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ABSTRACT In this paper, we propose a novel end-to-end model for fusing medical images characterizing
structural information, i.e., IS , and images characterizing functional information, i.e., IF , of different
resolutions, by using a multi-generator multi-discriminator conditional generative adversarial network
(MGMDcGAN). In the first cGAN, the generator aims to generate a real-like fused image based on a
specifically designed content loss to fool two discriminators, while the discriminators aim to distinguish the
structure differences between the fused image and source images. On this basis, we employ the second cGAN
with a mask to enhance the information of dense structure in the final fused image, while preventing the
functional information from being weakened. Consequently, the final fused image is forced to concurrently
keep the structural information in IS and the functional information in IF . In addition, as a unified method,
MGMDcGAN can be applied to different kinds of medical image fusion, i.e., MRI-PET, MRI-SPECT, and
CT-SPECT, where MRI and CT are two kinds of IS of high resolution, PET and SPECT are typical kinds
of IF of low resolution. Qualitative and quantitative experiments on publicly available datasets demonstrate
the superiority of our MGMDcGAN over the state-of-the-art.

INDEX TERMS Medical image fusion, generative adversarial network, different resolutions, end-to-end,
unified method.

I. INTRODUCTION
Medical imaging is a fundamental and powerful tool playing
a pivotal role in medical device industry for biomedical
research and clinical applications such as medical testing,
diagnosis and treatment, which can be divided into struc-
tural and functional systems. Magnetic resonance imag-
ing (MRI) and computed tomography (CT) images often
provide structural information, where CT shows excellent
performance in detecting dense structure, such as bones and
implants, and MRI provides texture details and dense struc-
ture information.While positron emission tomography (PET)
and single-photon emission computed tomography (SPECT)
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images provide functional information [1]. Each of them
conveys different information. However, a single medical
imaging modality cannot provide sufficient information for
its intended purpose. Owing to the strong complementar-
ity between them, their inherent properties can be almost
entirely presented by a fused image by minimizing redundant
information while maximizing relevant information [2]. The
fused result is more beneficial to human visual perception or
automatic detection of the machine [3], [4].

The fusion of medical images is different from other fusion
tasks. Specifically, the fusion of medical images and the
fusion of infrared and visible images [5] are both the fusion
of multi-modal images, but the fusion of medical images
mainly extracts more than one kind of information from
one source image. For example, in the fusion of medical
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TABLE 1. The main abbreviations with their original words in this paper.

images, in addition to extracting the texture details of MRI
image, the intensity information of its bones must also be
extracted. On the contrary, multi-exposure and multi-focus
images fusion are the fusion of source images taken under
different settings in a single modality [6].

For this purpose, many methods have been proposed,
which can be divided into six categories according to cor-
responding schemes including wavelet transformation based
methods [7], pyramid methods [8], sparse representation
methods [9], neural network based methods [10], salient
feature methods [11] and other methods. We will discuss the
detailed exposition of these traditional fusion methods and
the relationship among them later in Sec. II-A. In these meth-
ods, there are in general three key components, i.e., image
transform, activity level measurement, and fusion rule design.
They typically use the same transform or representation
for different source medical images during the fusion pro-
cess. However, it may not be appropriate for the fusion of
multi-modal medical images, as the structural information
and the functional information are manifestations of two
different phenomena, which results in lower contrast and
less texture details in the fused image [12]. Furthermore,
the manual designs of complex activity level measurements
and fusion rules are required in most existing methods, which
is time consuming and becomesmore andmore complex [13].

The application of deep learning in image analysis has
received more and more attention [14], [15]. The detailed
exposition of deep learning-based fusion methods will be
discussed later in Sec. II-B. These works have provided
new ideas for medical image fusion and achieved promis-
ing performance. However, there are still some shortages.
First, the deep learning framework is generally only applied
to a small part, e.g., feature extraction, while the overall
fusion process is still in traditional frameworks [16]. Second,
the manners to extract features in source images are the same,
regardless of the fact that the source images are multi-modal
data [12]. Third, existing limited GAN-based methods can
only fuse part of the information from source images, causing
the loss of other important information [17], [18].

In addition, as a result of the limitations of medical hard-
ware and environments, the medical images characterizing
functional information always suffer from lower resolution
and more blurred details compared with corresponding med-
ical images characterizing structural information [1], and

it is difficult to improve the resolution of medical images
characterizing functional information by improving the hard-
ware facilities. To fuse the medical images characterizing
functional and structural information of different resolutions,
the scheme of up-sampling the images characterizing func-
tional information or down-sampling the images characteriz-
ing structural information is bound to spectral distortion or
information loss. Therefore, the fusion of multi-modal medi-
cal images of different resolutions without loss of important
information is significant in practical medical applications.

