. Finally, a
NAA-, IgM+, IgG+ results indicates the person tested may be

in the recovery phase (sometimes, the NAA result may be false
negative).

III. CLINICAL NEEDS ASSESSMENT FOR TESTS DURING

COVID-19 MANAGEMENT LIFE CYCLE

The management of COVID-19 can be divided into four
phases: the preventive phase, the preparedness phase, the re-
sponse phase, and the recovery phase. During the preventive
and preparedness phase, the combination of accurate diagnosis
and dynamic modeling is critical for confirming infections,
cutting off transmission and directing susceptible population to
necessary medical resources. During the response phase, test
capacity need to further expand to cover a significant percentage
of the population (from single digit percentage to 100%). During
the recovery phase, the pressure of combating COVID-19 comes
from outside the borders, and the disease evolve from regional
pandemics to sporadic outbreak. Each phase could benefit from
a unique combination of various technology (Fig. 1).

A. Early Detection

The best strategy to control a pandemic is to prevent one.
Strategies such as pooled screening allows the detection of
positive carriers in multiple people [42]. High sensitivity assays
may facilitate detection of early community transmission of
SARS-CoV-2 and enable timely infection control measures to
reduce spread.
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B. Ramp Up Test Capacity

In the initial phase of disease outbreak, most countries expe-
rience limited preparedness as the demand for diagnostic tests
ramped up rapidly [43]. To cope with the increasing demand
for COVID-19 tests, many P2 biosafety level hospital labs are
temporally converted to operate as a P3-like lab. However, there
were huge gaps among the samples collected, the samples tested
and the samples interpreted.

Raw material such as nasopharyngeal and throat swabs [44],
RNA extraction kits, quantitative PCR instruments are in short-
age [45], [46]. Apart from test supplies, protective goggles,
coveralls for medical staffs are all essential aspects of total
test capacity. Medical staffs experienced and trained in either
performing molecular diagnostic tests or qPCR curve result
interpretation are in high demand. For the widely used RT-qPCR
assays, sample preparation for one 96 plate could take more
than one hour, while the thermocycling program would take 2–
3 hours depending on individual assays. The existing biosafety
cabinets in hospitals were generally not spacious enough to
occupy automated nucleic acid extraction instruments, and the
majority of sample RNA extraction procedures in hospital and
clinic settings were done manually. A lab equipped with five
to six qPCR instruments, when running 24-7, generates a test
capacity of 3000–5000 tests per day.

Rapid molecular tests have the potential to enhance existing
test capacity for each instrument per operator per day (Sec-
tion IV.A-E). High frequency temperature switching mecha-
nisms and instrument designs could enable fast thermocycling
for traditional RT-qPCR (Section IV.B.1). Both microfluidics
and electrowetting integrate rapid heat transfer, liquid handling
and reaction miniaturization (Section IV.B.2-IV.B.3). Isothermal
amplification allows for signal amplification within 5 min–
60 min (Section IV.C). RNA templated amplification and poly-
merase engineering enables the direct amplification of RNA
templates, and skips need for reverse transcription steps (Sec-
tion V.D). There is a strong demand for molecular tests that
bypass RNA extraction steps and enable direct amplification
from complex medium (Section IV.E). Extraction free molecular
diagnostics alleviates both the cost, time, and burden of RNA
extraction. One bottleneck in COVID-19 molecular tests is the
large number of borderline curves (close to 30% for viral load
680 copies/mL) that resulted in repeated confirmatory tests, as
shown in Fig. 2A. Technologies developed to eliminate primer
dimer and off target amplification generate clear-cut diagnos-
tic results, as demonstrated in Fig. 2B, and was reviewed in
Section IV.H. During the late stage of patient recovery, highly
sensitive diagnostics is necessary to judge patient status or even
infectivity (Section IV.F). Also, since the COVID-19 pandemic
overlaps with traditional flu and allergy season, multiplexed as-
says that simultaneously determine large numbers of pathogens
is helpful (Section IV.H). Finally, automated sample to answer
work-flows could alleviate stress for manual amplification curve
interpretation.

C. Population Scale Screening and Universal Screening

Multiple countries and regions initiated plans to conduct
population wide screening program using both nucleic acid

Fig. 2. Borderline cases requires repeated tests to confirm patient
status. A) As the viral load in samples decreases, higher percentage of
samples need to be retested for confirmation; B) and C) showed qPCR
amplification plots of fluorescence (y-axis) vs. cycle numbers (x-axis):
B) is an example of qPCR assay with high percentage of borderline
cases; C) is an example of nucleic acid amplification assay with clear
distinction between positive and negative samples.

amplification tests and immunoassay (Section IV). Population
wide COVID-19 screening play important roles during two ma-
jor stages: 1. When initial disease containment window passed, it
becomes important to identify carriers, especially asymptomatic
carriers, in order to stop the transmission. Molecular tests play
important role in keeping carriers at home, away from healthy
individuals; 2. When the combat against disease enters into post
peak recovery stage, population wide survey not only reveals
whether individuals carry virus, but also the immunity status
of the population, whether people in a particular region carries
antibody against the SARS-CoV-2 virus and over what period
of time.

As the pandemic unfolded, multiple countries announced
travel restrictions and airports become the frontier of COVID-19
diagnostic screening. Current screening protocol includes ther-
mometer or infrared camera based temperature measurement,
epidemiology investigation and close contact report, together
with molecular diagnostics. Even with molecular diagnostic
labs set up near the airport, it would still take about 6 hours
before reports may be generated. Once people enter the border,
renovated hotels are provided for quarantine and continued
observation.

