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Abstract—Predicting future capacities and remaining
useful life (RUL) with uncertainty quantification is a key
but challenging issue in the applications of battery health
diagnosis and management. This article applies advanced
machine-learning techniques to achieve effective future ca-
pacities and RUL prediction for lithium-ion (Li-ion) batteries
with reliable uncertainty management. To be specific, after
using the empirical mode decomposition (EMD) method,
the original battery capacity data is decomposed into some
intrinsic mode functions (IMFs) and a residual. Then, the
long short-term memory (LSTM) submodel is applied to es-
timate the residual while the Gaussian process regression
(GPR) submodel is utilized to fit the IMFs with the uncer-
tainty level. Consequently, both the long-term dependence
of capacity and uncertainty quantification caused by the
capacity regenerations can be captured directly and simul-
taneously. Experimental aging data from different batter-
ies are deployed to evaluate the performance of proposed
LSTM+GPR model in comparison with the solo GPR, solo
LSTM, GPR+EMD, and LSTM+EMD models. Illustrative re-
sults demonstrate the combined LSTM+GPR model outper-
forms other counterparts and is capable of achieving ac-
curate results for both 1-step and multistep ahead capacity
predictions. Even predicting the RUL at the early battery cy-
cle stage, the proposed data-driven approach still presents
good adaptability and reliable uncertainty quantification for
battery health diagnosis.
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I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries have become the main
power sources to actuate electric vehicles (EVs) [1]. One

key but challenging issue in the applications of Li-ion batteries
is to monitor capacity degradation and predict the remaining
useful life (RUL). In real applications, the capacity of Li-ion
battery would gradually degrade over repeated charging and
discharging cycles until the end-of-life (EOL). After EOL, both
battery’s power and capacity would drop much faster, further
to cause operational impairment and even catastrophic occur-
rence. Therefore, an aged battery should be replaced before its
capacity reaches the EOL. It is vital to develop the proper battery
health diagnosis system (BHDS) to ensure that the batteries are
operated within the reliable conditions.

As one key function of the BHDS, a well-designed future ca-
pacities and RUL prediction strategy should not only predict the
battery capacity variation but also report the uncertainty level of
predicted values, further enabling EV users to make reasonable
decisions to avoid unexpected failures and losses [2]. However,
it is difficult to obtain a satisfactory result for capacities and
RUL prediction due to the complicated and highly nonlinear
trajectory of battery capacity degradation.

To date, various strategies have been proposed to achieve
reasonable battery future capacities and RUL prediction in the
literatures. These strategies can be classified into two main
categories, including the specific model-based approach and
data-driven approach.

For the specific model-based approach, a suitable model with
the priori knowledge of battery, such as the electrochemical
model [3], Brownian motion model [4], along with observers
such as Kalman filter [5], and particle filter [6], [7], are used to
capture the battery fading dynamics. Although these approaches
have been widely applied in the area of battery RUL prediction,
several drawbacks still exist as: 1) It is difficult to accurately
adjust model parameters in whole cyclic process. 2) Observer
technique, such as particle filter, is easy to suffer from par-
ticle impoverishment problem, which will lead to inaccurate
RUL prediction. Based upon a large number of battery aging
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tests, cycle-life models also become another hot research field
to predict battery RUL [8]. Through portraying the capacity
degradation as the functions of current rate, state-of-charge, and
temperature, etc., these methods seem easy to be implemented.
However, to some extent, they belong to open-loop type model
without strong generalization ability.

Data-driven approach, which does not assume any battery
degradation mechanism a priori, has also been widely adopted.
On the basis of battery historical cycling data, various intelligent
techniques such as vector machine [9], [10], neural network [11],
[12], autoregressive modeling [13], Bayesian prediction [14]–
[16], and Box–Cox transformation [17] have successfully been
applied for battery future capacities and RUL prediction. For
these applications, most approaches addressed the original ca-
pacity signals without considering the self-regeneration phe-
nomena directly. These capacity regeneration phenomena can
be seen as a sudden fluctuation in the available capacity occurs
during battery degradation, which are mainly caused by the
electrochemical cell relaxation (changes of lithium distribution
homogeneity) after a pause or idle period [18], [19]. In any
case, accounting for regeneration phenomena is necessary for the
uncertainty quantification of further capacities prediction [18].
Besides, as pointed out by related publications [20], [21], battery
capacity experiences a long-term degradation over hundreds
of cycles. The degradation information among these cycles is
highly related. How to capture these correlations, so as to achieve
an accurate long-term capacity prediction with reliable uncer-
tainty management is still an open but challenging technical
issue.

