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ABSTRACT Superconductors have been one of the most intriguing materials since they were discovered
more than a century ago. However, superconductors at room temperature have yet to be discovered. On the
other hand, machine learning and especially deep learning has been increasingly used in material properties
prediction and discovery in recent years. In this paper, we propose to combine the deep convolutional
neural network (CNN) model with fully convolutional layers for feature extraction with gradient boosting
decision tree (GBDT) for superconductors critical temperature (T c) prediction. Our prediction model
only uses the elemental property statistics of the materials as original input and learns a hierarchical
representation of superconductors using convolutional layers. Computational experiments showed that our
convolutional gradient boosting decision tree (ConvGBDT) model achieved the state-of-the-art results on
three superconductor data sets: DataS, DataH, and DataK. By visually comparing the raw elemental feature
distribution and the learned feature distribution, it is found that the convolutional layers of our ConvGBDT
can learn features that can more effectively distinguish cuprate and iron-based superconductors. On the other
hand, the GBDT part of our ConvGBDT model can learn the sophisticated mapping relationship between
extracted features and the critical temperatures to obtain good prediction performance.

INDEX TERMS Superconductivity, convolutional neural network, gradient boosting decision tree, feature
extraction.

I. INTRODUCTION
With their unique physical properties, superconductors play
a critical role in many fields such as medical instruments,
transportation, cutting-edge scientific equipment, control-
lable nuclear fusion, and power systems [1]–[5]. Since
discovered in 1911, superconductivity has been found on
low-temperature superconductors represented by NbTi,
Nb3Sn, etc., the first-generation high-temperature supercon-
ductors represented byBi-Sr-Ca-Cu-O, the second-generation
high-temperature superconductors represented by
Re-Ba-Cu-O, and the later discovered superconductors such
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as MgB2 and iron-based superconductors. As a special
physical property of multi-particle systems, the mystery of
its mechanism has not been fully understood despite that
some heuristic rules have been found. But currently, it is
largely impossible to accurately predict high-temperature
superconductors.

Most superconductivity studies use resource-intensive
experiments or first-principles calculations. However, exper-
imental exploration of the huge materials space is costly
prohibitive while atomic computational models, especially
submicron-level computational simulation methods are lim-
ited by the lack of well-defined force fields to describe
the interactions between atoms [6]–[9]. On the other
hand, rigorous electronic structure calculations using density
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functional theory (DFT) are usually limited to simulat-
ing hundreds of atoms [7]–[9]. Standard material compu-
tational characterization methods such as Green function
(e.g. the fully adaptive GW) [10], [11] considers finite-scale
scaling, charge correction [12], and beyond standard den-
sity functional theory (BSDFT) [10], [11] when calculating
band structures, which makes simulation calculations very
expensive. and high-throughput screening impractical [13].
Essentially, in addition to prediction models based on physi-
cal principles/theories, the machine learning approach for T c
prediction is a data-driven prediction model, which exploits
the relationship between material composition similarity
and T c. This is why the machine learning method has been
successfully applied to the T c prediction problems using only
the composition features.

Currently, the availability of an increasing number of mate-
rials databases such as Materials Project (MP) Database [14]
and ICSD [15] with experimental and/or computational prop-
erties has led to the recent emergence of machine learning
for materials property prediction. At the same time, as DFT
provides a cheaper way to predict material properties at
the atomic level [16], DFT calculation results have been
deposited into large data collections, such as Open Quantum
Materials Database (OQMD) [17], [18], Automatic Flow
of Materials Discovery Library (AFLOWLIB) [19], and the
Novel Materials Discovery Database (NoMaD) [20]. These
materials databases contain 104-106 DFT computational
properties of both experimentally observed and hypothesized
materials. In the superconductor research field, the most
comprehensive database is the Supercon database [21], which
contains the compositions and the T c of 30,057 oxides metal-
lic or 514 organic superconductors as of April 17, 2019. In the
past decade, these materials databases have been applied
to data-driven material informatics researches [22]–[27].
Indeed, these large data sources have spurred researchers’
interest in applying advanced data-driven machine learning
techniques to accelerate the discovery and design of new
materials with selected engineering attributes [28]–[30]. Fol-
lowing this strategy, Stanev et al. [31] recently used Mag-
pie [32] descriptors to characterize superconductors into
132-dimensional vectors and used random forest (RF) algo-
rithm to develop a Tc prediction model using 6196 materi-
als with T c greater than 10K from the SuperCon database.
Hamidieh [33] used the same characterization method to
establish a T c prediction model using 21,263 superconduct-
ing materials from SuperCon using GBDT.

