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ABSTRACT Interest in the study of next-generation underwater sensor networks for ocean investigations
has increased owing to developing concerns over their utilization in areas such as oceanography, commer-
cial operations in maritime areas, and military surveillance. Underwater acoustic communications (UAC)
network channels are fast-varying (spatially and temporally) according to environmental conditions. It is
tempting to use adaptive modulation and coding (AMC) for UAC networks to improve the system efficiency
by matching transmission parameters to channel variations. This paper focuses on analyzing a measured
sea trial dataset by using a rule-based strategy (i.e., three-dimensional analysis, modulation-wise analysis,
and a fixed-SNR strategy) to find the suitable link adaptation procedure depending on the channel quality.
Hence, we plot a scenario of the measured UAC network data rate vs. Signal to Noise Ratio (SNR) and/or
Bit Error Rate (BER) to pick the best AMC combinations in the context of adaptivity to the channel. Due
to non-reversibility limitation of rule-based strategy, the work further extends to use machine learning (ML)
algorithms to classify the MCS levels by investigating the channel characteristics. Boosted regression tree,
from among the four ML algorithms we adopted for the analysis, shows formidable accuracy of 99.97% in
classifying MCS levels. This ensemble of trees learns from the uplink data of the buoy and the base station
and relates the MCS levels to channel metrics and signal characteristics especially subject to SNR and BER
constraints.

INDEX TERMS Boosted regression tree analysis, K-nearest neighbors, link adaptation, machine learning,
pseudo-linear discriminant analysis, support vector machine, UAC network.

I. INTRODUCTION
Next-generation underwater networks have great potential for
observing and exploring the aquatic environment. Therefore,
underwater acoustic communications (UAC) is broadly con-
sidered to be the only approach feasible for long-distance
underwater communications, and it has been extensively
adopted in various scenarios. The demand for quality of
service arises inmanymilitaries, scientific, and civilian appli-
cations, including communications between submarines, for
underwater security surveillance, for scientific data collec-
tion at ocean-bottom stations, in offshore oil explorations
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by autonomous underwater vehicles, and for data exchange
in underwater sensor networks for environmental monitor-
ing [1]. To mitigate the distance problem work is done in
the worst case, a Stackelberg game is modeled to analyze
the behaviors between macrocell base station (MBS) and
femtocell users (FUEs) [2]. The MBS sets interference prices
to FUEs to maximize its utility and guarantee its transmission
rate requirement. Based on the interference prices, FUEs
determine their powers to optimize their utilities subject to
the delay constraint. This proposed robust power allocation
and pricing problem are to work with distance uncertainty.
But for UAC, there is no such research work for solving this
issue. Again, it is critical to deal with the underwater acoustic
channel’s challenging properties, such as long delay and large
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Doppler spread, resulting in frequency and time-selective fad-
ing. Moreover, fading, Doppler spread, and multipath prop-
agation severely impact UAC network performance [3], [4].
Channel with significant Doppler spread can effectively be
handled by coupling a channel equalizer mitigating Intercar-
rier Interference (ICI). The compressed sensing algorithms
in the form of Orthogonal Matching Pursuit (OMP) and Basis
Pursuit (BP) algorithms perform better than the Least Squares
Channel estimator when the channel is sparse. It also uti-
lizes overcomplete dictionaries with an increased path delay
resolution [5]. In one investigation [6], the authors analyze
the energy efficiency and spectral efficiency of direct D2D,
multi-hop D2D along with the traditional mobile commu-
nication system by utilizing the two-timeslot physical-layer
network coding scheme under Rayleigh fading channels.
They derive close approximations of the average energy
efficiency and average spectral efficiency and the optimal
power of UEsmaximizes the energy efficiency. Unlike typical
wireless channels, the transmission loss in a UAC network
not only depends on the distance between transmitter and
receiver but also on the signal frequency. Absorption loss,
the transfer of acoustic energy into heat, is caused by the
signal frequency [3]. Hence, the underwater channel presents
formidable challenges when comparing it with the typical
terrestrial channel model.