In this regards, several machine-learning approaches appear
to be promising for handling the long-term dependence and
discontinuous regenerations. Recurrent neural network (RNN)
is one powerful method to extract and update the correlations
of sequential data, owing to its structure by augmenting re-
current links to hidden neurons [22]. Recently, based upon
the time-varying current/voltage instantiations, You et al. [23]
applied RNN to achieve flexible and robust prediction of battery
capacity. Zhang et al. [24] proposed a long short-term mem-
ory (LSTM) RNN-based framework to capture the long-term
degradation trend. However, the confidence ranges of predicted
values cannot be generated through using solo LSTM. Compared
with LSTM, Gaussian process regression (GPR) is derived from
the Bayesian framework, so the predicted battery capacities
can be directly expressed with the uncertainty range [21], [25].
Therefore, for the local capacity regenerations, GPR leads to a
suitable candidate for uncertainty quantification. Therefore, it
is meaningful to combine LSTM and GPR for battery capacity
prediction with the purpose of achieving the benefits of both
these techniques.

Driven by the above purpose, this article applies the machine-
learning techniques to derive a new data-driven approach, en-
abling accurate future capacities prediction and reliable uncer-
tainty management for Li-ion batteries. Specifically, several key
contributions are made as follows.

1) After using the empirical mode decomposition (EMD)
technique to decompose the original capacity degradation
data for different batteries, LSTM submodel is applied to

TABLE I
DETAILED OPERATIONAL PROFILES OF ALL BATTERIES

fit the residual, bringing the benefits that the long-term
dependence of battery capacity degradation can be kept
and updated without gradient vanishing.

2) GPR submodel is used to capture the local fluctua-
tions, where the uncertainty quantification caused by
the capacity regeneration phenomena can be considered
simultaneously.

3) Prediction performance of several data-driven models are
investigated and compared in terms of kernel function and
training input number. The combined LSTM+GPR model
presents to outperform other counterparts.

4) For various applications, including 1-step, multistep, and
early RUL predictions, the proposed data-driven approach
is capable of offering highly accurate results with reliable
uncertainty management.

5) Obviously, without any battery mechanism knowledge,
the proposed approach can be easily extended to other
battery types for health diagnosis.

The remainder of this article is organized as follows. Section II
presents the battery capacity degradation dataset. Section III
describes the adopted machine-learning techniques, followed by
several performance comparison tests in Section IV. Section V
analyses the experimental prediction results of the proposed
approach. Finally, Section VI concludes this article.

II. BATTERY CAPACITY DATASET

Suitable battery capacity datasets play important roles in
the evaluation of prognostics methods [4]. In order to evaluate
the abilities of our proposed method to capture long-term de-
pendence and particularly uncertainties caused by the capacity
regenerations in various operating conditions, several cyclic test
datasets of NASA batteries [26] and CALCE batteries [20]
with strong local fluctuations and dissimilar capacity curves are
selected in this study. Reasonability of using all these battery
data to design ageing prognostic methods has been proven in
many related work [10], [12], [19].

Table I illustrates the operational profiles of these batteries.
For NASA batteries, a test bench that consists of the pro-
grammable electronic load, power supply, temperature chamber,
and computer is used to conduct the battery cyclic aging tests.
Three cells (B05, B06, and B18) that operate under 24 ◦C ambi-
ent temperature Tamb are labeled as “Case 1” batteries. Another
two cells (B54 and B55) with 4 ◦C Tamb are labeled as “Case
2” batteries. For CALCE batteries, all tests were conducted by
using the Arbin BT2000 system, PC, and temperature chamber.
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Fig. 1. Original capacity degradations versus cycle number for differ-
ent batteries.