However, conventional machine learning algorithms suffer
from the difficulty of hand-designing effective features for
building high-performance predictionmodels. Recently, deep
learning has brought the state-of-the-art performance to tasks
in various fields, including image recognition [34], [35],
speech recognition [36], [37] and natural language under-
standing [38], [39]. As one type of deep neural network
models, CNN is good at learning hierarchical features from
the original data. It was first successfully applied in computer
vision and since then has achieved remarkable success in

many other areas such as gear fault diagnosis [40], [41],
in which vibration and sound signals are converted into
matrix/image format to exploit CNN’s feature learning capa-
bilities. In the field of material research, CNN models have
been used to improve the characterization method after
modeling the microstructure data of the material [42]–[44]
and to predict the crystal structure and molecular proper-
ties [45]–[47]. Following this strategy, Konno et al. [48] pro-
posed a four-channel material characterization method based
on the electron number of the element s, p, d, and f orbitals
in the molecular formula of superconductors, and used
CNN to construct a critical temperature prediction model
with 13,000 superconducting materials from the SuperCon
database.

CNN are characterized by their hierarchical feature extrac-
tion capability, which is usually linked with fully connected
layers for regression or classification. However, in the case
of small data sets, the fully connected layers cannot be too
complicated. Otherwise, the model is prone to overfitting and
does not give good results on the test set. If the fully connected
layer is too simple, the final regression model cannot provide
sufficient nonlinear transformations to capture the relation-
ship between input features and the predictions. On the other
hand, the GBDT algorithm is a robust ensemble prediction
model with strong modeling performance. Here we propose
the ConvGBDT regression model by combining the convolu-
tional layers of CNNwith GBDT, which has achieved the best
prediction performance over three benchmark datasets. The
contributions of this paper can be summarized as follows:

(1) A hierarchical feature extraction method based on
CNNs is developed for T c prediction of superconductors
using the elemental property representation of the materials.

(2) Using the GBDT model to replace the fully connected
layer in regular CNNs, we developed a more effective predic-
tion model for predicting T c of superconductors.
(3) Extensive computational tests over three standard

benchmark datasets demonstrate the state-of-the-art perfor-
mance of our proposed ConvGBDT model.

II. DATA SOURCE AND CHARACTERIZATION
A. DATA SOURCES
We use the data derived from the SuperCon [21] database
to train and test the ConvGBDT model. The SuperCon
database contains a comprehensive list of superconductors,
all of which are collected from journals of published papers.
SuperCon contains two kinds of compounds, one is the metal
oxide (metal-containing inorganic material, alloy compound,
oxide high-temperature superconductor, etc.), and the other
is organic superconductors. The SuperCon dataset contin-
ues to evolve and at the time of writing contains 30,000+
superconductors that change only by small changes in stoi-
chiometry (doping plays an important role in optimizing the
T c of superconducting materials). The SuperCond database
has been used by many scholars in the construction of T c
prediction model including Stanev et al. [31], Hamidieh [33],
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TABLE 1. Statistics of the three benchmark superconductor datasets.

andKonno et al. [48]. This paper refers to the data sets used in
these three studies as DataS, DataH, DataK and we compared
the performance of our proposed model to other methods
over these datasets. Table 1 shows the statistics of these three
benchmark datasets.