Due to the extreme limitations on the available bandwidth
in a UAC network, frequency reuse and cellular concepts
are more appealing to enhance the coverage and capac-
ity for a UAC network [7]–[9]. A simulation-based link
adaptation (LA) approach [10] has used a 12-path Rician
fading channel for strategical LA. There are just a few
parameters, i.e., modulation levels with a fixed coding rate
and repetition patterns, considered in this approach for
a widely varying UAC network channel. Also, the pri-
ority rules, have been formulated to discard the overlap-
ping modulation levels from the feasible ones, are based
on certain assumptions. This limits the applicability of that
approach from a practical perspective. Also, the widely
varying channel makes it very challenging to formulate
a channel model for the UAC network, unlike terrestrial
network scenarios, i.e., the knife-edge diffraction model,
the Longley–Rice model, the Okumura model, etc. In [11],
the authors propose a modem equipped with direct sequence
spread spectrum signals of various coding rates and mod-
ulation orders. They estimate the channel through decision
feedback equalizer and achieved high spectral efficiencies
subject to a combination of bit-error-rate (BER) and signal
to noise ratio (SNR) constraints. Adaptive selection of sig-
nals is achieved based on their BER prediction via boosted
trees. It speeds up the communication 10-20 times than
fixed-rate transmission. But this proposed receiver shows
vulnerability due to the high time-variable (high Doppler
spread) channel. A software-defined OFDM based under-
water acoustic (UWA) communication system demonstrates
the superiority of adaptive transmission where both modu-
lation order/type and power on each subcarrier are selected

based on channel conditions to maximize the throughput
but it experimentally limited to short-distance transmission
set up [12]. If the distance increases throughput decreases
accordingly due to higher attenuation and it observes severe
multipath effects. For the unknown and dynamically vari-
able underwater channel, an optimal self-learning strategy
(reinforcement learning) is implemented, which is a sig-
nificant area of machine learning [13]. Due to slow sound
velocity in an underwater scenario, acknowledgment from
receiver to transmitter is a great concern, which deteriorates
the convergence speed of the algorithm. So, the authors use a
juggling-like ARQ mechanism with RL to minimize the long
delay feedback problem.

Another research work has been made by taking BER as
input and the implemented modem balances exploration of
the search space against the exploitation of existing knowl-
edge, optimizes for the average data rate, instead of searching
for maximum possible data rate. It improves the average data
rates than the previous rate [14].
Due to the complexity and instability of underwater acous-

tic communication systems, it is difficult to identify mod-
ulation during actual communication. There are some new
methods of underwater acoustic communication such as
sparse adaptive convolution cores, time-domain turbo equal-
ization, and frequency-domain turbo equalization have been
used, but these methods still have the problem of high com-
putational complexity and low classification success rate.
By applying Deep Learning, classification accuracy has
found around 99% [15].

In this paper, by addressing the above-mentioned difficul-
ties we apply machine learning (ML) to classify the modula-
tion and coding scheme (MCS) levels. We focus on the anal-
ysis of two measured datasets [stored in one drive: link [16]]
in a UAC network that has different larger distances than
before, around 1 km, 2 km, and 3 km, between transmitter
and receiver. Also, the datasets contained a wide range of
measured channel parameters. This research aims to develop
a link-adapted system that will be able to boost spectral effi-
ciency in response to any channel conditions while retaining
the desired level of covertness and reliability.We compare the
throughputs for given two distances with combined effects
of SNR and BER for different rule-based strategies such as
3-D analysis, modulation-wise analysis, and fixed-SNR strat-
egy, etc. Then we classify the modulation type by applying
several reliable ML algorithms including boosted regres-
sion tree in [11], because of its better performance, on our
datasets subject to SNR and BER constraints and measure
the accuracy.

In the rule-based analysis, we can see that, despite our best
efforts, none of the strategies give any strong outcome due
to the non-reversibility issue. Our measured sea trial datasets
show that the channel has a colossal number of variations
over the periods, e.g., morning to noon, day to night, sum-
mer to winter, etc. Besides, there are additional parameters,
e.g., coherence bandwidth (BWcoh), pilot spacing (PS),maxi-
mum estimated delay (MED), and BER, to be considered and
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FIGURE 1. (a) UAC network layout. (b) UAC network operating frequency and bandwidth.

measured during the sea trials, which contribute to channel
quality measurement and our ML classification. So, the sta-
tistical ML algorithm–based analysis for LA prevailed over
the rule-based LA approach.

In Section II, we discuss the UAC network architecture.
In Section III, we provide the dataset overview. Section IV
explains the rule-based strategy such as the three-dimensional
analysis, followed by modulation-wise analysis, and the
fixed-SNR strategy. Section V explains the reason why we
needML in a UAC network. Section VI provides insights into
ML in the UAC network. MCS classification results using
ML are shown in Section VII. Finally, conclusions are drawn
in Section VIII.