To address the above challenges, in this paper, we propose
a new fusion method via multi-generator multi-discriminator
conditional generative adversarial network (MGMDcGAN)
to fuse medical images characterizing functional and struc-
tural information of different resolutions. For convenience,
we abbreviate these images as IF and IS , respectively. The
main abbreviate words are summarized in Tab. 1. In our
method, two adversarial games are established. One is estab-
lished to acquire the functional information in IF and tex-
ture details in IS , and the other is for enhancing the dense
structure information from IS to avoid the loss of it, where
the inputs are the generated images from the first cGAN
and IS . In addition, for preventing the functional informa-
tion from being weakened in the final fused image when
enhancing the dense structure, the inputs of the discrimina-
tor in the second cGAN are both multiplied with a mask
obtained from IS . The generated image of the second cGAN
is the final fused image. The principles of two adversarial
games are similar: the generators aim to generate a real-like
image based on a specifically designed content loss to fool
their corresponding discriminators, while the discriminators
aim to distinguish the differences between the generated
image and source images. Since source images are used as
real data, ground-truth images are not required. Moreover,
MGMDcGAN is an end-to-end model, with no need of
manually designing activity level measurements and fusion
rules. In addition, trainable de-convolution layers and content
constraints on down-sampled fused images are more suitable
for different resolution fusion. Specifically, we perform our
methods on fusing the MRI and the PET images (MRI-PET),
the MRI and the SPECT images (MRI-SPECT), the CT and
the SPECT images (CT-SPECT). In each problem, the former
image is of high resolution and the latter one is of low
resolution. Both visual effect and quantitative metric results
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verify the superiority of our method on these three fusion
problems.

The main contributions of this paper are summarized
in the following three aspects. i) We propose a new end-
to-endmulti-modal medical image fusionmethod through the
adversarial process between multiple generators and multi-
ple discriminators. ii) The mask is applied to the proposed
MGMDcGAN to prevent the functional information from
being weakened in the final fused image when enhancing the
dense structure information. iii) The proposed MGMDcGAN
can be adopted as a unified method for the fusion of
MRI-PET, MRI-SPECT and CT-SPECT, which are all of
different resolutions.

The remainder of this paper is organized as follows:
In Sec. II, we introduce some related work, including an
overview of existing traditional and deep learning-based
fusion methods, and a theoretical introduction of condi-
tional generative adversarial network. The detailed introduc-
tion of our MGMDcGAN is provided in Sec. III. Sec. IV
shows the fusion performance of our method on multi-modal
medical images of different resolutions including MRI-PET,
MRI-SPECT and CT-SPECT, compared with the state-of-
the-art in terms of both qualitative visual effect and quanti-
tative metrics. We also conduct the ablation experiments of
the second cGAN and mask in this section. Conclusion is
given in Sec. V.

II. RELATED WORK
In this section, we give a brief introduction of the existing
traditional and deep learning-based fusion methods. Further-
more, since our fusion method is based on conditional gener-
ative adversarial network, we also show a basic explanation
of conditional generative adversarial network.

A. TRADITIONAL MULTI-MODAL MEDICAL IMAGE FUSION
Due to the great significance of multi-modal medical image
fusion and its wide application, many effective medical
image fusion methods are constantly proposed. They can
be divided into six categories according to corresponding
schemes including wavelet transformation based methods,
pyramid methods, sparse representation methods, neural net-
work based methods, salient feature methods and other meth-
ods. Next, we will briefly present the main ideas of these
methods and the relationship among them.

Wavelet transformation based fusion methods for
multi-modal medical image fusion [7], [19], [20] can be
regarded as multi-scale geometric analysis tools. In general,
the fusion methods of medical image based on wavelet
transformation comprise three steps: First, the source images
are decomposed into low and high frequency components
respectively. Then, the different frequency components are
fused with different image fusion rules. Finally, the fused
image is acquired using inverse transformation. The pyra-
mid methods [8], [21] achieve medical image fusion by
the diverse resolutions in the level and the iteration of the
images. Wavelet transformation based methods and pyramid

methods are the most active field in image fusion. The sparse
representation methods [9] are used for the fusion of medical
images assuming that the high frequency and low frequency
images share the same set of sparse coefficients. The methods
can reduce visual artifacts and improve robustness to mis-
registration by dividing source images into several overlap-
ping patches with a sliding window compared with wavelet
transformation based methods and pyramid methods. Neural
network-based methods [10] are inspired from the perception
behavior of the human brain. An important advantage of the
methods is that it can predict, analyze and infer information
from given data without going through a rigorous mathe-
matical solution. Therefore, compared with other methods,
neural network based methods have the advantages of good
adaptability, fault tolerance, and anti-noise capacity. In terms
of salient feature methods [11], [22], retained saliency fea-
tures, shift-invariance and low computational complexity
are the most significant advantages of the methods. The
edge-preserving filters based on salient feature has a wide
range of applications in medical image fusion, such as medi-
cal image fusion with guided filter and medical image fusion
with multi-scale directional bilateral filter. Firstly, the source
images are decomposed into multi-scale representation using
edge-preserving filters. Secondly, the base and detailed layer
of each source image at different scales is fused with different
image fusion rules. Finally, the fused base layer and fused
detailed layer are added to reconstruct the fused image.
In addition, the biggest advantage of the methods is that they
can retain the integrity of salient object regions and improve
the visual quality of the fused images. In addition to the above
medical image fusion methods, other image fusion methods
also provide new ideas and possibilities for medical image
fusion, which are based on color space [23], knowledge [24],
fuzzy theory [25], total variation [26], etc.