B. MATERIALS REPRESENTATION
Two most important aspects of any machine learning model
are data representation and learning algorithms. There are
two main types of methods for material representation: one
is based on the molecular formula and the other is based on
its crystal structure. The former type requires only chemical
composition as input without crystal structure information,
which allows to explore the whole chemical composition
space. Commonly used material representation methods of
this type include Magpie descriptors (with element attribute
statistics) and One-hot coding. The structure-based material
representation methods refer to the construction of vector-
based crystal structure data representations. Commonly used
such methods include the use of crystal geometry to construct
Vorono-Dirichlet polyhedron (VDP) on each atom [49] and
using the radial distribution function (RDF) [50] to character-
ize the accumulation of atoms in the crystal and the distance
between the individual bonds. Another encoding is the graph
encoding with CNN [51]. The accuracy of structure-based
characterization methods is limited by our ability to perform
all the domain knowledge required for feature representation
of materials. In this research, we used statistical elemental
properties in molecular formulas to characterize materials.

The statistical elemental properties representation refers to
the calculation of all statistics of elemental properties of the
material, such as the number of cycles of the elements in
the numerator on the periodic table, the number of families,
the radius of the atom, the melting temperature, average
fraction of valence electrons from s, p, d, and f orbitals in
all elements. In this paper, we have calculated the 22 kinds of
attributes of the elements (See Table 2 ) using the Matminer
package [52].

TABLE 2. 22 Elemental attributes used in materials representation [52].

For each attribute, we calculate its maximum, minimum,
range, mean, variance, and mode characteristics of the con-
stituent elements of a given material, so that it can be charac-
terized as amatrix T as shown in (1) at the bottom of this page.
T ∈ Rs×d (s= 22,d= 6). Each property has six statistical
values, which can be regarded as a local representation of the
material. Then we use 32 convolution kernels of the size 1×6
to scan the feature matrix T in a row to extract local features.

III. ConvGBDT MODEL
A. CNN BASED FEATURE EXACTION MODEL
CNN is a kind of deep learning algorithm that has led to
the breakthrough in computer vision [53] and other applica-
tions. Its main advantage is the ability to extract hierarchical
features from high-dimensional data. A CNN generally con-
sists of the following six parts: the input layer, convolution
layer, activation layer, pooling layer, fully connected layer
and output layer. The convolution operator is used to extract
local features; pooling operators are used to compress the
feature map obtained by convolution to simplify the network
and reduce computational complexity; activation function is
the main source of nonlinear transformation of the neural
network; fully connected layer is used for mapping learned
high-level features to the output. The characterization map
of the material T ∈ Rs×d is much smaller than the image
feature map. In order to avoid missing features of the pooling
operation when extracting main features, CNN in this study
does not contain pooling operations. Our CNN structure is
shown in Figure 1.

According to formula (1) each row of the material charac-
terization matrix T ∈ Rs×d is a set of 6 different statistics of
a given element property. The CNN model consists of two

T =


Numb_min Numb_max Numb_range · · · Numb_mode
GSmg_min GSmg_max GSmg_range · · · GSmg_mode

...
...

... · · ·
...

Spac_min Spac_max Spac_range · · · Spac_mode

 ∈ R22×6 (1)
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FIGURE 1. CNN model.

TABLE 3. Parameters of CNN model.

row-scanning convolutional layers, one fully convolutional
layer and two fully connected layers. The detailed parameters
of each layer of the CNN model are shown in Table 3.

The row-scanning convolution kernels of the first convo-
lutional layer are applied to the matrix T to fuse different
statistical values for extracting high-level features. The width
of the convolution kernel l is d , which is the same as the width
of thematerial characterizationmatrix T , and the height of the
convolution kernel h is set as 1. To extract more relationships
among the 22 element properties, we use a fully convolutional
layer to learn inter-property features. This idea was originally
proposed in [54] for semantic segmentation. The size of the
convolution kernel here is the same as the size of the input
feature map. The difference between fully convolutional and
fully connected layers here is that the feature map of fully
convolutional layer is generated by the convolution operation
while the fully connected layer is done by weight sums.
After each of the convolutional layers, a batch normalization
layer [55] is used to improve the convergence speed of the
model and reduce the influence of network weight initializa-
tion during the learning process. Except for the final output
layer, a rectified linear unit (ReLu) is used as the activation
function for each layer of the neural network.