II. UAC NETWORK ARCHITECHTURE
There are many contributions to cellular-based network
topologies, as well as frequency reuse concepts in terrestrial
networks [17]–[21]. The tremendous achievements of cellular
networks are enough motivation to consider the cellular and
frequency reuse concept in a UAC system. The UAC network
is still in the development stages, and that is why a lot of
attention and meaningful research is required in this area.
Because of bandwidth limitations, the cellular-based network
structure for a UAC network is appealing [22].

In Figure 1(a), the underwater base station controller
(UBSC) is connected to the core network (CN) through the
interface 3 connection. Our main concern is UBSC, which
is connected with three underwater base stations (UBSs)
via interface 2, and these three UBSs are further connected
with underwater equipment (UE) through interface 1. Inter-
face 1 and 2 are wireless links where the acoustic wave
of 100 Hz is used as carrier Interface 3 is LTE. Figure 1(b)
shows the system operating frequency and bandwidth where
A-DL to A-UL1, and A-UL2 connections are allocated to
the UBSC and UBSs, and B-DL to B-UL3 are allocated to
the UBSs and UE, respectively. The connection parameters’
details are listed in Table 1.

III. DATASET OVERVIEW
The analysis is based on two kinds of the measured datasets.
In both cases, uplink data aremeasured (A-UL0) i.e. the trans-
mitters are UBSs and the receiver is UBSC and FDD is used.
The first dataset has been collected from August 17, 2018,
to August 20, 2018. The experiment has been carried over two
separate distances, i.e., 1 km, and 3 km between the transmit-
ter (Tx) and receiver (Rx) in Mohang Port (Taean-gun).

The latitude and longitude coordinates for 1 km and
3 km distances were: Tx—36◦54’43.13’’N 126◦12’21.53’’E
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TABLE 1. UAC network parameter details.

and Rx—36◦54’11.83’’N 126◦11’27.90’’E, and Tx—
36◦54’44.43’’N 126◦12’37.33’’E and Rx—36◦54’05.40’’N
126◦11’18.83’’E, respectively. The second is from a 24-hour
experiment from July 5, 2017, to July 6, 2017. The experi-
ment has been carried out over a 2 km distance between the
Tx and Rx in the Yellow Sea (Deokjeokdo, Incheon). The
latitude and longitude coordinates were Tx—37◦13’28.2’’N
126◦12’12.0’’E and Rx—37◦14’22.7’’N 126◦12’55.1’’E.
There was a total of 288 combinations of different kinds

of parameters, and 417 sets of experimental data in the Taean
dataset [16], which is a good reason to take a step-by-step
approach in selecting the suitable modulation and coding
scheme (MCS) levels. The process to analyze the Taean
dataset has been divided into three stages, which included
three-dimensional analysis, modulation-wise analysis, and a
fixed-SNR strategy. Unlike the Taean dataset, the Incheon
dataset has 108 combinations of parameters and 10,105 sets
of experimental data. This enormous dataset makes it impos-
sible to analyze with any kind of strategy other than the ML
approach.

A. TAEAN DATASET
The sea trial experiment has been conducted over two sep-
arate distances with the same parameters, 1 km, and 3 km.
The dataset contains 11 parameters with different combina-
tions, i.e., pilot spacing (PS), repetition pattern (RP), coding
rate (CR), modulation level (Mod), SNR, uncoded & coded
bit error rate (BER), data rate, maximum estimated delay
(MED), root mean square (RMS) delay spread, and coherence
bandwidth (BWcoh). By doing permutation and combination
of PS, RP, Mod, and CR, we have measured the value of
other parameters such as SNR, uncoded and coded BER and
so on with different times in a day. The transmitted criterion
parameter details are shown in Table 2.

The symbols ‘F’ and ‘T’ inPS andRPmean Frequency and
Time. We have 417 sets of experimental data with different

TABLE 2. Taean dataset parameters.

TABLE 3. Incheon dataset parameters.

parameters [16]. The objective is to find the most suitable
MCS level that provides the best performance according
to channel quality among these 417 trials. Channel qual-
ity measurement can be obtained from the parameters, i.e.,
MED/RMS delay spread, BWcoh, BER, etc.