One major innovations in the population scale screening
work-flow is coronavirus drive-through testing stations. Drive
through sample collection enables satisfactory isolation, with
characteristics of convenience and high speed. Conducting sam-
ple collection process outdoors also limits the exposure of front-
line workers to the virus, and decrease risk of cross-infection in
traditional clinic waiting area. In geological areas where cars
are not widely accessible, community screening is provided by
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trained medical professionals during home visits. In either cases,
sample collection technologies need continuous innovation that
preserves viral RNA integrity, inactivates virus, improves cell
sample release into the collection medium, and offers direct
compatibility with downstream biochemical reactions (Section
IV.A).

D. Check Recovered Patients for Infectivity

Case reports suggest a portion of recovered patients remains
NAA positive over prolonged period of time [23]. It remains
unclear whether these cases are the result of false negative
molecular diagnostics during discharge, or early examples of
chronic infection, slow infection or viral latency.

There is an urgent need to differentiate people carrying SARS-
CoV-2 and people with spreading potential, i.e. infectivity.
Culture-based methods has been established as a qualitative
means to query biological samples from various body sites for
infectivity [47]. Its application to wide population suffers from
the innate risks associated with replicating the virus in vitro. A
potential surrogate for infectivity detection could be developed
by probing viral subgenomic RNA. These subgenomic RNA is
only transcribed in infected cells while not packaged into virions
[40]. Molecular diagnostics targeting subgenomic RNA has the
potentially to identify active replication.

E. Home Tests

The COVID-19 pandemic stressed and continually pushed
the innovation frontier for more distributed test formats, such as
at-home sample collection, or even at-home diagnostics. Peo-
ple get familiarized with the sample collection process during
repeated testing, and cell collection kits were developed to be
user-friendly enough for self-collection (Section IV.A). At-home
testing could promote health equity, as well as a patient-centered
model of medical care. Adoption of home-tests need to proceed
with caution, since the accuracy of home test kits fell signifi-
cantly when used by consumers: users misunderstood or failed
to follow the instructions included in the kits.

Lateral flow antibody detection for SARS-CoV-2 is one point-
of-care (POC) approach under development for diagnosing
COVID-19 [48]. A paper-like membrane strip contains multiple
lines. When blood sample is spotted on the membrane, the serum
contents are drawn across by capillary effect. The differential
presence of IgG, IgM antibodies determines the immunity sta-
tus of a particular person. The immunoassay has the potential
of a low-cost disposable diagnostics with home use potential.
Although yet unapproved to be used in household settings, the
unparalleled convenience and mode of test delivery point to
the great potential of making COVID-19 detection home tests
available [49]–[51].

There are early examples of home sample collection for
molecular diagnostic purposes [50]–[52]. To bring the full
molecular diagnostics workflow to home test settings, significant
improvement in assay robustness and simplicity need to occur.
While the foundational technologies for a molecular home-test
seem to exist, several issues remain to be overcome: 1. End point
assays are used instead of real time monitoring; 2. Temperature

control mechanism needs to be switched from thermocycling
to isothermal incubation; 3. RNA extraction steps are not ap-
plicable; 4. Small volume liquid transfer needs to be achieved
without a pipette; 5. Reactions need to be robustly specific under
a variety of conditions; 6. The diagnostic screening kit needs to
be performed in a closed system from sample collection to the
end of the test; 7. Signal detection likely involves visual inter-
pretation, which could be supplemented with mobile support;
8. Instruction manual are provided for layman interpretation, in-
stead of relying on professional experience; 9. Amplified nucleic
acid product disposal also need to be managed to prevent aerosol
contamination of the environment, in case temporal sample tests
are needed. Section IV.I described research efforts that aimed at
bringing molecular testing into household settings.

F. Standard Material for Molecular Tests

During the reponse phase, a myriad of tests become avail-
able from both academic and commercial sources. Routinely,
approved tests are assigned blinded standards for sensitivity
analysis, laboratory quality assessment and test validation at
multiple sites. Digital PCR has been used to provide absolute
and high sensitive quantification of the standards (Section IV.F).
Recombinant pseudoviruses and transcribed RNAs serve as
surrogates for the SARS-CoV-2. These standards do not account
for the additional biochemical transformation steps needed to
release viral RNA encapsulated in the protein capsid, as well
as the lysis of human cells. Since the natural SARS-CoV-2 has
a long stretch of RNA molecule, synthetic RNA standards or
recombinant pseudoviruses cover a small portion of the viral
genome. While announcing recommended primer design and
target region at the beginning of the pandemic expedited global
supply for COVID-19 detection, these national and commercial
standards discriminate efforts to develop tests outside the region.
If the virus mutate sequence in the common design region, which
is highly likely for an RNA virus such as SARS-CoV-2, a lot
of molecular tests would exhibit false negatives due to primer
mismatch.

IV. TECHNOLOGY FOR COVID-19 MANAGEMENT:
FOUNDATIONS AND OUTLOOKS

A. Sample Collection

COVID-19 detection has unique challenges because the virus
is highly infectious, yet its RNA genetic material is extremely
labile. RNA is susceptible to the universal presence of ribonucle-
ases (RNases) in both human cells, lab reagents and consumables
[53]. Elevated temperature (>65 °C) and high pH also cause
RNA degradation under physicochemical conditions [54]–[57].
As a drastic demonstration, without adequate RNase control,
free RNA is nonamplifiable after 15 s of incubation in biological
samples, such as plasma or serum [53].