B. GRADIENT BOOSTING DECISION TREE (GBDT)
Instead of using the fully-connected layer for final regression,
we propose to combine the CNNbased feature extractionwith
a powerful prediction model, the Gradient Boosting Decision
Tree (GBDT) for learning the regressionmodel. GBDT is also
known as the Multiple Additive Regression Tree (MART),
which is a statistical integrated learning method proposed by
Friedman [56]. Integrated learning is a commonly used statis-
tical learningmethod, which learns to combinemultiple weak
learners effectively to build a strong learner with high predic-
tion accuracy, which can reduce the variance and deviation of
the prediction model. The GBDT algorithm can be expressed
as a boosting method based on decision trees (DTs):

fm (x) = fm−1 (x)+
J∑
j=1

cmj

where fm (x) represents the m-th learner, cmj represents the
loss of the j-th node on the m-th tree. The GBDT model can
be trained using the forward distribution algorithm:
(1) Determine the initial decision tree f0 (x) = arg min

c∑N
i=1 L(yi, c)

(2) For m= 1, 2, · · · ,M , where M is the number of trees.
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FIGURE 2. The specific process of GBDT.

a) For i= 1, 2, · · · ,N , where N is the number of sam-
ples, the gradients can be calculated as:

rmi= −
[
∂L(yi, f (xi))

∂f (xi)

]
f (x)=fm−1(x)

b) Using (xi, rmi) we can fit a regression tree and get
the m-th regression tree. Its corresponding leaf node
area is Rmj(j= 1, 2, 3, · · · ,J ), where J is the number
of leaf nodes.

c) For each sample in the leaf node, we find the best
output value cmj to minimize the loss function L(·).
In the decision tree, the value of leaf nodes has been
generated once. The purpose of this step is to slightly
change the value of leaf nodes in the decision tree,
hoping that the fitting error will become smaller.
cmj = argmin

∑
xi∈Rij L(yi, fm−1(xi)+ c)

d) Finally, we can get the decision tree fitting function
of this round as: ht (x) =

∑J
j=1 cmj

(3) The resulting strong learner model can be described as:
fm(x) = fm−1(x)+

∑J
j=1 cmj

The overall process of GBDT algorithm is shown in
Figure 2.

C. CONVOLUTIONAL GRADIENT BOOSTING DECISION
TREE (ConvGBDT)
In this work, we propose a hierarchical feature extraction neu-
ral network architecture based on convolutional network lay-
ers to extract features from the input data representation, and
then use the GBDT to predict the T c of the superconductors
with the features extracted by the convolutional layers. Our
method is called Convolutional Gradient Boosting Decision
Tree (ConvGBDT). The architecture of our ConvGBDT is
shown in Figure 3. First, the convolutional feature extraction
network is trained to screen, fuse, and extract features from
the input characterization matrix T . The training model is
shown in Figure 1, in which the T c is used as the target values

to predict. After training, only the convolution layers and the
fully convolutional layers are kept to extract features. And
then GBDT is trained to make the final regression predictions
based on the output features of the last convolutional layer.

IV. DATA PREPROCESSING AND MODEL TRAINING
A. DATA PREPROCESSING
To reduce the influence of difference scales of the materials
attributes onmodel, we applied the normalization preprocess-
ing step to the characterization matrix. For each materials
attribute, we convert the original value into a scaled value as
shown in formula (2).

x ′ =
x − min A

max A− min A
(2)

where, x represents original data, x ′ represents normalized
data, maxA andminA represents themaximum andminimum
value of the attribute.