B. INCHEON DATASET
This dataset contained 12 parameters, i.e., PS, RP, modu-
lation level (Mod), SNR, uncoded & coded BER, data rate,
MED, RMS delay spread, BWcoh, Doppler spread (DS), and
frequency shift. The transmitted parameter details are shown
in Table 3, which contains modulation level, error correc-
tion coding, and different combinations of frequency and
time-domain values for PS, and RP. Depends on different
combinations of these parameters over time we measured
the received other parameters like SNR, BER, RMS delay,
frequency shift and so on. Channel quality measurement
can be obtained from the parameters, i.e., MED/RMS delay
spread, BWcoh, BER, etc. The dataset has been organized
into 10,105 rows and 18 columns, in which 17 columns con-
tain numeric values and one column is for modulation level
names. The rows characterize the number of experiments,
and columns depict the number of features. Every row is
populated with the input parameters: PS, RP, SNR, uncoded
BER, coded BER, data rate, MED, RMS delay spread,
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FIGURE 2. Statistically varying channel of Taean dataset: (a) Time vs. RMS Delay Spread, (b) Time vs. Coherence
BW for 16QAM.

BWcoh, DS, and frequency shift, as well as the output param-
eter: modulation level names.

Besides, both datasets show that the channels are statis-
tically varying over time. Figure 2 shows such shreds of
evidence.

IV. RULE-BASED STRATEGY
A. THREE-DIMENSIONAL ANALYSIS
The goal is to compare three parameters at the same time in
the three-dimensional analysis because for obtaining a link
adaptation curve for all modulations, we need to analyze
these parameters. We initially aimed to consider SNR, data
rate, and BER as the deciding factors for the Taean 1 km
dataset. We chose BER as the third parameter since the
RMS delay spread causes BER to vary. So, BER could be a
valid parameter for the analysis. Figure 3 visually represents
these three parameters, where the X, Y, and Z axes represent
SNR in decibels, the data rate in bits per second, and BER,

respectively. Figure 3 shows that most MCS pairs are in the
blue region, and those have a low BER at mostly less than a
1000 bps data rate. Then, the scattered points slowly build
up, indicating fewer MCS pairs in the higher BER region.
Figure 3 shows that BER keeps slowly increasing within a
data rate range of 0–1000 bps. Then, it keeps fluctuating
within the range of 1000–2000 bps. The fluctuation rate is
slowly decreasing after 2000 bps, since there are fewer MCS
pairs in that region, which means fewer MCS pairs with a
higher data rate. From Figure 4, we can see that most MCS
pairs that are in the SNR region higher than 16 have a lower
data rate. The SNR region from 13.86 to 16.43 has MCS
pairs with a higher data rate. Furthermore, analysis for binary
phase-shift keying (BPSK) shows that most of theMCS levels
are in the blue region, which means they have a low BER.
Only those with higher data rates are in a high BER region.
There are a few MCS levels in the low SNR region that have
higher data rates. Higher data rates are in the 15.59–17.59
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FIGURE 3. One-kilometer measured data representation in full 3-D.

FIGURE 4. One-kilometer measured data representation in rotated 3-D.

SNR region. In quadrature phase-shift keying (QPSK), the
maximumnumber ofMCS levels are in the blue region, which
means most MCS levels have a low BER. Also, QPSK MCS
levels have more BER fluctuations, compared to BPSK. The
higher data rates are in the SNR region of 14.82–15.79, and
most of the MCS levels that are in a higher SNR region, i.e.,
16.34–17.23, have a low data rate for QPSK. Quadrature
amplitude modulation with 16 possible signal combinations
(16QAM) also has a lot of MCS levels in the blue region,
which means a low BER and less than a 705 bps data rate.
In the 705–2000 bps data rate range, BER keeps fluctuating,
and then slowly goes down, and higher data rates are in
the 14.04–16.43 SNR region. Most of the MCS levels in the
higher SNR region, i.e., 16.34–17.23, have a low data rate.

In the case of 64QAM, we can see from the Y-axis view
that the terrains start to build up early, compared to other
modulations, which means most of the MCS levels have
higher BER values. A lot of MCS levels under the data rate
of 1000 bps have higher BER values, compared to those that
are in a data rate range greater than 1000 bps. MCS levels
with higher data rates are in the 13.83–16.31 SNR region and
have a higher BER. MCS levels in the SNR region greater than
16.31 have a low data rate.
The analysis steps for three-dimensional analysis is shown

in Figure 5 by flowchart. Also, the finding steps of the thresh-
old value for BER, Data Rate and SNR are shown in Table 4.
We consider RP to observe how it varies over differentCRs

and PSs. We can see that, as the RP goes higher, the data rate
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FIGURE 5. Flowchart of the rule-based analysis.
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TABLE 4. Implementation steps of finding suitable link adaptation procedure through rule-based strategy (three-dimensional analysis).