B. DEEP LEARNING-BASED MEDICAL IMAGE FUSION
In the past few years, the emergence of deep learning has
provided new ideas for multi-modal medical image fusion.
The existing multi-modal medical image fusion methods
based on deep learning mainly rely on CNN models. Liu
et al. [27] introduced the CNN for multi-modal medical
image fusion, in which the CNN intends to generate a
weight map integrating the pixel activity information from
two source images, and the fusion process is implemented
in a multi-scale manner via image pyramids. Innovatively,
Rajalingam and Priya et al. [28] adopted a siamese convo-
lutional network to create a weight map which integrates
the pixel movement information from two or more multi-
modality medical images. Xia et al. [29] proposed a novel
fusion scheme for multi-modal medical images, which uti-
lizes both the features of the multi-scale transformation and
deep convolutional neural network. As for the fusionmethods
based on GAN, Xu et al.andMaet al. [12], [30] proposed
DDcGAN, which employs a generator with two discrimi-
nators to acquire the functional information in IF and tex-
ture details in IS . Besides, Yang et al. [31] are committed

VOLUME 8, 2020 55147



J. Huang et al.: Medical Image Fusion Using MGMDcGAN

to applying wasserstein GAN to the fusion of medical
images.

Although the abovementionedmedical image fusionmeth-
ods based on deep learning have achieved promising per-
formance, there are still some shortages: (1) The existing
methods usually combine deep learning with a traditional
framework, and not fully apply the deep learning framework
to the entire fusion process. (2) The manners to extract fea-
tures of the two different types of source images are con-
sistent, regardless of the fact that the multi-modal medical
images are manifestations of different phenomena, which is
inappropriate for multi-modal medical image fusion. (3) Only
part of the information from source images is extracted to
participate in fusion, which causes the loss of other important
information, e.g. the dense structure information from IS .

C. CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
Generative adversarial network [32] is a generative model
proposed by Goodfellow, which contains two adversarial
models: the generative model (G) is used to capture the
probability distribution and generate new samples, while the
discriminator model (D) is used to estimate the probability
that a sample is from real data rather than generated sample.
The generative model (G) learns the generative distribution
Pg on the real data set x by constructing a mapping func-
tion G(z; θg) from the prior distribution Pz(z) to the data
space. The input of the discriminator model (D) is a real
image or a generated image, and a scalar is obtained from
D(x; θd ) which indicates the probability that the input sample
is from the training sample. The optimization of the gen-
erative model (G) and the discriminator model (D) can be
attributed to a min-max two-player game. The optimization
objective function of GAN is expressed as follows:

min
G

max
D

V (D,G) = Ex∼Pdata(x) [logD(x)]

+Ez∼Pnoise(z)[log(1− D(G(z)))], (1)

where the generator is continuously trained to fool the dis-
criminator while the discriminator is continuously trained
to distinguish the generated data from the real data. The
generator and discriminator continue to compete against each
other, and finally reach a Nash equilibrium.

One of generative adversarial network’s greatest strengths
is that it does not require a hypothetical data distribution.
It only needs to use a distribution to directly sample to approx-
imate the real data. However, it becomes uncontrollable in the
face of more complex applications. The conditional genera-
tive adversarial network (cGAN) is an extension of the GAN.
Both the generator and the discriminator add an additional
condition y to guide the data generation process as part of the
input layer, which can be any kind of auxiliary information.
The optimization objective function of cGAN is expressed as
follows:

min
G

max
D

V (D,G) = Ex∼Pdata(x) [logD(x|y)]

+Ez∼Pnoise(z) [log(1− D(G(z|y)))]. (2)

Similarly, the objective function of the cGAN is a min-max
two-player game with conditional probability.

III. PROPOSED METHOD
In this section, we introduce our MGMDcGAN by taking
the fusion of high-resolution MRI and low-resolution PET
images as an example. With analysis of the characteristics of
MRI and PET images, we first explain the color conversion
procedure of our MGMDcGAN, and then provide our fusion
formulation and the design of loss functions. At the end
of this section, the design of network architecture is shown
concretely.

A. COLOR CONVERSION
The whole process of color conversion is shown in Fig. 1.
The MRI image is a high-resolution grayscale image that
provides structural information including texture details and
dense structure information. Meanwhile, the PET image is
a low-resolution RGB pseudo-color image that represents
the uptake of the radiotracer and provides important func-
tional information. Therefore, the de-correlated color model
is required and the selection of color model also has a great
impact on the fused result. In order to fuse multi-spectral
image, we separate the achromatic and chromatic informa-
tion [33], and the IHS model is widely used to achieve it.
After transforming PET image from RGB to IHS space,
the fusion process is performed between MRI image and I
channel of PET image. However, the color information is
seriously distorted [34]. YUV model can effectively solve
the above problem, which is adopted in our work. Y is the
luminance, which can represent structural details and the
brightness variation. We just devote to fusing the Y channel
value. U and V are the chrominance or chroma reflecting
color and saturation, which should not be changed.