More details regarding the NASA test bench and CALCE test
bench can be found in [27] and [20], respectively. All batteries
were recurrently tested through the operational profiles includ-
ing constant-current (CC) constant-voltage charging and CC
discharging. The detailed values in terms of upper cut-off voltage
Vup, lower cut-off voltage Vlow, constant charging current Ich,
constant discharging current Idis, Tamb, and fresh capacity Cnew

for each cell are described in Table I.
Through using the Savitzky–Golay filter to reduce measure-

ment noises of corresponding currents and voltages [28], final
capacity degradation curves versus cycle number for different
batteries are shown in Fig. 1. It is evident that the battery
capacity degradation displays a nonmonotonic decline over
the cycle number. Capacity regeneration phenomena and local
fluctuations occur in the cyclic process. According to [21], these
short-term capacity regenerations commonly occur in real-world
applications. Therefore, these datasets are suitable for develop-
ing the effective capacity and RUL prognostic approaches to
consider the uncertainty quantification caused by local capacity
regenerations during the cycling process.

III. TECHNIQUES

To achieve reliable future capacities and RUL prediction,
three points need to be concerned. First, the original capacity
dataset presents a highly nonlinear trend with regeneration phe-
nomena, which is not suitable for accurate health prognosis.
Second, learning the correlations of the capacity time-series is
essential to update long-term dependencies. Third, uncertainty
level is a key part and should not be ignored.

To solve these challenges, the proposed data-driven approach
mainly uses three techniques: EMD method to decompose the
original capacity dataset, LSTM submodel to capture the long-
term dependence, and GPR submodel to generate the uncertainty
of each prediction result.

A. Empirical Mode Decomposition

EMD is an effective signal process technique and has been
applied in many real-world fields (e.g., ocean waves, rotating

machinery), owing to its strong abilities of extracting both
low- and high-frequency components from highly dynamic sig-
nals [29]. By using EMD through an iterative sifting process,
nonstationary dataset can be decomposed into a residual se-
quence and a series of intrinsic mode functions (IMFs), which
stand for the orthogonal-basis components. Specially, an IMF
needs to satisfy several criteria as: 1) for the whole dataset, the
number of zero-crossings requires to be equal to or at most one
different with the number of extrema and 2) at any point, the
envelopes defined by the local extrema must generate a zero
mean. More details of EMD can be found in [29].

Given that the regeneration phenomena and local fluctuations
can be considered as the high-frequency signals while the global
trend of capacity degradation is the low-frequency signal, the
original capacity degradation dataset will be decomposed into
several IMFs and a residue by using the EMD method. Detailed
sifting process to decompose the capacity dataset is described
as follows:

For i = 1 to imax do the following.
1) Setting the dataset Cbat. For the first sifting process, the

original battery capacity data is selected as Cbat.
2) Searching all local maxima and minima in the Cbat through

the comparisons among the adjacent values within all fluctu-
ations. Here, a local minimum or maximum value stands for
a smallest or largest data point during a local scale of fluctu-
ation [29]. Then, connecting these local extrema by using the
spline line to construct a upper envelop eup and a low envelop
elow, respectively.

3) Calculating the local mean by

me = (eup + elow)/2. (1)

4) Calculating the difference between Cbat and me as

dc = Cbat −me. (2)

5) Setting the IMF pool by checking whether dc satisfies the
IMF’s criteria. If dc is justified to be an IMF signal, remove this
dc from Cbat to obtain the corresponding residue rc by (3). The
obtained rc will also be denoted as the new Cbat in next sifting
process.

rc = Cbat − dc. (3)

6) Repeating 2)–5) until the obtained residue rc becomes a
monotonic function. If the predefined number imax is reached,
the sifting loop will be terminated.

Following this shifting process, the information of capacity
regenerations have been contained in the IMFs [19]. After ob-
taining n IMFs along with a monotonous residue rm, Cbat can
be consisted by

Cbat =

n∑
j=1

IMFj + rm. (4)

B. Long Short-Term Memory Model

To alleviate the gradient exploding and vanishing problems,
a LSTM block is generally applied to embed three gates into
the hidden neurons of the RNN [22]. In this sense, one benefit
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Fig. 2. Structure of LSTM-based RNN model.

of LSTM framework is that the key information can be stored
or updated by manipulating the introduced gates. Besides, the
LSTM model is capable of keeping information over a long
period without gradients vanishing.