goes lower. The same trend shows for CRs with different PSs.
Also, BER goes lower as the RP goes higher. For CR (1/2),
and PS (6,3), RP (8,1) has slightly higher BER compared to

other cases. RP (2,3) has poor performance for CR (1/2) in
terms of the SNR-to-data-rate ratio. RP (1,1) has acceptable
performance for CR (1/3) in terms of the SNR-to-data-rate
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FIGURE 6. One-kilometer measured data representation from a 2-D top view.

ratio, even though the BER is higher. Also, RP (1,1) has a
higher data rate for a low BER under CR (1/2), whereas
it is the opposite for CR (1/3). From the observations in
three-dimensional analysis, it is noticeable that the data rate
is lower for a high BER at all MCS levels, which should not
be the case for LA. This led us to analyze the dataset for each
modulation to achieve a consistent RP across different PSs.
Figure 6 shows the 2-D top view of the same dataset.

B. MODULATION-WISE ANALYSIS
We have separated the Taean data for different CRs for differ-
ent modulations, e.g., BPSK (1/2), BSPK (1/3), QPSK (1/2),
QSPK (1/3), etc. BER, BWcoh, or RMS delay spread have
been considered to discard MCS levels for different com-
binations of PS and RP. We have found consistent RPs are
(1, 1), (2, 1), (4, 1), (8, 1), (1, 3), (2, 3), (4, 3), and (1, 9).
We have discarded theMCS levels that have overlapping data
rates and SNR (after combining those that have consistent
RPs) and have got the 21 finalized MCS levels from this
process. The flowchart of selection process of MCS levels
is provided in Figure 5 and the implementation steps are
described in Table 5.

Figure 7 shows that the SNR is still discontinuous, which
does not follow the LA scheme. This leads to our final trial,
which we call the fixed-SNR strategy, before the analysis
using ML.

C. FIXED-SNR STRATEGY
1) TAEAN DATASET, 1 km SCENARIO
Since the SNR value has gone randomly in our previous strate-
gies, we have decided to fix the SNR for specific modulation
levels, e.g., BPSK (11,12), QPSK (13,14), 16QAM (15),
64QAM (16,17). The dataset for the 1 km sea trials contained
a narrow range for SNR, i.e., 11–17, for four of themodulation
levels. We have used our previous discarding strategies to

TABLE 5. Implementation steps of finding suitable link adaptation
procedure through rule-based strategy (modulation-wise analysis).

discard MCS levels after assigning the SNR to each
modulation level, andwe have finalized five totalMCS levels,
which is a much less than from the previous strategies. The
flowchart of discarding and selecting MCS levels is given
in Figure 5 and the implementation steps of fixed-SNR strat-
egy to select relevant MCS levels are described in Table 6.
Even though this selection of MCS levels technically follows
an LA scheme, as seen in Figure 8, the choices for selecting
MCS levels depending on channel quality are fewer. Also,
we cannot utilize the highest data rate due to the fixed-SNR
strategy.
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FIGURE 7. SNR vs. data rate (modulation-wise analysis).

FIGURE 8. SNR vs. Data Rate for the fixed-SNR strategy.

TABLE 6. Implementation steps of finding suitable link adaptation
procedure through rule-based strategy (fixed-SNR strategy).

2) TAEAN DATASET, 3 km SCENARIO
The SNR range is 2–17, which is relatively higher than
the 1 km scenario. Our desired SNR ranges for each

modulation level are 2–5 for BPSK, 6–9 for QPSK, 10–13 for
16QAM, and 14–17 for 64QAM. But, BPSK starts from
SNR 7, QPSK from 4, 16QAM from 2, and 64QAM from 4 in
the dataset. This prevents the application of the strategy since
we must skip the BPSKmodulation level completely to apply
the desired SNR assignment strategy. Also, it is impossible to
combine the 3 km LA strategy with the 1 km scenario due to
the difference in SNR ranges. Apart from that, the data rate
goes down as the SNR increases in the 3 km dataset, which
contradicts the LA scheme.