B. MODEL TRAINING AND COMPUTIONAL
EXPERIMENTAL ENVIROMENTS
To evaluate the performance of the regression models, we use
the mean absolute error ( MAE), the root mean square error
( RMSE), and R-Squared (R2) as the evaluation measures.
These performance measures can be calculated as follows:

MAE =
1
m

m∑
i=1

∣∣yi − ŷi∣∣ (3)

RMSE =

√√√√ 1
m

m∑
i=1

(
yi − ŷi

)2 (4)

R2 = 1−

∑m
i=1

(
yi − ŷi

)2∑m
i=1 (yi − ȳ)2

(5)

where, m is the number of samples, yi and ŷi are the true
and predicted values of the i sample label (the Tc of the
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FIGURE 3. Architecture of ConvGBDT algorithm.

superconducting material), ȳ is the average of the m sample
real labels.

To train the CNN and ConvGBDT models, the data set
needs to be divided into a training set, a validation set and
a test set. The training set is used to update the weights
of the models, the validation set is used to adjust the
hyper-parameters of the models, and the test set is used to
judge whether a model is good or not. Figure 4 shows the
data partitioning process using DataS as an example. We first
applied the 10-fold cross-validation to the DataS, where in
each fold the dataset is split into a training set ‘‘A’’ and a test
set (10% of all samples). In each fold, we further randomly
divide dataset ‘‘A’’ into a training set ‘‘a’’ with 90% samples
and a validation set with 10% samples. Training set ‘‘a’’ and
validation set are used to train and tune the parameters of
the CNN and ConvGBDT models, and the test set is used
to evaluate the quality of these two models, as shown in
Figure 4. When training CNN, we keep the best performing
model within 700 epochs in terms of R2 over the validation
set as the final model, which is then combined with GBDT to
obtain the final ConvGBDT model.

Since the decision tree is a non-differentiable model, the
ConvGBDT model cannot be directly trained by the gra-
dient descent method. Thus, we first train the CNN model
using Tc as the prediction target (See Figure 1), and then
train the ConvGBDT model by using the output features
from the CNN module as input and the T c values as target
values. Here the neural network hyper-parameters mainly
include momentum, learning rate, optimization algorithms
and the batch size. The hyper-parameter of GBDT mainly
includes the number of trees, learning rate, sampling rate, and
max depth of the decision trees. Among them, the learning
rate is one of the most important hyper-parameters of deep
neural networks, and we have tried the learning rate from
0.1 to 1e−6(each time reduced by 10 times).
In order to ensure the stability and reliability of the compu-

tational experimental results, ConvGBDT and all subsequent
comparative computational experiments (RF, GBDT, etc.)
were subjected to 10 times 10-fold cross-validation to

FIGURE 4. The process of training ConvGBDT model and evaluating its
performance. In each fold of cross-validation, the training set A is split
into a subset a with 90% samples and validation_set with 10% samples.
Both datasets are used to train and tune the CNN model with the best
CNN model is picked to be combined with GBDT to be further tuned with
the validation_set to build the final ConvGBDT.

calculate the average performances. The whole model is
developed based on Python 2.7. The CNN model uses the
Tensorflow9.0 [57] deep learning framework. The implemen-
tation of the baseline machine learning algorithms is based
on Scikit-learn [58]. All the programs except the baseline
machine learning algorithms are run on a Dell Server with
3.6GHz GPU and NVIDIA GPU GTX1080Ti.

V. COMPUTATIONAL EXPERIMENTAL RESULTS
A. HYPERPARAMETER OF THE MODEL
We set the initial values for each hyper-parameter based on
empirical intuition and then used a greedy algorithm to adjust
each hyper-parameter step by step instead of performing a
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TABLE 4. Hyper-parameters of ConvGBDT model.

grid search, which is not feasible due to computational cost.
We adjust the hyperparameters based on the loss values on the
test set to obtain a set of hyperparameters that minimize the
loss values on the test set. Finally, all the hyper-parameters of
the ConvGBDT model are determined as shown in Table 4:

B. COMPARISON AND ANSLYSIS
We compare the proposed ConvGBDT with three regres-
sion models including CNN, GBDT and RF. The results are
shown in Table 5. The row 3 is the result of GBDT with the
132-dimensional vectors as input flattened from the rep-
resentation matrix T . The rows 1, 6, 7, 8 are the results
of the corresponding models with the element statistical
matrix T as input, row 2 is the result of Konno et al. [48],
row 4 is the result of Hamidieh [33], and row5 is the result of
Stanev et al. [31]. Figure 5 shows the Training and validation
of R2, RMSE and MAE change during training CNN.
First, from row 1, we can find that the CNNmodel achieves

an RMSE of 7.889 on the test dataset, which is lower than
the results in [29] on the same dataset obtained by an ensem-
ble Random Forest algorithm. Their algorithm combines the
models built on Magpie descriptors (large sampling, but fea-
tures limited to compositional data) and AFLOW features
(small sampling, but diverse and pertinent features). We also
found that compared to RMSE of 5.989 on the training set,
the test RMSE (7.889) is much worse and cannot be further
reduced despite of our extensive efforts of parameter and
architecture tuning of the CNN model. Row 3 of Table 5
shows the performance of GBDT algorithm over DataS,
the original characterization data (features) of the supercon-
ductors. Its RMSE is 6.92, better than the CNNmethod. Both
the standard CNN and GBDTmodels did not get good results
on the test set. Row 6 shows the performance of our Con-
vGBDTmodel with an RMSE of 5.512, which is much better
than the results of either CNN or GBDT or the result in [29].
It actually obtained the best results in terms of all three cri-
teria: RMSE, MAE, R2. This indicates that the CNN feature
extraction part of the model can learn more effective features
from the material’s characterization matrix T through the lay-
ers of convolutional integration, filtering, and compression,
which allows the GBDT model to more effectively model
the relationship between the features and Tc. The reason why
ConvGBDT is better than RF and GBDT is because we have
designed a hierarchical representation matrix T of supercon-
ductors (each row represents a different attribute statistics
such as average fraction of valence electrons from s, p, d,
and f orbitals in all elements.), we perform feature extraction
on the matrix T by row-scanning convolution kernels, and

FIGURE 5. Training and validation errors during training.

then fuse the features using a fully convolutional layer, so that
we can find the similarity between the material composition
similarity and Tc. The relationship can be seen from Figure 6.
However, non-parametric machine learning methods such as
RF and GBDT do not have the ability to extract features. The
prediction tree is directly established on the original features,
which places high requirements on the algorithm. Therefore,
RF/GBDT is naturally not as good as ConvGBDT, which
uses CNN for feature extraction and then inputs GBDT for
regression prediction. Row 5, 6 indicate that the results of
our ConvGBDT method on the DataS dataset are better than
those of Stanev et al. [31] for which our ConvGBDT achieves
R2 of 0.907 compared to 0.876 of Stanev et al. [31]. The
results in row 4, 7 show that the results of the ConvGBDT on
DataH dataset are better than those of Hamidieh [33]. Sim-
ilarly, the results in row 2, 8 demonstrate the higher perfor-
mance of ConvGBDT over DataK data set compared to those
of Konno et al. [48]. Overall, our ConvGBDT method has
achieved the best results on all three public datasets: DataS,
DataH, DataK, indicating the success of merging strategy of
CNN with GBDT for Tc prediction of superconductors.
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TABLE 5. Comparison of model performances in terms of RMSE, MAE, R2.

TABLE 6. List of symbols and acronyms.