To fuse the MRI and PET images of different resolutions,
the resolution of the MRI image is first uniformly set to be
4 × 4 of that of the PET image. Prior to the formal partici-
pation in MGMDcGAN fusion, multi-spectral PET image is
firstly converted from RGB channels to YUV channels. The
conversion process is presented as follows: Y

U
V

 =
 0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

 R
G
B

 . (3)

The process of fusion is completed between the high-
resolution MRI image and the low-resolution Y channel
of the PET image, i.e., YPET , and they are the inputs of
MGMDcGAN. The output is a fused image If of high
resolution. Because there is no information fused with
U and V channels, we use bicubic interpolation as the
up-sampling operation for UPET and VPET to retain color
and saturation in the PET image. The up-sampled UPET
and VPET , i.e., Uup−sampled and Vup−sampled and the output
of MGMDcGAN, i.e., If , can be transformed to acquire
the fused image in RGB channels according to the inverse
conversion. The inverse conversion process is expressed as
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FIGURE 1. The color conversion process of fusion.

follows: R
G
B

 =
 0.299 −0.147 0.615
0.587 −0.289 −0.515
0.114 0.436 −0.100

 If
U
V

 . (4)

B. PROBLEM FORMULATION
We formulate the fusion problem as a conditional GANmodel
by constructing a conditional generative adversarial network
with multi-generator and multi-discriminator. The training
procedure of our MGMDcGAN is shown in Fig. 2.
There are two cGANs in our MGMDcGAN, the first of

which has two discriminators. The source MRI and YPET
images are used as inputs to the first cGAN, the output
of the first cGAN is the intermediate fused image Im =
G1(MRI ,YPET ), which contains texture details of MRI image
and the functional information of PET image. The intermedi-
ate fused image Im and the source MRI image are used as the
inputs of the second cGAN. The output of the second cGAN
is the final fused image If = G2(MRI , Im), which contains
texture details and dense structure information of MRI image
and functional information of PET image.

In the first cGAN, the generator G1 is trained with
the source MRI and YPET images as conditions, which is
encouraged to be realistic enough to fool the discriminators.
Meanwhile, the discriminators DY and DM both generate
a scale to estimate the probability of the input from real
data rather than G1. Respectively, DM aims to distinguish Im
from the source MRI image, while DY aims to distinguish
the down-sampled Im from the low-resolution source YPET
image. We employ average-pooling here to down-sample
the Im. Compared to max-pooling, the average-pooling is
more appropriate to preserve the background information
of the image and the functional information of PET image
is mainly presented in this form. Through the adversarial
process between theG1 and two discriminators, the generated

sample is continuously approached with the two real data.
The optimization objective function of the first cGAN is
expressed as follows:

min
G1

max
DM ,DY

E[logDM (MRI )]+ E[log(1− DM (Im))]

+E[logDY (YPET )]+ E[log(1− DY (ϒIm))], (5)

whereϒ denotes the down-sampling operation and is realized
by average-pooling. Through the adversarial process between
G1 and two discriminators, Im can become closer to two kinds
of source images in probability distribution and containsmore
texture details inMRI and the functional information in YPET .
It is worth noting that only one cGAN will cause the loss of
the dense structure information formMRI image. An intuitive
method is to enhance the dense structure information of the Im
by adding a discriminator. However, it is difficult to achieve
a stable Nash equilibrium between a generator and three
discriminators simultaneously, leading to poor fused results.
Therefore, we introduce the second cGAN. The influence of
the additional cGAN will be analyzed later in Sec. IV-E.1.
The intermediate result Im andMRI are the inputs of the sec-
ond cGAN. The output of the second generator G2, i.e., If =
G2(MRI , Im), is the final fused image.
In the second cGAN, the mask M is applied here in order

to prevent the functional information from being weakened
in If when enhancing the dense structure information. Rather
than distinguish between whole images, the discriminator
DK only distinguishes the regions extracted by the mask.
Thus, the input of DK can be denoted as If � M (the fake
data) or MRI � M (the real data), where � denotes the dot
product ofmatrix. ThemaskM is obtained by setting a thresh-
old to extract the region with high luminance from MRI ,
which is the representation of the dense structure information.
Thus, through the adversarial process between G2 and DK ,
the luminance in this region becomes more similar to each
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FIGURE 2. The training procedure of MGMDcGAN. The brown lines indicate the operations in the first cGAN, and the purple
lines indicate the operations in the second cGAN. The blue line indicates the operation of obtaining the mask.

other and the dense structure information can be enhanced in
If without weakening the information in other regions. The
ablation experiment of the mask M is also conducted later
in Sec. IV-E.2. With the mask M , the optimization objective
function of the second cGAN is expressed as follows:

min
G2

max
DK

E[logDK (MRI �M )]+E[log(1−DK (If �M ))].

(6)

C. LOSS FUNCTION
GAN is known to be unstable to train and may result
in unexpected results [35], especially for multi-generator
multi-discriminator conditional generative adversarial net-
work in our work. Therefore, the content loss is introduced
to solve the above problem. In our work, the generators are
not only trained to fool the discriminators but also satisfy the
constraints of the content similarity between the generated
image and the source images.