V. WHY ML FOR LA IN A UAC NETWORK?
If we summarize the results of the rule-based strategy, we can
state that for incremental data rate, the SNR is slightly
decreasing which is opposite to the LA scheme. For high
BER, the data rate is lower.BER is overall incremental but not
consistent. For each modulation level, when SNR is increas-
ing, the data rate is decreasing. For a fixed-SNR strategy, even
though it looks like the LA curve, still a small percentage of
MCS levels following this trend of LA. In the case of 3 km,
Taean Dataset, a fixed-SNR strategy is contradictory to the
LA scheme. So, the hugely varying channel makes it more
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challenging to formulate a channel model for a UAC network,
unlike a terrestrial network scenario, i.e., the knife-edge
diffraction model, the Longley–Rice model, the Okumura
model, etc. There is also a timingmismatch between the chan-
nel measurement and the application of adapted MCS levels.
For the real-time application of the classification results,
the measured data from the receiver must be delivered to
the transmitter to be processed and classified at the adapted
MCS level. But there is an approximate two-second frame
delay between the transceivers, which causes an issue for
applying the adapted MCS levels in real-time for LA. The
solution to these problems can be a rule-based strategy at the
receiver. But from measured data to get link adaptation may
be possible but the reverse is not possible, what is the actual
case in LTE or any other known wireless channel. Besides,
our measured sea trial datasets show that the channel has a
colossal number of variations over the periods, e.g., morn-
ing to noon, day to night, summer to winter, etc. So, due
to day-night timing and location, the temperature, current
velocity, salinity, depth of the ocean and other properties
of fluid, underwater communication channel characteristics
inconsistently vary over time. So, by rule-based analysis,
despite our best efforts, we don’t have noticeable outcomes to
develop a link adaptation threshold. The relationship between
SNR vs. data rate behaves peculiarly, too many inconsisten-
cies. So,MCS selection is very difficult still manyMCS levels
discarding due to overlapping data rates and SNR values.
Due to this limitation, ML has a good opportunity to test and
validate a huge number of measured training data and classify
the modulation more accurately.

Besides, there are additional parameters, e.g., BWcoh, PS,
MED, andBER, to be considered andmeasured during the sea
trials, which contributes to channel quality measurement and
our ML classification. So, the statistical ML algorithm–based
analysis for LA prevailed over the rule-based LA approach.

VI. MACHINE LEARNING APPLICATION FOR UAC
NETWORK ANALYSIS
ML algorithms can be grouped into three categories (super-
vised, unsupervised, and reinforcement learning), which are
based on how the algorithms are trained for the dataset.
In supervised learning, as the name indicates, the algo-
rithms must be trained with a dataset same to the test data,
e.g., the training data are already tagged correctly prior to
the final classification. Unsupervised learning is the training
of a machine using information that is neither classified nor
labeled and allowing the algorithm to act on that information
without guidance. Here, the task of the machine is to group
unsorted information according to similarities, patterns, and
differences without any prior training with other data. Rein-
forcement learning is suitable for taking action to maximize
the reward in a certain scenario, and it finds the best possible
behavior, or path, it should take in a specific situation. Unlike
supervised learning, there is no answer, but the reinforcement
agent decides what to do to perform the given task. In the

absence of a training dataset, it is bound to learn from its
experience.

The ML approach for our analysis starts with preparing
the dataset and finding the features that contain the most
variations. Those features are likely to contribute to the clas-
sification decisions. Principal component analysis (PCA) is a
well-known unsupervised ML method to reduce the dimen-
sion of a test dataset and extract the important features. In our
scenario, we use PCA to extract the features from the dataset,
but it reduces the classification accuracy as a result. Our best
guess is that, since every channel parameter contributes to
the selection of MCS levels for the UAC network, unlike
signal processing (in which the noise is easily separable,
since the voice contains the major features), reducing the
dimension of the dataset results in less accuracy in classifi-
cations. So, we have discarded the results produced by PCA.
Choosing the right ML algorithm is based on trial and error,
and one algorithm cannot solve all ML problems. Selecting
the optimal algorithm for a certain problem is dependent on
its features, such as speed, classification accuracy, training
time, amount of data required to train it, implementation
complications, etc.

The Incheon dataset is laid out in a format such that we
could use each feature from the dataset. The ML analysis is
organized by using a support vector machine (SVM) [23],
k-nearest neighbor (KNN) [24], pseudo-linear discriminant
analysis [25], and boosted regression tree analysis to classify
the modulation levels. Every ML algorithm has its advan-
tages and disadvantages for different types of dataset. The
algorithms we decided to use usually show favorable clas-
sification accuracy with a non-linear dataset like ours. The
algorithm backgrounds are briefly discussed in the following
sections, although our flagship algorithm (boosted regres-
sion tree analysis) is elaborated extensively due to its higher
classification accuracy.

A. SVM
Given a set of training examples, each marked as belonging
to one of two categories, an SVM training algorithm builds
a model that assigns new examples to one category or the
other. An SVM model aims to separate the categories as
widely as possible from the points in space by the hyperplane.
New examples are then identified from the feature space
based on which side of the hyperplane they fall into. In an
SVM, classification can be viewed as the task of separating
classes in feature space, and the data can be classified by the
hyperplane.