A typical LSTM-based RNN model can be divided into three
gate parts, as illustrated in Fig. 2. The states of all these gates are
determined by thexk (the input at the current instant k) andhk−1

(the output at the previous instant k − 1) through a sigmoidal
unit. The input gate decides whether a new state information s̃k
can be received by RNN model. The forget gate is responsible
for forgetting the previous state sk−1 in the hidden layer. The
output gate determines, which information calculated by the
RNN model can be output as hk. Detailed procedure in each
gate part can be summarized as follows:

Step 1: For the input gate part, updating the states for s̃k and
input gate ik as follows:{

s̃k = tanh (Wsxk + Ushk−1 + bs)

ik = σ (Wixk + Uihk−1 + bi)
. (5)

Step 2: For the forget gate part, updating the forget gate fk
and calculating the state sk as follows:{

fk = σ (Wfxk + Ufhk−1 + bf )

sk = ik ⊗ s̃k + fk ⊗ sk−1

. (6)

Step 3: For the output gate part, updating the output gate ok
and calculating the output state hk as follows:{

ok = σ (Woxk + Uohk−1 + bo)

hk = ok ⊗ tanh(sk)
(7)

where ⊗ means the elementwise multiplication. σ and tanh
are the activation functions of sigmoid and hyperbolic tangent,
respectively. W∗ and U∗ stand for the corresponding weight
matrices. b∗ means the corresponding bias vectors.

In our study, long-term dependence represents the correlations
among the current capacity and historical capacities during the
long-term periods of battery degradation. It should be known that
the capacity degradation dataset generally covers hundreds of
battery operation cycles, and the degradation information among

these cycles is highly related. In order to accurately capture
the decline trend of capacity, the correlations among capacity
degradation time-series data require to be taken into account
via effective learning of long-term dependencies. To this end,
the residual sequence will be captured by the LSTM, bringing
the benefits that capacity decline information can be kept and
updated without causing gradient vanishing issue.

C. Gaussian Process Regression Model

A GPR model can be seen as an effective approach to under-
take regression with the Gaussian processes [30]. A probability
distribution of GPR can be denoted as follows:

f(k) ∼ GPR(m(k), κ(k, k′)) (8)

where m(k) and κ(k, k′) stand for the mean function and co-
variance function, respectively.

In practice, there are many kernel functions that can be se-
lected for κ(k, k′). For battery RUL prediction, a suitable kernel
function has a strong impact on the prediction performance and
is therefore required to be carefully selected.

One popular kernel function for GPR is the squared exponen-
tial (SE) function as follows:

κSE (k, k
′) = σ2

SE exp

(
−(k − k′)2

2l2SE

)
(9)

where σSE and lSE are scaling factors to control the amplitude
and spread of the covariance, respectively.

Another common kernel function is the Matern function, as
shown by the following:

κMA (k, k′) = σ2 2
1−γ

Γ (γ)

[√
2γ

(k − k′)
ρ

]γ
�γ

[√
2γ

(k − k′)
ρ

]
(10)

where γ is a hyperparameter to reflect the smoothness. �γ

represents the Bessel function. A widely used Matern covariance
is the Matern52 (M52), which is obtained by fixing the value of
γ as 5/2.

Adding together some SE kernels with various length scales,
a new popular kernel function named rational quadratic (RQ) is
obtained as follows:

κRQ (k, k′) = σ2
RQ

(
1 +

(k − k′)2

2αl2RQ

)−α

(11)

where α reflects the relative weights of both large and small
scale variations. σRQ and lRQ are hyperparameters that affect the
axis scaling.

For a regression process, the output is modeled by a function
plus an additive noise ε ∼ N(0, σ2

n). Then, the prior distribution
of observations can be denoted as follows:

y ∼ N
(
0, κ (k, k′) + σ2

nIn
)
. (12)

Supposing the new dataset k′ follows a similar Gaussian
distribution with the labeled training set k, the total joint prior
distribution of known outputs y and predicted outputs y′ will be
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Fig. 3. Framework for predicting future capacity and RUL based on the
proposed data-driven model.

expressed as follows:[
y
y′

]
∼ N

(
0,

[
κ(k, k) + σ2

nIn κ (k, k′)
κ(k, k′)T κ (k,′ k′)

])
. (13)

Then, the outputs can be predicted by calculating the condi-
tional distribution p(y′|k, y, k′) as follows:

p (y′ |k, y, k′ ) = N (y′ |m′ , cov (y′)) (14)

where⎧⎨
⎩

m′ = κ(k, k′)T
[
κ(k, k) + σ2

nIn
]−1

y

cov (y′)= κ (k,′ k′)− κ(k, k′)T
[
κ(k, k) + σ2

nIn
]−1

κ (k, k′)
.