Although viral RNA is encapsulated in protein capsids, trans-
portation conditions and heat viral inactivation protocol ruptures
human cells or viral particles, and cause rapid degradation of
viral RNA, resulting in drastic drop in assay sensitivity. These
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TABLE I
SUMMARY OF FAST PCR TECHNOLOGIES

could be the underlying cause of the reported high false negative
rates.

Two solutions are developed to circumvent this issue during
the sample collection steps: 1. Harsh chemical denaturants,
surfactants, chaotropic salts, and alcohols were used to un-
fold the RNase enzymes while inactivating SARS-CoV-2 virus
[58], [59]. It is worth noting that such treatment abolish the
potential for the cell collection medium to be compatible with
non-extraction direct amplification molecular tests, and RNA
extraction is required for downstream processes; 2. The collec-
tion medium were kept isotonic with human cells to prevent
RNA release during transport. Without direct contact of RNA
with intracellular RNases, the genetic material of virus remain
intact and is highly stable. Once samples arrive at the diagnostic
labs, they are immediately processed for RNA extraction or
simultaneous RNA release and cDNA conversion.

B. Polymerase Chain Reaction (PCR)

1) Rapid Thermocycling Systems: RT-qPCR plays central
role during current COVID-19 management, due to its high

specificity, sensitivity and the widely available qPCR instru-
ments and molecular testing lab infrastructure around the world
[60], [61]. Temperature cycling controls 3 distinct events: DNA
denaturation, primer annealing, and polymerase extension [62].
Efforts to improve PCR speed span over the course of almost
30 years (Table I).

Although most clinical PCR programs take 2–4 hours, re-
search in the early 1990s already demonstrated rapid heating
and cooling mechanisms that shrink reaction time down to less
than 30 min (1 min per cycle) [80], [81]. In the following
25 years, developments to decrease PCR reaction time focus
more on instrumentation, rather than biochemistry [82]. Many
groups tried to reduce the PCR times by a combination of
improving tube shape and instrumentation redesign [83], [64]–
[66], [69], [71]. Reaction volume shrinkage need to be coupled
with accurate liquid handling and high sensitivity optics. Tubes
were designed to increase reaction surface to volume ratio [73].
Deformable tubes can achieve both volumes needed for accurate
liquid handling as well as the necessary mixing [84], [85]. Peltier
devices using highly conductive materials allow with ramp rates
of up to 15 °C/s heating and 12 °C/s cooling [86], [87]. Fast DNA
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Fig. 3. Examples of leverage technologies that improves sample to result turnaround time. A) Schematic Representation of Rapid PCR (<5 min)
and Extreme PCR (1 min), adaped from Prof. Carl Wittwer’s extreme PCR lecture [97]; B) Rapid PCR by Digital Microfluidics (5 min); C) CRISPR
Diagnostics Workflow (45 min); D) Traditional Molecular Diagnostics Workflow (4–5 hrs) vs. Direct Amplification from Samples (<1h).

polymerases, engineered with higher processing rates, extension
rates, and faster activation times were used with the rapid thermal
cyclers [88]. Efforts to decrease PCR times to less than 5 min
were achieved by instrumentation [89], including systems using
hot and cool water for heat transfer through metal block or
thin plates [90], [70], [91] and infrared-mediated temperature
cycling, which enabled 3 sec PCR cycles [92]. When glass
capillaries were submerged in liquid gallium, PCR cycle time
was further improved down to 2.7 sec [65]. Microfluidics coated
with gold nanolayer can achieve 30 cycle 5 min PCR reaction
via plasmon-driven heating [77], [93], [94], also named photonic
PCR. Photonic PCR combines the use of a thin Au film as
a light-to-heat converter and light-emitting diodes (LEDs) as
a power source. Enzyme inactivation on the Au surface was
alleviated by coating with biocompatible polymer. As PCR cycle
times went from 20 sec to 2 sec, efficiency and yield were heavily
compromised and eventually failed. These advancements need
to be complemented by additional development in buffer mix
formulation in order to realize performance similar to traditional
thermocycling [61]. With careful study of amplification kinetics
[95], [96], 0.4 to 2.0 sec/cycle could be achieved with step-motor
based rapid mechanical systems [62], [97], [98]. The key lies
in increasing enzyme and primer concentration by 20 fold.
Interestingly, the study overturned the belief that higher primer
and enzyme concentrations lead to nonspecific amplifications,
which was true under typical thermal cycling rates. However,
when performed under extremely rapid PCR conditions, as
shown in Fig. 3A, the amplifications produces sharp specific
bands presumably because off target reaction was kinetically
unfavored. High concentration of enzymes, thus higher concen-
tration of glycerol in the buffer, did impact the primer annealing
and melting temperature (Tm) of the product. These issues
could be addressed in the future by special formulation of high

concentration enzyme stocks with improved stability. For RNA
viral detection, the RT biochemistry is also slow in comparison
with the 1min 40 cycle PCR assays. In order to push extreme
rapid PCR to clinical usage, bottlenecks in sample prepara-
tion (Section IV.A), reverse transcription (Section IV.D) and
heat activation of polymerases need to be removed. Extremely
rapid PCR system would likely rely on aptamer based mecha-
nisms [99], rather than chemical based mechanisms for hot-start
reaction.