Specifically, in the first cGAN, the loss function of G1 is
composed by the loss from YPET and the loss fromMRI :

LG1 = LYPET + λLMRI , (7)

where LYPET and LMRI are both composed by an adversarial
loss and a content loss. More concretely, LYPET is defined as:

LYPET = LadvYPET + αL
con
YPET . (8)

The adversarial loss LadvYPET denotes the adversarial loss
between G1 and DY , which is defined as:

LadvYPET = E[log(1− DY (ϒIm))]. (9)

Since the functional information of the YPET image can be
characterized by pixel intensities, we employ the l1 norm
to constrain the down-sampled fused image to have similar

pixel intensities with YPET as the data fidelity term. Thus,
the content loss LconYPET can be expressed as follows:

LconYPET = E[‖ϒIm−YPET ‖1]. (10)

The second term LMRI in Eq. (7) reflects the loss from MRI ,
which is defined as follows:

LMRI = LadvMRI + βL
con
MRI , (11)

where LadvMRI denotes the adversarial loss betweenG1 andDM ,
which is defined as follows:

LadvMRI = E[log(1− DM (Im))]. (12)

As for the content loss LconMRI , since the texture details ofMRI
are mainly characterized by gradient variation, we constrain
the fused image to have similar texture details withMRI , and
LconMRI can be expressed as:

LconMRI = E[‖∇Im −∇MRI‖], (13)

where ∇ denotes Laplacian operator.
Discriminators DM and DY in the first cGAN are used to

discriminate between source images and Im, respectively. The
distribution of generated samples gets more andmore close to
that of the real data by minimizing the JS divergence, which
is reflected in the loss function of DM and DY :

LDM =E[− log(DM (MRI ))]+E[− log(1− DM (Im))], (14)

LDY =E[− log(DY (YPET ))]+E[− log(1−DY (ϒIm))]. (15)

The role of the second cGAN is to enhance the dense struc-
ture information fromMRI based on Im. The loss function of
G2 is composed by the loss from Im and that fromMRI :

LG2 = LIm + κLMRI , (16)

where LIm merely contains a content loss and is defined as:

LIm = E[
∥∥∇If −∇Im∥∥+ δ ∥∥If−Im∥∥1]. (17)
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FIGURE 3. The network architecture of G1.

LMRI in Eq. (16) denotes the loss fromMRI :

LMRI = LadvMRI + ωL
con
MRI , (18)

where LadvMRI denotes the adversarial loss between G2 and DK ,
which is defined as follows:

LadvMRI = E[log(1− DK (If �M ))], (19)

where M is the mask obtained from MRI . The content loss
LconMRI from MRI is no longer characterized by the gradient
variation as in the first GAN, but the pixel intensity of the
dense structure. LconMRI is represented as follows:

LconMRI = E[
∥∥If �M−MRI �M∥∥1]. (20)

Similarly, DK in the second cGAN is used to discriminate
betweenMRI �M and If �M . And the loss function of DK
is defined as follows:

LDK =E[−log(DK (MRI �M ))]+E[−log(1−DK (If �M )].

(21)

In the above formulas, λ, α, β, κ , δ and ω are all used to
control the trade-off, which are set as 0.6, 1, 1, 1, 1.2 and 10,
respectively.

D. NETWORK ARCHITECTURE
1) GENERATOR G1
The network architecture of G1 is shown in Fig. 3, including
three parts: three de-convolution layers, one encoder, and the
corresponding decoder. Since YPET suffers a lower resolution,
a mapping is adopted to increase its resolution. Meanwhile,
in order to avoid spectral distortion or information loss,
we realize the mapping by de-convolution layers [36] to
obtain high-resolution feature maps. The mapping is different
from traditional up-sampling and its parameters are automati-
cally obtained by training. Besides, to improve the utilization
ratio of information, we employ two de-convolution layers
to increase the resolution by 2 times in each layer, rather
than directly increase the resolution by 4 times by using
one de-convolution layer. Meanwhile, the de-convolution

processing for MRI is also performed to obtain a feature
map with the same resolution. Feature maps obtained from
de-convolution layers are then concatenated as the input to
the encoder. The encoder plays the role of feature extraction
and fusion, and generates the fused feature maps. Finally,
the fused feature maps are reconstructed in the decoder to
acquire the high-resolution intermediate result Im.
The encoder consists of five bottlenecks [37], and the

stride of each convolutional layer is set as 1. The decoder
is composed of five CNN layers. Batch normalization is
used to alleviate gradient exploding/vanishing and accelerate
training.

2) GENERATOR G2
The inputs of generator G2 are the intermediate fused
image Im and MRI of the same resolution. Also, equivalent
de-convolution processing are performed for both the Im and
MRI images to acquire two feature maps with the same
resolution. The difference with G1 is that the de-convolution
layers are replaced by convolution layers. It is worth noting
that it is undesirable to introduce the additional operation of
computing the mask in the testing phase. So we directly feed
MRI into G2 rather thanMRI �M .