B. KNN
This algorithm keeps all the available cases from the dataset
and classifies a new case based on similarity measurements
using distance functions (e.g., Euclidean distance, Ham-
ming distance) among the samples. Each case is assigned
to the class most common amongst its K nearest neigh-
bors and is classified by a majority vote of its neighbors.
If K = 1, then the case is simply assigned to the class of its
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nearest neighbor. K can be selected by
√
n, where n is the

number of data points.

C. PSEUDO-LINEAR DISCRIMINANT ANALYSIS
Linear discriminant analysis (LDA) focuses on maximizing
separability among known categories. LDA takes information
from the features to create a new axis by following two
criteria simultaneously:

• Maximize the distance between the means (µ) of the
categories.

• Minimize the variation within each category, and the
variation is called scatter (s2).

The algorithm can be mathematically expressed as follows:

(µ1−µ2)
2

s21+s
2
2

(1)

In LDA, all classes have the same covariance matrix, but it
will be inverted using the pseudo inverse.

D. BOOSTED REGRESSION TREE ANALYSIS
Regression trees bisect the input parameters to create binary
partitions, which are called nodes, and terminal nodes are
called leaf nodes. Within each node, the regression tree esti-
mates the modulation as the average of the modulations cor-
responding to the transmissions. This process minimizes the
mean squared error (MSE) between predicted and measured
value. To optimally bisect the input parameter space in each
iteration, the training algorithm selects the input parameter
and its associated value to maximally reduce the overall MSE
for a given training dataset. This node-splitting procedure is
repeated recursively until the desired MSE is achieved for
the tree, or until a desired maximum tree depth is reached.
Regression trees can be used with heterogeneous datasets,
e.g., numerical, categorical, and ordinal inputs. It can also
handle missing inputs transparently. These two properties
make trees one of the most versatile statistical learning meth-
ods currently in use. Yet, like other statistical learning tech-
niques, regression trees can produce low-bias estimates, but
the estimates may be susceptible to high variance.

To resolve the high-variance problem, in statistical learn-
ing, researchers have used ensembles of trees and achieved
more robust estimates [26]–[29], compared to single trees.
In boosted trees [30], the general learning technique
AdaBoost [31] is applied to regression trees. Many trees are
trained on the entire training data iteratively in such a way
that in each iteration the training samples and the predictions
are assigned weights adaptively, depending on the accuracy
of the predicted values. The aggregated, final prediction from
boosted trees is a combination of weighted predictions from
each tree, and the result is that the overall boosted tree clas-
sifier produces successively more accurate predictions as a
function of the number of trees:

modulations =
∑N

i=1
wiT i (2)

FIGURE 9. Flowchart for Machine Learning Algorithms.

where i = 1, 2,.......N is the number of trees, and wi is the
AdaBoost weight of Ti, which is the ith tree in the boosted
ensemble.

VII. CLASSIFICATION OF MCS LEVELS USING ML
ALGORITHMS
We split the datasets into two groups, e.g., 70% of the
data for training the model, and 30% for testing the clas-
sification accuracy, for all the algorithms used. We use
2000 ensemble constituent trees for boosted regression tree
analysis, in which the minimum leaf size of each tree is
20, and the minimum parent size is 20. The simulation run
is once for each algorithm. For SVM we test both Incheon
and Taean dataset (1 km) and for the other three algo-
rithms, we only test the Incheon dataset, because classifi-
cation performance with Incheon dataset shows better than
the Taean dataset. For all four ML algorithms, SVM, KNN,
Pseudo-Linear Discriminant and Boosted Regression Tree
analysis with both Taean and Incheon Datasets, the flowchart
shows the working procedure in Figure 9. Also finding out the
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TABLE 7. Implementation steps of finding suitable link adaptation
procedure through machine learning.

classification accuracy, the implementation steps are descri-
bed in Table 7. Besides, for comparison purposes, wemeasure
execution run time which is enlisted in Table 8. Also, we gen-
erate a confusion matrix of the target class and predicted class
from test data to show the classification accuracy of each class
separately in case of boosted regression tree analysis.

A. CLASSIFICATION USING AN SVM FOR
THE TAEAN DATASET
The first analysis is using the following parameters: SNR,
uncoded/coded BER, data rate,MED, RMS delay spread, and
BWcoh. The classification accuracy is 46.4%. Next, we nor-
malize the Taean dataset so that each variable contributes
equally to the analysis. We use the default SVM template
in MATLAB. The kernel function is empty consideration.
If there are large differences between the ranges of initial
variables, those variables with larger ranges will dominate

TABLE 8. Classification accuracy of different algorithms.

those with small ranges. The formula to normalize the dataset
is as follows:

z =
value− mean

standad deviation
(3)

After normalization, the accuracy is found as 41.6%, but it is
still less than from using all the parameters.