2) Continuous Flow Microfluidics and Digital Microflu-
idics: Microfluidic devices integrate a great combination of
rapid heat transfer, liquid handling, reaction miniaturization
and automation. Continuous flow polymerase chain reaction
(CF-PCR) offered promise as a rapid molecular test mechanism
[72]. The liquids are pumped in a continuous channel across var-
ious temperature zones in a back and forth fashion, mimicking
temperature gradient in PCR.

Digital Microfluidics (DMF) is an exciting technology for
liquid manipulation [100]. DMF devices have two basic forms:
two-plate (or closed) configuration, in which liquid droplets
move within; and one-plate (or open) configuration, in which
liquid droplets move over one substrate. DMF allows the control
of discrete droplets on a surface, through the use of electric,
magnetic, optic or acoustic forces [101]–[103]. Electricity, op-
tics and acoustic field modifies the wettability of the surface.
Temporal control of patterned surface properties allows liquid
movement. To perform PCR on digital microfluidics, multiple
temperature zones are preset (Fig. 3B) [104]. Since electricity
can be switched on an off at tremendously high frequency,
thermocycling using digital microfluidics is limited only by heat
transfer within liquid droplets. Usually the reaction zone is filled
with oil in order to prevent evaporation during thermocycling.
A key advantage of digital microfluidics is the ability to achieve
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TABLE II
COMPARISON OF ISOTHERMAL NUCLEIC ACID AMPLIFICATION TECHNOLOGIES

NASBA: Nucleic Acid Sequence-based Amplification; TMA: Transcription Mediated Amplification; SDA: Strand Displacement Amplification; NEAR: Nicking Enzyme
Amplification Reaction; RCA: Rolling Circle Amplification; HDA: Helicase-dependent Amplification; RPA: Recombinase Polymerase Amplification; LAMP: Loop-mediated
Isothermal Amplification; SPIA: Single Primer Isothermal Amplification; CRISPR Dx: clustered regularly interspaced short palindromic repeats diagnostics.

small volume liquid handling, nanoliter or even picoliter liquid
transfer has been demonstrated [105]. Small volume liquid
handling capabilities are crucial for shrinking reaction volume
to less than 1 s/cycle [106].

3) Pulse Controlled Amplification (PCA): Another re-
cently developed primer denaturing mechanism relies on the
oligonucleotides decorated gold nanoparticles [107]–[109],
[76]. In this scheme, the bulk reaction is maintained at the
optimal annealing and extension temperature, while heating
was achieve locally at each gold nanoparticle center via laser
excitation. A high-power laser beam pulsed through the PCR
reaction mixture. It selectively irradiate gold nanoparticles.
Heat generated by the nanoparticles release oligos bound to
their surface. Once the laser beam stops illuminating the
nanoparticles, the particles dissipate heat rapidly and equili-
brate to the set temperature of the bulk solution. The reaction
buffer effectively serves as a cooling reservoir. The oligonu-
cleotide conjugated nanoparticles stay homogeneous in the so-
lution, interacting with the template acting like soluble primers.
Such nucleic acid amplification reaction performs a function-
ally equivalent polymerase chain reaction under an isothermal
condition.

C. Isothermal Amplification

When trying to conduct nucleic acid amplification in vitro,
early research on polymerase chain reaction established a mini-
mal system in which thermal energy (temperature) was utilized
to separate and anneal primers with templates. Various isother-
mal amplification techniques have been developed to circumvent
the need for temperature cycling. In nature, isotherm nucleic acid
amplification sits at the center of every cell division processes.
In cells, nucleic acid amplification is coordinated by replisome,
which offers extremely fast amplification speed as a result of
helicase enabled processivity, high specificity or even error

correction achieved by various DNA damage repair enzymes.
In biological processes, strand denaturing was achieved mainly
by binding energies via single strand DNA binding proteins,
or by chemical energies such as ATPs. Efforts to bring the
high performance in vivo isothermal DNA replication system
to in vitro settings still requires deeper understanding of the
natural biological processes in order to complete reconstitution
of the full replisome assembly. Starting from either DNA or
RNA, different isothermal amplification techniques were devel-
oped along the years, including Nucleic Acid Sequence-based
Amplification (NASBA), Transcription Mediated Amplification
(TMA), Strand Displacement Amplification (SDA), Nicking
Enzyme Amplification Reaction (NEAR), Rolling Circle Am-
plification (RCA), Helicase-dependent Amplification (HDA),
Recombinase Polymerase Amplification (RPA), Loop-mediated
Isothermal Amplification (LAMP), Single Primer Isothermal
Amplification (SPIA). Some recent advances, such as Cas
protein-based biochemistry (CRISPR diagnostics) allows the
decoupling of sequence specific activation and signal amplifi-
cation. Table II compares the technical specifications of various
isothermal amplification methods.

Nucleic acid sequence-based amplification (NASBA) ampli-
fies single-stranded RNA using two sequence-specific primers
and three enzymes: avian myeloblastosis virus–reverse tran-
scriptase (AMV-RT), RNase H, and T7 RNA polymerase [110],
[121]. RNA is converted into cDNA, which is transcribed to
produce more RNA. The reaction takes place at 41°C. NASBA
amplifies RNA targets on the order to 106–109 within an
hour. However, RNA needs to be purified to eliminate RNases
present in complex matrices. Transcription-Mediated Amplifi-
cation (TMA) is almost identical to NASBA. The reaction can
produce ten billion fold amplification in 20–30 minutes.