(15)

It should be known that p(y′|k, y, k′) also follows the Gaus-
sian distribution. m′ can be seen as the predicted value of y′.
cov(y′) is a covariance matrix to reflect the uncertainty.

In our work, the local regeneration and fluctuation phenomena
in the capacity degradation dataset are high-frequency signals
with large uncertainties. The GPR model is applied to fit the
IMFs, while the uncertainty of predicted high-frequency val-
ues can be also considered by the covariance matrix. Here,
the uncertainty quantification is mainly related to the “scope
compliance” uncertainty, which quantifies “how confident” the
prediction from model is [31]. Such uncertainty would become
larger when model performs prediction at previously unknown
conditions [30].

D. Implementation of Data-Driven Approach for Battery
Capacity and RUL Prediction

The framework and flowchart for predicting future capacity
and RUL based on the combined LSTM+GPR model are sum-
marized in Figs. 3 and 4, respectively.

The model framework can be divided into two parts. For
the future capacity prediction, with the current and historical
capacity vector [Cbat(t− i), . . ., Cbat(t)] as model inputs, out-
put Cbat(t+ k) can be predicted after employing the GPR and
LSTM to study potential mappings of the corresponding IMFs
and residual. Here,k and i stand for the future and previous steps,
respectively. For the RUL prediction, a recursive prediction
process that utilizes the previously predicted capacity as the
next input of model to further predict new capacity value, is
conducted iteratively until the battery’s EOL is reached. Then,
the corresponding RULbat can be calculated. It should be known

Fig. 4. Flowchart for predicting battery capacity and RUL by combining
the LSTM RNN model and GPR model.

that the prediction is conducted just based on the historical ca-
pacity information. Detailed steps of whole prediction procedure
are illustrated as follows:

Step 1: Preprocessing data and models: for data pre-
processing before any training process, a simple but efficient
normalization method [32] is utilized to convert the raw capac-
ity data Cb to a normalized scale C

′
b by computing equation:

v
′
= v/Cnew. Here, Cnew is the fresh capacity value of a battery.

v
′

and v represent the data points in C
′
b and Cb, respectively.

Then, the data would be decomposed into several IMFs and
a residual by using EMD technique. For model part, select the
suitable kernel functions for GPR. Set the structure and initialize
the parameters for both LSTM and GPR models.

Step 2: Training models: for a decomposed residual sequence,
train the LSTM RNN model to fit the residual sequence. For
the obtained IMFs, Train the GPR models to fit each IMF
sequence.

Step 3: Estimating battery future capacities: for the long-term
signal part, use the well-trained LSTM model to predict the
future residual value. For the regeneration signal part, apply the
well-trained GPR models to predict the mean and covariance
values of each IMF. After combining these results, the predicted
battery capacity along with the corresponding uncertainty quan-
tification can be obtained.

Step 4: Predicting battery RUL: calculate the battery capacity
in the EOL condition asCEOL. Repeat the prediction step until the
predicted battery capacity degrades below CEOL. Then, output
the predicted battery RUL.

Following this procedure, the battery capacity in each future
cycle can be estimated. The RUL value is also predicted to
provide valuable information for the maintenance decision for
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Fig. 5. IMF and residual sequences for B18 after EMD decomposition.

the aged battery, while the uncertainty of predicted results can
be considered accordingly.

IV. DECOMPOSITION RESULTS AND PERFORMANCE

COMPARISON

In this section, the raw B18 capacity is decomposed by EMD
as illustration, followed by two tests to quantify the effects of
various kernel functions and number of input terms. Then, a
comparison of different data-driven models are conducted to
examine their prediction performance. Here, all the tests are
implemented in MATLAB 2018 with a 2.40 GHz Intel Pentium
4 CPU. For all these tests, GPRs are all trained based on the opti-
mization of hyperparameters through using the gradient methods
to maximize the log marginal likelihood. While the LSTM is
also trained based on the gradient descent-based optimization
algorithm. The effectiveness of these training ways have been
proven in [24], [30]. In all relevant graphs, blue lines mean
the real-measured data, and gray-background areas indicate the
95% confidence range to evaluate the reliability of the prediction
results.