B. CLASSIFICATION USING AN SVM FOR
THE INCHEON DATASET
First analysis of the Incheon dataset is using all the fea-
tures available in the dataset, i.e., PS, RP, data rate, MED,
RMS delay spread, BWcoh, frequency shift (FS), SNR, and
uncoded/ coded BER, and the classification accuracy is
82.448% which is quite a bit higher than what we achieved
with the Taean dataset. The reason is that better channel
parameters contributed to better results. The next analysis is
after decoding the data, which means the dataset contained
all the features of turbo coding data. The classification accu-
racy slightly increased to 83.3111%. We also normalize the
Incheon dataset using equation (3), and find the accuracy is
increased to 69.8779%, which is still less than from using all
the parameters. The trend in classification accuracy continued
to be the same as the Taean dataset.

C. CLASSIFICATION USING KNN
The classification accuracy results from the previous analysis
show that the Incheon channel is better, compared to the
Taean channel, thus helping classifiers to have better accu-
racy. Also, adopting all the features from the dataset for ML
classification produced a better result, compared to using a
normalized dataset. So, we decide to use the Incheon dataset
with all the features for further ML analysis from here on.
Using all the features, as conducted in SVM classification,
we obtain 75.75% accuracy with KNN classification.

D. CLASSIFICATION USING PSEUDO-LINEAR
DISCRIMINANT ANALYSIS
As discussed in the KNN classification analysis, the Incheon
dataset with all the parameters is also used for pseudo-linear
discriminant analysis classification, and the accuracy is
81.99%.
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FIGURE 10. Target classes and Predicted classes using all the parameters
for the Incheon dataset.

E. CLASSIFICATION USING BOOSTED REGRESSION
TREE ANAYSIS
For the previously mentioned Incheon dataset, we achieve
the highest (and nearly perfect) classification accuracy from
among all theML algorithms by using boosted tree regression
analysis, which was 99.967%. We use boosted trees to learn
the relationship between the measured BER with the signal
parameters, the received SNR, and other related channel met-
rics which characterize the signal distortion [12]. To alleviate
the high variance of data, boosted tree option is a very good
option. Figure 10 shows that the algorithm successfully pre-
dicted all the modulation labels/ classes separately as same
as the corresponding target labels/ classes for all test data
approximately. The boosted regression tree algorithm can be
used for heterogeneous datasets, i.e., numerical, categorical,
or ordinal inputs. It can also transparently handle missing
inputs. The Incheon dataset is well organized for the boosted
regression tree algorithm to classify the modulation level,
thus producing the near-perfect result. The only tradeoff is
having numerous branch trees, which divided the dataset
into hundreds of groups, and caused overhead, compared to
other algorithms. The classification accuracy results of each
algorithm are rearranged in Table 8.

There are a few complications in applying machine learn-
ing, such as the reciprocity issue in the media access con-
trol (MAC) layer, and frame delay between transceivers.
Our UAC network is a frequency division duplexing (FDD)
system, and thus, it uses separate channels for uplink and
downlink transmissions, which means the frequency is dif-
ferent between transmitter and receiver. The Incheon dataset
contains only uplink information on different parameters;
thus, the classification result is only applicable to the
uplink channel. So, the system being FDD creates a compli-
cation in applying the classifying result to the transmitter end.

VIII. CONCLUSION
In this paper, we extensively analyzed the UAC network
measured data using three-dimensional analysis, modulation-
wise analysis, a fixed-SNR strategy, and machine learning
analysis. The obtained results aim towards developing a
link-adapted system that will be able to boost spectral effi-
ciency in response to any channel conditions while retaining
the desired level of covertness and reliability. We have inves-
tigated a few reliable machine learning algorithms for classi-
fication of MCS levels and boosted tree regression produced
the best result, boasting 99.97% accuracy in classification.
Like 3GPPLTE, the SNR threshold for theUACnetworkmust
be set on the receiver side to differentiate each MCS level.
We have several parameters in our case, i.e., SNR, DR, BER,
BWcoh, etc. The BER plot can be used to see how the channel
affects those parameters over a certain period. This could help
us to calibrate the SNR vs. Throughput by assigning more
adequate MCS levels for the improvement of link adaptation
in the UAC network.
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