Strand displacement amplification (SDA) uses two sets of
primers, a strand displacing polymerase, and a restriction en-
donuclease [111], [122], [123]. Products 60 to 100 bases in
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length are usually amplified in 30–45 minutes. 107 copies can
be generated within 2 hours at 37 °C.

Nicking Enzyme Amplification Reaction (NEAR), relies on
a strand-displacing DNA polymerase to initiate at nicks created
by an endonuclease or nicking enzyme at a site recognized by a
primer [112]. The nicking site is regenerated with each enzyme
displacement step. The reaction temperature takes place at 65 °C.
Displaced sequences can be as short as <10 nt, resulting in
extremely rapid and sensitive detection of small target amounts
in minutes. 109 fold amplification can be achieved in 5min with
single nucleotide discrimination.

Rolling circle amplification (RCA) utilize the properties of
DNA polymerase to act on circular templates and make a contin-
uous strand of multiple copies of a target sequence [124]–[126],
[113]. RCA can be activated in two sequence dependent modes:
either a padlock probe (in the presence of a target sequence)
provide hybridization necessary for ligation and priming, or the
primer-binding site can be sequestered in a duplex region of the
dumbbell. Upon analyte binding, the duplex region opens up for
the RCA process. RCA has shown fM sensitivity. To make RCA
exponential, both forward and reverse primers are included.
The forward primer produces a multimeric ssDNA, which then
becomes the template for multiple reverse primers, displacement
generates branching DNA complex. The biochemistry can be
performed 37–65 °C, and achieve 109 fold amplification in
90 min.

Helicase-dependent amplification (HDA) takes advantage of
a thermostable helicase (Tte-UvrD) to unwind double-stranded
DNA to create single-strands that are then available for hy-
bridization and extension of primers by strand-displacing DNA
polymerase [114]. The reaction can be performed at a single
temperature, though an initial heat denaturation allows more
efficient primer binding and improves sensitivity. For products
70–120 base pairs in length, reaction times are reported to be
around 100 min for 1010 fold amplification at 64 °C.

RPA uses a recombinase enzyme to help primers invade
double-stranded DNA. T4 UvsX, UvsY, and a single stranded
binding protein T4 gp32 form D-loop recombination structures
that initiate amplification by a strand-displacing DNA poly-
merase [115]. RPA is typically performed at 37 °C and is among
the few isothermal amplification technologies that can produce
discrete amplicons up to 1 kb. The detection process usually
completes in 20 min.

Loop mediated amplification (LAMP) is a sensitive and
specific isothermal amplification method that employs a ther-
mostable strand displacing polymerase [116], [127]. Four or
more primers are necessary to complete the full amplification cy-
cle. Extension of the outer primers displaces the extended inner
primers to release single strands. The primers have hairpin ends
that could snap and facilitate self-priming as well as polymerase
extension. Amplification proceeds in 60 minutes and yields 109

concatenated DNA.
Single Primer Isothermal Amplification (SPIA) involves mul-

tiple reverse transcriptases, polymerases and RNaseH [117].
RNaseH degrades a portion of the chimeric primer to release
a portion of the cDNA and open a binding site for the next
chimeric primer. The linear amplification system takes place at

45 °C, and can amplify very low levels of RNA target in roughly
3.5–4 hours.

Unlike polymerase chain reaction or isothermal nucleic acid
amplification, Cas proteins for diagnostics applications rely on
oligo destruction rather than constructive DNA/RNA synthesis
as mode of signal amplification [118], [128], [129], [120], [119],
[130], [131]. A CRISPR system typically consists of two com-
ponents, an endonuclease and a guide RNA (gRNA) that locates
the specified DNA sequence. For instance, binding of the Cas12-
CRISPR RNA (crRNA) complex to a matching single-stranded
DNA (ssDNA) or double-stranded DNA (dsDNA) target analyte
activates the protein to non-specifically degrade any ssDNA in
trans.

In nucleic acid amplification methods, tri-component system
(primer, target, and enzyme) forms specificity check during
each round of amplification. For CRIPSR diagnstoics systems,
specificity check occurs during the initial enzyme activation
step, rather than each signal amplification cycle. Integration of
isothermal amplification and CRISPR activities benefits from
orthogonal specificity check by both reactions [132].

The CRISPR based nucleic acid signal amplification method
can couple with either real time fluorescence detection, or with
lateral flow immunoassay strips for end point visual detection
(Fig. 3C). Field application of CRISPR based strips exhibits
great potential for rapid molecular diagnostics [133]–[135].
CRISPR diagnostic solutions for COVID-19 detection was de-
veloped [128]. However, need for two-step temperature control
(for isothermal amplification and Cas enzymatic activity), small
volume liquid transfer and potential aerosol contamination by
amplified product remain problems to be solved.

D. Engineered Polymerase

Since COVID-19 is caused by an RNA virus, most amplifi-
cation based molecular detection methods require reverse tran-
scription (RT) step in order to convert the RNA template into an
intermediate DNA. Reverse transcription takes between 10 min -
60 min, depending on sensitivity and performance requirements
of various assays. Thermostable polymerase that recognizes
both RNA and DNA template has the potential to perform
single-enzyme reverse transcription-polymerase chain reaction
[136]–[142]. The unique biochemistry not only eliminated the
time needed before the exponential phase, but also enable direct
amplification from the RNA molecules, decreasing error rate
traditionally associated with the RT steps (and the resulted non-
specific amplification) [143], [144]. Each RNA molecules are
amplified multiple times, leading to more copies of amplification
product from the original sample templates [145]–[148]. It is
unclear how RNA degradation at high temperature compares
with RNA templated polymerization efficiency.