3) DISCRIMINATOR DM, DY , DK
The discriminators are responsible for forming adversarial
relationships with corresponding generators in our network.
In the first cGAN, either strength or weakness of one dis-
criminator will finally lead to the inefficiency of the other
as the training proceeds. Therefore, not only the balance
between the discriminators and the generators, but also the
balance between DM and DY should be taken into account.
We achieve the balance by designing network architectures
and training strategy (as discussed in Sec. IV-A.2). The dis-
criminators DM , DY and DK share the same network archi-
tecture, which is shown in Fig. 4. We set the strides of all
convolutional layers as 2. In the last layer, the tanh activation
function is employed to generate a scalar that estimates the

VOLUME 8, 2020 55151



J. Huang et al.: Medical Image Fusion Using MGMDcGAN

Algorithm 1 Training Details of MGMDcGAN
Parameter descriptions
NG1 , NG2 , NM , NY , NK : The Numbers of Steps to Train G1, G2, DM , DY , DK .
Lmax , Lmin and LG1 max , LG2 max Are Applied to Determining a Range to Uncollapse Training.
Lmax and Lmin Are for Adversarial Losses of G1, G2, DM , DY , and DK .
LG1 max , LG2 max : The Total Loss of G1, G2.
We Set Lmax = 1.8, Lmin = −1.8 in the First Batch Empirically in Our Experiments
Initialize θDM , θDY and θDK for DM , DY and DK ; θG1 for G1 and θG2 for G2;
In each training iteration:

1) Train Discriminators DM , DY and DK :
• Sample n MRI patches {M1, · · · ,Mn} and n corresponding YPET patches {Y 1, · · · ,Y n};
• Acquire generated data {I1m, · · · , I

n
m}, {I

1
f , · · · , I

n
f }

• Update Discriminator parameters θDM by RMSPropOptimizer to minimize LDM in Eq. (14); (step I)
• Update Discriminator parameters θDY by RMSPropOptimizer to minimize LDY in Eq. (15); (step II)
• Update Discriminator parameters θDK by RMSPropOptimizer to minimize LDK in Eq. (21); (step III)
• While LDM > Lmax and NM < 20, repeat step I. NM ← NM + 1;
• While LDY > Lmax and NY < 30, repeat step II. NY ← NY + 1;
• While LDK > Lmax and NK < 30, repeat step III. NK ← NK + 1;

2) Train Generators G1, G2:
• Sample n MRI patches {M1, · · · ,Mn} and n corresponding YPET patches {Y 1, · · · ,Y n};
• Acquire generated data {I1m, · · · , I

n
m}, {I

1
f , · · · , I

n
f }

• Update parameters θG1 by RMSPropOptimizer to minimize LG1 in Eq. (7); (step IV)
• Update parameters θG2 by RMSPropOptimizer to minimize LG2 in Eq. (16); (step V)
• While

(
LDM < Lmin or LDY < Lmin

)
and NG1 < 20, repeat step IV. NG1 ← NG1 + 1;

• While LDK < Lmin and NG2 < 20, repeat step V. NG2 ← NG2 + 1;
• While LG1 > LG1 max and NG1 < 30, repeat step IV. NG1 ← NG1 + 1;
• While LG2 > LG2 max and NG2 < 30, repeat step V. NG2 ← NG2 + 1;

FIGURE 4. The network architecture of discriminator.

probability of the input image from source images rather than
generator.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, to verify the effectiveness of our proposed
MGMDcGAN, it is firstly compared with 9 state-of-the-art
methods on the publicly available datasets by qualitatively
for the fusion of MRI-PET, MRI-SPECT and CT-SPECT.
Furthermore, 6 metrics are employed to evaluate the fusion
results by qualitative comparisons. We also conduct the abla-
tion experiments of the second cGAN and mask.

A. EXPERIMENTAL SETTINGS
1) DATASET
The application of our MGMDcGAN to MRI-PET,
MRI-SPECT, and CT-SPECT fusion are all validated on

the publicly available Harvard dataset.1 83 MRI-PET image
pairs, and 19 CT-SPECT image pairs are downloaded to
create the training dataset. Y channels of color images are
extracted to form 83 MRI -YPET pairs and 19 CT -YSPECT
pairs. Then, they are cropped into patch pairs of size 84×84.
In addition, to verify the effectiveness of our MGMDcGAN
in the medical image fusion of different resolutions, YPET
and YSPECT are down-sampled to the size 21 × 21. Finally,
9984 patch pairs of 84 × 84 MRI and 21 × 21 YPET , and
2176 patch pairs of 84 × 84 CT and 21 × 21 YSPECT are
used as the training set. The image pairs have been aligned
in advance, and image registration [38]–[40] is required for
unaligned data.