A. EMD Decomposition Result

After decomposing the raw sequence data by EMD, two
extracted IMF sequences and a residual sequence can be ob-
tained with a low computational effort of just 0.13 s. Fig. 5
illustrates the corresponding decomposition results. Specifically,
the local fluctuations have been removed by EMD and the
obtained residual presents an overall monotonous trend to de-
scribe the long-term dynamics. Meanwhile, all local fluctuations
corresponding to the regenerations of capacity are captured by
two IMF sequences. In general, IMF1 owns more fluctuations,
while the trend of IMF2 is relatively gentle. As a result, more
degradation information can be considered for improving the
performance of battery health prognostics.

B. Kernel Function and Training Input Selection

For the GPR model, selecting an appropriate kernel function
is a key step. Three popular kernel functions including SE, M52
and RQ are compared to evaluate their performance for fitting
IMFs. In this section, all data of B18 are used to train the model,
and the well-trained model is also validated under the same

Fig. 6. Results for IMFs by using various kernel functions. (a) SE.
(b) M52. (c) RQ.

dataset of B18. The results by using different kernel functions
are shown in Fig. 6. It is evident that for the IMF2, both M52
and RQ functions capture the whole fluctuation trend nicely. SE
function is capable of capturing IMF2 before 70 cycles, after
which the performance reduces with the increased confidence
range. For the IMF1, SE, and M52 functions achieve poor results
with large uncertainties and low accuracies, especially after 80
cycles. From Fig. 6(c1), the result by using RQ function is quite
good, as indicated by the better match between the mean values
and the true data. This is mainly due to the different length-scales
capturing ability of RQ. Therefore, RQ function is selected as
the kernel function for GPR model in the following study.

Besides, the number of input capacity terms (here means the
value of i+ 1 in Fig. 3) is also a key element to affect perfor-
mance especially for the high-frequency signal IMF1. Increasing
the number of inputs (InNo.) will generally enhance the accuracy
but too much InNo. may lead to over-fitting problem. To evaluate
the performance and prevent model from overfitting, four values
of InNo. including 6, 8, 10, and 12 are chosen. The corresponding
results for IMF1 are illustrated in Fig. 7. It is clear that for the
cases of InNo.=6 and InNo.=8, low accuracy occurs with bad
match results and large uncertainties. In comparison, the mean
values obtained in Fig. 7(c) are much closer to the true IMF1 with
a narrower confidence range, indicating that better performance
is achieved with InNo.=10. It is also evident that for the case
of InNo.=12, GPR model cannot capture the true IMF1 after 94
cycle. This failure is mainly caused by the overfitting. Therefore,
when using GPR to fit IMF1, InNo.=10 is selected in this study
to guarantee accuracy and prevent overfitting.

C. Performance Comparison of Various Models

Next, in order to highlight the effectiveness of our proposed
LSTM+GPR model, the solo GPR model, solo LSTM model,
solo GPR+EMD model, and solo LSTM+EMD model are com-
pared. Specifically, the first two models. respectively, utilize the
solo GPR and solo LSTM to handle the original capacity data.
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Fig. 7. Results for IMF1 by using different input number. (a) InNo.=6.
(b) InNo.=8. (c) InNo.=10. (d) InNo.=12.

Fig. 8. Capacity prediction results by using different data-driven mod-
els. (a) Solo GPR. (b) Solo LSTM. (c) Solo GPR+EMD. (d) Solo
LSTM+EMD. (e) LSTM+GPR.

TABLE II
ACCURACY INDICATORS BY USING DIFFERENT DATA-DRIVEN MODELS

The last two models, respectively, apply the GPRs and LSTMs
to handle all components obtained after EMD decomposition.

Fig. 8 and Table II illustrate the prediction results and accuracy
indicators by using different models. Here, all models are trained
through using the previous 80 data from capacity degradation
curve of B18. Then, all the trained models are validated in its

Fig. 9. 1-step ahead prediction results. (a) B05. (b) B06.