In isothermal amplification reactions, several versions of
strand displacement enzymes are available to amplify from
both RNA and DNA [149], [150]. These enzymes have been
demonstrated to achieve more rapid sample to result turnaround
time, certain levels of tolerance for complex matrices and dirty
samples, while exhibiting higher sensitivity [151].
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E. Direct Amplification From Complex Matrices

Finger prick blood test are readily available for antibody
detection without need for sample purification. COVID-19
Molecular assays rely on consecutive nucleotide synthesis at the
polymerase active site, and thus become sensitive to contami-
nants and inhibitors from clinical samples [152], [153]. RNA
extraction serves to standardize genetic material from various
complex specimen and relieve inhibitors present in the samples.

Sample preparation is time-consuming and labor-intensive.
The sample prep process involves cell lysis, one or more cen-
trifugation steps, buffer exchanges, and associated multisteps
of nucleic acid binding to releave samples from PCR inhibitors
(Fig. 3D). Advances in “lab-on-chip” platforms that integrate
sample preparation and NAATs have made great strides in
this space [75], [154]. The requirement of sample preparation
prevented nucleic acid amplification tests (NAATs) from moving
further forward towards point of care (POC) [155], [59], which
are used to diagnose patients without sending samples to central-
ized facilities, thereby enabling communities to detect infected
patients. To date, most of these microfluidic-based sample prepa-
ration efforts focus on DNA extraction, mainly miniaturized
version of solid-phase extraction (SPE). SPE-like approaches
utilize packed beads, monolithic porous structures, and mag-
netic beads [156]–[159]. A few studies described microfluidics
approaches for RNA extraction [160]–[167]. Isotachophoresis
based nucleic acid extraction was recently developed [168],
[169]. It uses an electric field to extract and concentrate target
analytes, whose electrophoretic mobility centers between the
anions of its trailing and leading electrolytes.

Direct amplification from complex matrices represent promis-
ing strategies for POC diagnostic tools [170], [171]. It min-
imizes or even bypasses sample preparation (Fig. 3D). With
COVID-19 stressing global supply chains, centers of outbreak
inevitably suffer from shortage of some fundamental molecular
biology kits, such as RNA extraction kits. The RNA extraction
step is time consuming, cumbersome to perform when wearing
personal protective equipment, and also costly for many areas
around the world.

Robustness, sensitivity and clinical evaluation are critical
decision factors for evaluating various non-extraction molecular
tests procedures.

Ideally, the assay should be able to tolerate the sample contam-
inants, and detect its target against a high background. Although
sample dilution provides a convenient way of permitting ampli-
fication, limit of detection (LOD) would be impacted. Sample
dilution increases the likelihood of false negative results.

By eliminating sample preparation, one sacrifices the op-
portunity to concentrate bulk samples, making sensitivity an
important consideration, especially when the samples already
have low target concentrations, which is the case for COVID-19
patients in the presymptomatic or recovery phase.

Clinical evaluation is important, particularly for COVID-19
detection, spike-in of internal and external standards such as syn-
thetic RNA mimicks behave differently from biological samples
(unpublished data). The pseudoviruses, transcribed or synthetic
RNA may not recapture the adsorption of biomolecules, the

RNA secondary structure or RNA modifications potentially
present in natural SARS-CoV-2 systems [172]. Finally, special
physiological change of human host may generate additional
macromolecule or small molecule inhibitors that potentially
impact the assay performance. Although SARS-CoV-2 molec-
ular diagnostics are performed on a variety of samples, such
as nasopharyngeal and throat swabs, sputum, blood, stool and
urine. The most widely adopted tests are the throat and nasal
swabs [40], [32]. Saliva was also recently identified as a potential
source with high viral load [25]. These sources of biological
samples exhibit certain level of compatibility with existing
polymerase solutions [128], [173], [174].

Sample collection and detection from swabs is attractive
because it is simple, minimally invasive, and even enables
self-sampling [175], [52], [50], [51]. However, swab-collected
specimens are likely to contain polymerase inhibitors or in
some cases, topical medications. The most sensitive POCT
tests on swabs utilizes isothermal reactions: fewer than 10
copies/reaction of viral targets were detected after brief heating
in Hank’s medium [153], M-Swab medium [176], or water [177].
Sometimes, entire swab samples can be used in amplification
reactions [173], eliminating the loss of starting material that ac-
companies liquid and hardware transfers. Future developments
include direct reactions with swabs that integrate cell lysis, RNA
conversion and isothermal amplification, as well as visual or
mobile detection in a single tube. This would give low-resource
settings alternatives to instrument-dependent assays for detect-
ing virus from swabs.

F. High Sensitivity COVID-19 Test Technologies

Digital RT-PCR offers high sensitivity and absolute quan-
tification for RNA detection. Two versions of digital PCR are
currently available, droplet based and microwell based. High
sensitivity COVID-19 molecular diagnostics are used in char-
acterizing standards. It is particularly important to go beyond
the sensitivity level offered by RT-qPCR, and gauge the limit of
detection for various assays.