2) TRAINING DETAILS
Alg. 1 summarizes the detailed training process. 9984 patch
pairs of 84× 84 MRI and 21× 21 YPET or 2176 patch pairs
of 84×84 CT and 21×21 YSPECT are employed as the inputs
of the training process in the corresponding fusion problem.
First of all, The parameters in the generators and discrim-
inators are initialized. In order to form stable adversarial
relationships between the generators and the discriminators,
and ensure the balance between the DM and DY in order that
each one of them is not too weak, the generators and the

1http://www.med.harvard.edu/AANLIB/home.html.
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FIGURE 5. Qualitative comparison of our MGMDcGAN with 9 state-of-the-art methods on two typical MRI and PET image pairs of different transaxial
sections of the brain-hemispheric. From left to right: high-resolution MRI image, low-resolution PET image, fused images of S-A, MST-SR, NSCT, N-F,
PSF, PAPCNN, CNN, PMGI, DDcGAN and our MGMDcGAN.

FIGURE 6. Qualitative comparison of our MGMDcGAN with 9 state-of-the-art methods on two typical MRI and SPECT image pairs of different transaxial
sections of the brain-hemispheric.

discriminators are not trained once per batch in turn. Actually,
in each iteration, the generator is trained more times if it
fails to fool the corresponding discriminator and the discrim-
inator is also trained more times if it fails to discriminate
the data from the corresponding generator. The parameters
in the generators and discriminators are both updated by
RMSPropOptimizer. When testing, the final fused image If
can be generated by the trained generators without discrim-
inators. The fully connected layers are not employed in our
generators so that the input source images can be of any size
as long as they meet the predefined resolution proportion.

B. COMPARISON ALGORITHMS AND
EVALUATION METRICS
1) COMPARISON ALGORITHMS
To give some intuitive results on the fusion performance,
we compare our MGMDcGAN with 9 state-of-the-art fusion
methods, including S-A [41], MST-SR [42], NSCT [43],
N-F [44], PSF [45], PAPCNN [46], CNN [27], PMGI [47]
and DDcGAN [12]. Among them, DDcGAN can be directly
applied to the multi-modal medical images fusion of dif-
ferent resolutions, while the preprocessing of up-sampling
low-resolution source image is necessary for others whose
source images share the same resolution. The CNN, PMGI
and DDcGAN are the methods based on deep learning,
while others are traditional methods. The parameters of these
9 methods are the same as the initial papers.

2) EVALUATION METRICS
In order to have a more accurate evaluation of the exper-
imental results, 6 metrics are used to evaluate the fusion

performance of the 10 fusion methods, including entropy
(EN) [48], spatial frequency (SF), edge intensity(EI), mean
gradient (MG), peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM). The EN can mea-
sure the amount information contained in the fused image,
SF is a metric that reflects the texture details of a image by
calculating the gradient distribution, EI reflects the gradient
amplitude of edge point, MG is a metric that measures the
amount gradient information contained in the fused image,
PSNR measures the distortion by the ratio of peak value
power and noise power, and the SSIM measures the structure
similarity between fused image and source images. The larger
the values of the 6metrics are, the better fusion performance a
method achieves. In addition, neither CT nor SPECT mainly
characterizes texture details. Therefore, SF and MG do not
participate in the quantitative comparison of CT-SPECT
fusion.

C. QUALITATIVE COMPARISONS
Figs. 5-7 show typical and intuitive results of 10 methods
on the fusion of MRI-PET. MRI-SPECT and CT-SPECT
respectively, which are different transaxial sections of the
brain-hemispheric.

Compared with the existing 9 fusion methods, there are
4 obvious advantages. First, our results can characterize
the functional information of the PET and SPECT images
clearly. Second, the abundant texture details can be preserved
from the MRI images in our results. Third, our results can
clearly reflect the dense structure e.g., bones and implants.
Fourth, The functional information in our results is closer
to the source PET and SPECT images due to that it does
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FIGURE 7. Qualitative comparison of our MGMDcGAN with 9 state-of-the-art methods on two typical CT and SPECT image pairs of different transaxial
sections of the brain-hemispheric.

not suffer from spectral distortion caused by up-sampling the
low-resolution PET and SPECT images.

The fusion of MRI-PET can be seen from Fig. 5.
S-A, NSCT, N-F, PSF, PAPCNN and PMGI cannot char-
acterize the functional information well, while PSF, CNN,
PMGI and DDcGAN cannot obtain abundant texture details.
Furthermore, MST-SR, PSF, CNN, PMGI and DDcGAN
cannot clearly reflect the dense structure. It is worth
noting, compared with DDcGAN, due to the employ-
ment of the second cGAN with mask, our MGMDcGAN
obtains additional dense structure information, e.g., the skull.
In general, the structural and functional information of our
MGMDcGAN are the closest to those of source images.

The fusion of MRI-SPECT can be seen from Fig. 6.
MRI-SPECT fusion is tested using the trained models
of MRI-PET. In contrast, our MGMDcGAN obtains the
most functional information without spectral distortion, and
presents the clearest texture details. Also the results of
MGMDcGAN does not suffer the loss of dense structure
information as DDcGAN.

The fusion of CT-SPECT can be seen from Fig. 7. By com-
parison, MST-SR, NSCT, N-F, PAPCNN, CNN, PMGI and
DDcGAN obviously reduce the intensity of color in the
SPECT image, leading to the loss of functional information,
and the results generated by S-A suffer from spectral dis-
tortion. The color of our results is the most similar to that
of the source PET images. In terms of the bone information
retained from CT images, MST-SR, NSCT, N-F, PAPCNN,
CNN, PMGI and MGMDcGAN obtain it well. However,
the results of S-A suffer from partial shadow, and DDcGAN
almost loses it.