Superconducting materials (SCs) can be roughly classi-
fied into cuprates-based, iron-based, and all other unconven-
tional superconductors. A large amount of research has been
focused on cuprates and iron-based compounds. To illus-
trate that the convolutional layer of our ConvGBDT model
obtains useful features from the characterization matrix T ,
we randomly extract 50% of the samples from DataH to

FIGURE 6. Comparison of distributions of superconductor materials of
different categories with (a) raw magpie features (b) features extracted
by CNN. The axis X1 and X2 are the t-sne mapped 2D dimensions without
explicit simple physical meaning.

visualize the original input matrix T and the eigenvectors
extracted by the convolutional layer into 2 dimension space
using T-sne [59], a tool for visualizing high-dimension data.
Compared to Principal Components Analysis, T-sne pre-
serves only small pairwise distances or local similarities in
its manifold learning embedding process so that it has better
capability to make the relative distances among data sam-
ples in the lower dimension to be more consistent to their
distances in the high dimension. As can be seen from
Fig. 6(a), different categories of superconductor materials
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are mixed together when the raw elemental features of the
input matrix representations are fed to T-sne for dimension
reduction.

However, when we map the superconductor materials into
2D space using the extracted features by the convolutional
layers, these materials can be roughly divided into three
regions (Fig. 6(b)) with much better separations among cate-
gories. This also explains the higher prediction performance
of our ConvGBDT algorithm. The key reason is that the
feature space are composed of mixed types of superconduc-
tors, whose Tc values tend to be very different from each
other. So when the RF tries to make predictions based on
its neighbors of the query sample, it will be misled to give
erroneous Tc predictions. On the other hand, in our Con-
vGBDT, the learned representation allows the different types
of superconductors to cluster together, and when the GBDT
is used to make predictions, it tends to use the neighbor
samples of the query materials which belong to the same
category and thus have much similar Tc values, leading to
better performance.

C. DISCUSSION
Because deep learning has stronger generalization ability
than machine learning models, we can use our proposed
deep learning model to predict the Tc without using the
DFT, and find that new superconductors. The first step in
discovering new materials using deep learning methods is
to establish an accurate material attribute prediction model,
then construct an imaginary material space(Such as AxByCz
x+y+z < 10, where A, B and C are different elements, x,
y and z are the subscripts of the corresponding elements),
finally build an accurate prediction model to screen for pos-
sible new materials on this space. For example, After using
FNN to build an accurate prediction model of formation
energy, Jha et al. [60] screens out materials with low for-
mation energy in the constructed material paradigm. After
establishing a Tc predictionmodel using RF, Stanev et al. [31]
Screened on ICSD database to find possible superconductors.
Therefore, the model for predicting Tc proposed in this paper
can be used to discover new superconductors.

When the neural network makes predictions, it is neces-
sary to ensure that the distribution of the predicted data is
consistent with the distribution of the training data. In the
process of discovering new materials, it is often to use an
exhaustive method to establish a hypothetical material space.
This does not guarantee the consistency of the distribution
of prediction data and training data. Generative Adversarial
Network (GAN) is a model for learning data distribution.
We can use it to generate hypothetical materials consistent
with the distribution of training materials. Then use our pre-
diction model to screen the generated hypothetical material
to find promising new materials.

VI. CONCLUSION
In this paper, we propose ConvGBDT, a novel deep learn-
ing algorithm for Tc prediction. It combines the advantage

of CNN for hierarchical representation/feature learning and
the modeling power of GBDT decision tree models. The
materials are encoded based on their elemental properties
from their composition formulas. By replacing the fully con-
nected layer of standard CNN with the GBDT decision trees,
we developed the ConvGBDT prediction model of Tc. Exten-
sive computational experiments showed that our ConvGBDT
model achieved the best results on three superconductor data
sets including DataS, DataH, and DataK. Distribution visu-
alization of the superconductors of different categories using
the raw elemental features and the CNN-extracted features
shows that ConvGBDT can learn more effective features
that can distinguish between cuprate and iron-based super-
conductors much better than the raw features. The higher
Tc prediction performance of ConvGBDT also shows that
the GBDT decision tree can better capture the mapping
relationship between the features extracted by the convolu-
tional layers and the Tc. All the source code of the Con-
vGBDT model and related datasets are publicly accessible at
http://www.mekhub.cn/danyabo/superconductor.
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