G. Next Generation Sequencing and Nanopore
Sequencing

Next generation sequencing plays an essential role in the fight
against COVD-19. The virus’ entire genetic makeup was pub-
lished online within days, enabling scientists around the world
to combat the disease. By comparison, the SARS coronavirus
outbreak in 2003 waited three months for the viral genome
information.

The availability of SARS-CoV-2 genome lays a solid founda-
tion for rapid development of RT-qPCR assays, which facilitates
the current molecular screening programs around the world.
Partial or full-length viral genome sequences were generated in
RNA-sequencing, allowing assessment of strain-level subtyp-
ing, phylogenetic relatedness [27], investigation into the origin
of the virus [178]. These high resolution sequence informa-
tion also supports potential research studies on human-virus
interaction phenotypes, drug and vaccine development, or even
potential antiviral resistance [179]–[183].
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TABLE III
STRATEGIES FOR AT-HOME MOLECULAR ASSAYS AND DEVELOPMENT STAGE

NA: Nucleic Acid; LAMP: Loop-mediated Isothermal Amplification; BART: Bioluminescent Real Time Assay; µMD: Microdroplet Megascale Detector;
DETECTR: DNA Endonuclease-Targeted CRISPR Trans Reporter; Temp.: Temperature.

Unlike the majority of RT-qPCR assays which are mostly
qualitative, normalized viral read counts correlated with viral
burden. NGS assays show high intra- and inter-run reproducibil-
ity for viral load quantification.

The ability to monitor viral genome at single base pair reso-
lution provides instrumental insight into the validity of existing
molecular assays or even antibody based immunoassays. When
molecular tests failed due to point mutation at common primer
design region, NGS still offers an accurate and reliable alterna-
tive to fill in the clinical gap.

It was reported that in severe cases, 1 in 7 patients hos-
pitalized with COVID-19 acquired secondary infections, and
50% of patients who have died had such infections [184].
Pathogen co-infection and differential diagnosis are among the
most important application area for NGS and nanopore based
sequencing. Rapid diagnosis, antibiotic resistance check and
treatment needs to be offered to prevent worsening of bacteria
infection as a result of immune system failure [184]. Nanopore
sequencing outputs data within 15 min [185], [186]. Despite its
high error rate, nanopore based sequencing has been applied to
determine known or unknown pathogens in ICUs or in the field,
enabling treatments to be prescribed accurately and timely [187].

As the pandemic fades away, sample barcoding and high sen-
sitivity NGS assays could potentially be used for national level

population screening programs, in which a pooled screening
strategy was pursued to increase testing throughput, limit use of
reagents, and increase overall testing efficiency at an expected
slight loss of sensitivity [173].

H. Multiplexed Molecular Assays for Differential
Diagnosis

Since influenza, pneumonia attributed to electronic cigarettes
[198], acute infection by other pathogens, and allergy exhibit
similar symptoms as COVID-19, it is critical to differentiate a
SARS-CoV-2 carriers from people with other milder and less
infectious diseases.

Multiplexed molecular tests could be used to achieve differ-
ential diagnosis for common respiratory pathogens. Traditional
microfluidics or digital microfluidics achieves multiplexing by
two general strategies: 1. allocating sample into different physi-
cal locations. Once the sample is delivered into their destination
chamber, a combination of various diagnostic detection methods
were applied; 2. multiplex PCR allows multiple target amplifi-
cations to occur in single reaction tube, and the read out was
differentiated by assigning individual signals to different targets.

Multiplex PCR refers to amplifying a plurality of target frag-
ments in the same reaction chamber. Multiplex PCR provides
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extraordinary simplicity, throughput, and economic advantages
over single-plex PCR [199]. Current techniques may include
designing primers within very narrow parameter ranges, or
incorporating special oligos (e.g., modification of primers by
replacing thymidines with uridines) [200], [201], the use of
oligonucleotides with much reduced dimer formation tendencies
[202], and the use of chemically tagged primers blocked in
combination with universal primers [203], and strategies for
specifically activating blocked primers or enzymes [204] as an
alternative to reduce active concentration of ingredients. NGS
greatly facilitated multiplex PCR design and optimization, since
primer dimer bands could be enriched and sequence to determine
primer interaction pairs. In recent years, multiple strategies
around primer dimer degradation or cleanup starts to emerge
[205]–[208]. Primer dimers are removed by physical adsorption
or enzymatic degradation, thus preventing these shorter “ampli-
fication products” from being amplified further. Despite these
technological developments, multiplex PCR primer design pro-
cess is still relatively cumbersome, and often rely on dedicated
software (e.g., DNAsoftwares’s Visual OMP, MultiPLX, ABI’s
Primer Express, etc.) in conjunction with human involvement.

I. Emerging Instrument Free Molecular Assays

Efforts en route towards a potential at-home molecular test
solution has been summarized in Table III. The combination
of at-home tests and contact tracing (enabled by smart phone
geographic record) has the potential to inform the close contacts
once an infection was identified, and tests could be instantly
delivered to follow up on the health status of the affected individ-
ual. As part of many ongoing collaborative innovation efforts,
the form of a low cost easy to manufacture home test kit for
COVID-19 was proposed, that include nasal swab (Q-tip) with
freeze dried reagents for isothermal amplification with COVID-
19 specific primers. Colorimetric readout by mobile app with
geolocation and Health Insurance Portability and Accountability
Act (HIPPA) compliant reporting [209].