D. QUANTITATIVE COMPARISONS
We randomly selected 20 test pairs of MRI-PET images,
20 test pairs of MRI-SPECT images, and 19 test pairs of
CT-SPECT images to further report quantitative comparisons
of ourMGMDcGANand the competitors. All test image pairs
are of different transaxial sections of the brain-hemispheric.
The results of quantitative comparisons on MRI-SPECT,
MRI-SPECT and CT-SPECT image fusion are summarized
in Figs. 8-10, respectively. In terms of the fusion ofMRI-PET,
our MGMDcGAN can achieve the optimal values in the SF,
EI, MG and PSNR, and the suboptimal values in the EN

FIGURE 8. Quantitative comparison of our MGMDcGAN for MRI-PET
image fusion with 7 state-of-the-art methods. Means of metrics for
different methods are shown in the legends. Optimal values are shown in
red and suboptimal values in blue.

and SSIM. In the fusion of MRI-SPECT, our MGMDcGAN
can achieve the best values in the SF, EI, MG and PSNR, and
the metric EN and SSIM also show comparable results, gen-
erating the second largest mean values and those mean values
merely follow behind those of DDcGAN by 0.0566 and PSF
by 0.0019, respectively. As for the fusion of CT-SPECT,
the metrics EN and PSNR achieve the best values while
EI and SSIM reach the second largest mean value whose
mean value merely follows behind those of DDcGAN by
0.0181 and PSF by 0.003. Thus, it can be demonstrated that
our MGMDcGAN can preserve the structural and functional
information to a great extent at the same time and achieve the
best fusion performance.

The mean and standard deviation of runtime in different
methods on these 3 kinds of medical image fusion is also
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TABLE 2. The mean and standard deviation of running time in different methods. (unit: second).

FIGURE 9. Quantitative comparison of our MGMDcGAN for MRI-SPECT
image fusion with 7 state-of-the-art methods. Means of metrics for
different methods are shown in the legends.

provided in Tab. 2. Comparatively, our MGMDcGAN can
still achieve comparable efficiency.

E. ABLATION EXPERIMENTS
1) THE SECOND cGAN
We employed the second cGAN to enhance the informa-
tion of dense structure from MRI. In order to show the
effect of the second cGAN, the following comparative exper-
iments are performed. (a) Only the first cGAN is employed.
(b) The second cGAN is employed. The experimental set-
tings of two comparative experiments are the same and
the results are shown in the left of Fig. 11. The func-
tional information in PET and texture details in MRI are
both preserved in the fused results of (a) and (b). How-
ever, the fused results in (a) almost loss the information
of dense structure from MRI. By comparison, the fused
results of (b) can effectively preserve the information of dense
structure from MRI. As a result, this proves that the sec-
ond cGAN can enhance the information of dense structure
from MRI.

FIGURE 10. Quantitative comparison of our MGMDcGAN for CT-SPECT
image fusion with 7 state-of-the-art methods. Means of metrics for
different methods are shown in the legends.

FIGURE 11. Results on whether the second cGAN exists (left) and
whether the mask exists (right).

2) MASK
The mask is employed in our MGMDcGAN to prevent the
functional information from being weakened in the If when
enhancing the dense structure information. In order to show
the effect of the mask, we perform the following comparative
experiments. (c) The mask is not employed, and the input of
the Dk is the source MRI image and final fused image If .
(d) The final fused images If are generated by themethod pro-
posed in this paper with the mask employed. The experimen-
tal settings of two comparative experiments are the same and
the comparative fused results are shown in the right of Fig. 11.
The fused results of (c) and (d) both preserve the information
of dense structure from MRI image. However, in method (c),
the final fused image is closer to the MRI image with almost
no functional information and the functional information in
the final color fused image is seriously weakened. By con-
trast, method (d) can address above problem, and the fused
result can simultaneously preserve the structural information
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including texture details and dense structure information in
MRI image and functional information in PET image. It can
be seen that the mask plays an important role in the fusion
process.

V. CONCLUSION
In this paper, we proposed a new deep learning-based fusion
method for multi-modal medical images of different resolu-
tions, termed as MGMDcGAN. It can simultaneously keep
the functional information in IF and structural information
including texture details and dense structure information in
IS without spectral distortion or information loss. Since our
method is an end-to-end model, the complex activity level
measurements and fusion rules designed in a manual way
in traditional fusion strategies are not required. In the first
cGAN, the generator generates a real-like fused image to
fool two discriminators, while the discriminators aim to dis-
tinguish the structure differences between the fused image
and source images. The second cGAN with mask is used
to enhance the information of dense structure in If , while
preventing the functional information from being weakened.
The adequate experimental results on the fusion ofMRI-PET,
MRI-SPECT and CT-SPECT indicate that our MGMDcGAN
not only presents better visual effects, but also preserves the
maximum or approximate maximum amount of information
in source images.
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