TABLE III
ACCURACY INDICATORS OF 1-STEP AHEAD PREDICTION

remaining cycles. It is worth noting that the solo GPR model
cannot capture the trend of capacity degradation. The mean
predictions from this solo model present a gradual upward trend
with a wide confidence range, which shows little resemblance
to the measured data. From Fig. 8(b), it is observed that the
whole degradation trend is well-predicted, implying the satis-
factory long-term capture performance of solo LSTM model.
But several big mismatches appear in the regeneration points of
around 105 cycles and 120 cycles, which means that the solo
LSTM model may omit short-term fluctuations. In comparison,
after EMD decomposition, it is obvious that all the prediction
results become better. From Fig. 8(c), the mean predictions of
solo GPR+EMD become closer to the measured data but several
delays occur around the local regenerations. In Fig. 8(d), by
using the solo LSTM+EMD approach, mismatches between the
predictions and measured data decrease but no information on
the prediction uncertainties are obtained. Through using the
fusion way as illustrated in (4), our proposed LSTM+GPR
model could provide both the predicted capacity values and the
corresponding uncertainty quantification caused by the capacity
regeneration phenomena. More details of this fusion way can
be found in [19]. From. 8(e), both long-term decline trend and
short-term regeneration phenomena are well-captured as desired
by using the combined LSTM+GPR model. Besides, the 95%
confidence range in this case is distributed in a narrowest region,
which indicates a small uncertainty for the predicted results.
From Table II, the RMSE by using the LSTM+GPR model
is just 0.0032, which is 98.2%, 34.7%, 11.1%, and 5.9% less
than the solo GPR, solo LSTM, solo GPR+EMD, and solo
GPR+LSTM, respectively. Accordingly, it can be concluded
that the proposed LSTM+GPR model presents more efficient
performance in predicting the long-term capacity decline trend
while capturing the regeneration phenomena.
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Fig. 10. k-step ahead prediction results for “Case 1” batteries.

V. PREDICTION RESULTS AND DISCUSSIONS

In this section, to investigate the extrapolation performance
of combined LSTM+GPR model, both 1-step and multistep
ahead capacity predictions are first conducted. Then, the RUL
prediction test is carried out for all battery cases. For 1-step and
multistep tests, due to page limitations, the prediction results of
cells B05 and B06 are plotted but the accuracy indicators for all
batteries are illustrated. Besides, to ensure enough information
of capacity regeneration phenomena can be included in training
process, first 80 data points (nearly 50/50 split) from capac-
ity degradation curve are used as the training sets. Then, the
well-trained model is used to predict the future k-step capacity
(k ≥ 1) in the remaining cycles without any retraining process.
For our iterative prediction, the new estimation will be applied
for the next prediction. Thus, the corresponding uncertainty
would be accumulated [33]. Considering this uncertainty prop-
agation behavior will lead to the estimation uncertainty bounds
are getting larger with the cycle number increasing.

A. 1-Step Ahead Capacity Prediction

Fig. 9 shows the 1-step ahead capacity prediction results of
LSTM+GPR model for “Case 1” batteries. To evaluate the effec-
tiveness of EMD, this test starts from a large regeneration process
that occurs in the 87th cycle. From Fig. 9, it is evident that the
trained model captures the evolution of both long-term capacity
decline trends and regeneration phenomena for all batteries, as
indicated by the satisfactory match between the predicted values
and the actual data for the remaining points. Besides, all the 95%
confidence bounds of these batteries are distributed in the narrow
regions. According to the accuracy indicators as illustrated in
Table III. The RMSE and the maximum error of the 1-step case
are all within 0.0048 and 0.038, respectively, indicating that a
high accuracy is attained by using our proposed model.

TABLE IV
ACCURACY INDICATORS OF MULTISTEP AHEAD PREDICTION

B. Multistep Ahead Capacity Prediction

Next, to further investigate the extrapolation performance of
proposed model for multistep ahead prediction, tests based on
various prediction horizons of 6, 12, and 24 steps are carried out.
For these tests, inputs are obtained using ten historical capacity
data up to current cycle, and the prediction is conducted at the
cycle k-step ahead of the current cycle.