1) Smart Phone Platform: With the wide adoption of smart
phones all over the world, software and hardware solutions
related to molecular test have been developed. A smart phone
contains a tremendous combination of battery, computing power,
screen, camera, GPS, and an interactive user interface. Although
most projects were in the prototyping stage, smartphone-based
diagnostic platforms were reported to function in the field [210].
One of the major bottlenecks lies in the maintenance of isotherm
temperature during the course of the biochemical assays. Apart
from low cost devices (e.g.sous vide precision cooker) that
contain temperature control feedback loops, a USB-powered
heating device, or a chemical process buffered by phase change
material were trialed (A) [173].

2) End Point Visualization: RT-qPCR relies on real-time
fluorescence monitoring. Isothermal end point assays provide an
alternative that obviates the need for sophisticated temperature
control and optical instruments (Fig. 4A). Visual detection for
nucleic acid products utilize the color change of a indicators,
such as calcein (dark yellow to yellow), hydroxynaphthol blue
(dark blue to blue), malachite green (dark blue to light blue)

Fig. 4. Emerging technologies with Home-Test potential. A) Schematic
Representation of At-home Molecular Tests via Smartphone or Visual
Detection; B) Nucleic Acid Detection with Nanostructured Electrochem-
ical Sensors (2 min); C) Surface Plasmon Resonance Based Nucleic
Acid Detection (10 min).

or EvaGreen (orange-yellow to green) [211]. When targets are
amplified in weakly buffered solution, isothermal amplification
produces a 2-3 pH unit drop without loss of reaction efficiency.
PH indicator like phenol red (pink to yellow), and xylenol orange
(pink to orange) [212] was also explored as an end point assay
[191], [213], [190].

3) PCR Free methods for Nucleic Acid Sensing: The re-
cent advancement of PCR-free nucleic acid sensing technologies
demonstrated great potential. They could lead to a new diagnos-
tic era when devices are highly miniaturized, and molecular as-
says could be done at home. Chip-based electrochemical sensors
offer attractive solutions for clinical sample analysis, due to their
high sensitivity and amenability to multiplexing (Fig. 4B) [214],
[215], [195], [216], [217], [196], [218]. Electrochemical clamp
assay (ECCA) can achieve detection of targets in 5 fg of isolated
RNA. The high sensitivity is the result of combining micro- and
nanostructuring on an electrode surface. The microstructured
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sensors provides high surface area and protrude into the solu-
tion to acheive effective probe binding and sensing. The size
and morphology of the sensors can be controlled by a set of
parameters (the deposition time, applied potential, Au concen-
tration, supporting electrolyte). Noticeably, the sensor operates
in complex biological matrix and demonstrates potential to
detect target without need for sample preparation such as RNA
extraction. Surface plasmon resonance (SPR) is another high
sensitive analytical technology, because it changes in refractivity
when particular macromolecular interactions occur (Fig. 4C)
[219]. A major improvement in SPR performance stems from the
two-dimensional nanomaterial antimonene [220]. Antimonene
has much stronger interaction with ssDNA, and the detection
limit reached as low as 10 aM.

V. CONCLUSION

In 2020, it was widely discussed that COVID-19 as a result
of SARS-CoV-2 virus strain met the requirements to be the first
“Disease X” in an era of globalization [221]. Existing laboratory
RT-qPCR assays (2-4 hr turnaround time, 96 well plate based)
and home-test compatible immunoassays (15 min sample to
result,) barely enabled well-resourced countries to gain control
of the COVID-19 pandemic.

Leverage technologies, like isothermal and direct amplifica-
tion simply the diagnostics workflow. Their compatiblity with
existing lab infrastructure offers immediate improvement in test
capacities (3-4X). The tests equipped with these technologies are
gaining rapid adoption, and will be particularly useful if COVID-
19 invades into low resource areas. Rapid thermocycling tech-
nologies and microfluidics may bring COVID-19 molecular tests
to the 1 min realm and support point of care clinical decision, or
even entrance screening. Multiplexed molecular assays enables
differential diagnosis, and sequencing technologies track the
evolution of the virus strains.

At-home test is a novel concept in COVID-19 pandemic
emergency response. Scaling molecular diagnostics and im-
munoassays to the whole population demands innovation in
assay technologies, test infrastructure and mode of delivery.

Early attempts demonstrated the feasibility of performing
sample collection at home. The potential next-step is to push
molecular diagnostics and immunoassays into every household.
Information technology firms have began to establish risk-
evaluation models that build upon self-report questionnaires,
contract-tracing and geographic data. The ability to collect
laboratory-quality results at home in a temporal manner, would
allow diagnostics data with individual-resolution to be integrated
for pandemic management.

Indeed, multiple emerging technologies show a lot of promise.
CRISPR diagnostics and immunoassays are compatible with
lateral flow strip format and exhibit home test potential. Robust
end point molecular assays would allow result interpretation by
visual detection or smartphone platform, while PCR free nucleic
acid sensing technologies, such as electrochemical sensing and
surface plasmon resonance could be developed into miniatur-
ized consumer electronics devices that deliver instant molecular
diagnosis at home. Up till now, all these technologies need to

improve on assay robustness and user-friendliness, incorporate
error-tolerant designs before a true at-home molecular test may
be feasible.

There is no silver bullet that can solve the COVID-19 pan-
demic. It is important to maintain a diversified portfolio of
diagnostics technologies, in order to counter the ever-evolving
challenges imposed by COVID-19 management.
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