Fig. 10 presents the k-step ahead prediction results for
“Case 1” batteries. It is obvious that several short-period mis-
matches occur in the multistep prediction cases, which is mainly
caused by the lack of priori information for the future large local
fluctuations. However, the predicted capacities would gradually
rematch the true test data again due to the effective information
decomposition and the strong long-term capture ability of our
proposed model. Interestingly, as the prediction step increases,
the 95% confidence range will distribute in a wider region,
indicating that the prediction uncertainty becomes larger. This
is hardly surprising given that the long-step prediction generally
contains much more uncertainty. Even so, the max cov value
is still less than ±10% capacity range, which means that the
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TABLE V
PERFORMANCE OF RUL PREDICTIONS FOR ALL BATTERY CASES

Fig. 11. RUL prediction results for “Case 1” batteries. (a) B05. (b) B06.

prediction results are reliable. According to Table IV, the max-
imum RMSE for B05, B06, B54, B55, C16, and C38 become
0.0041, 0.0059, 0.0056, 0.0060, 0.0068, and 0.0065, which are
41.6%, 59.4%, 60.1%, 57.9%, 41.6%, and 54.8% more than
those of the 1-step case, respectively. However, all these values
are less than 0.007, indicating that the satisfactory overall capac-
ity predictions are also achieved for such cases. Therefore, the
proposed LSTM+GPR model also presents good extrapolation
performance for battery multistep ahead prediction.

C. RUL Prediction

According to the requirements of BHDS, predicting the future
battery RUL as early as possible with a satisfactory accuracy
level is more meaningful for battery real-world applications.
In such a case, it is vital to predict battery RUL at an early
cycle stage. In this section, in order to investigate the recursive
prediction performance and the robustness of our proposed
LSTM+GPR model, all batteries from NASA and CALCE are
tested, respectively. The corresponding quantitative results for
all RUL prediction cases are illustrated in Table V. Here, the
left and right bounds of uncertainty are defined by the first and
last time instant when the obtained confidence range reaches the
predefined battery EOL value, respectively.

For “Case 1” batteries, to investigate the effects of various
EOL values, the predefined EOLs of B05 and B06 are set as 75%
and 66%, respectively. Fig. 11 illustrates the corresponding RUL
prediction results. It is observed that for different batteries with
different defined EOL values, the predicted capacities present
the similar trends with the real-capacity curves. As illustrated in
Table V, the actual EOL values of B05 and B06 are 126 and 127

Fig. 12. RUL prediction results for “Case 2” batteries. (a) B54. (b) B55.

Fig. 13. RUL prediction results for “Case 3” batteries. (a) C16. (b) C38.

cycles, respectively. When implementing the RUL prediction at
the 34th cycle, the predicted RUL for B06 is 94, which is only one
cycle (1.1%) later than the actual RUL. The predicted RUL for
B05 is three cycles (3.3%) later than its actual RUL, respectively.
Meanwhile, all the RUL uncertainty bounds of these predictions
cover the real RUL values effectively.

Next, to verify the robustness of LSTM+GPR model, both
“Case 2” batteries and “Case 3” batteries are used. For these
batteries, the corresponding EOL values are all set as 80%. For
“Case 2” batteries from NASA with lowTamb, the corresponding
RUL prediction results are plotted in Fig. 12. Although there are
some mismatches exist especially in large fluctuation conditions,
the whole capacity decline trends have been captured reliably.
As illustrated in Table V, the capacity of B54 degrades below
the EOL threshold at the 73rd cycle, thus the corresponding
true RUL is 48. While the predicted RUL is 54, which is only
one cycle (1.9%) delay. The RUL uncertainty bound here is
[45, 54], covering the true RUL. For B55, the predicted RUL is
35, which is two cycles (5.3%) later than the actual RUL. The
corresponding uncertainty bound is [32, 37], which gets closer
to the true RUL.

Fig. 13 illustrates the RUL prediction results for “Case 3”
batteries from CALCE with long capacity aging cycle. Here,
the actual RULs of C16 and C38 are 602 and 409, respectively.
Even so, it is observed that the overall trends of both C16 and C38
have been wellcaptured by LSTM+GPR model. The predicted
RULs for C16 and C38 become 468 and 363, which are seven
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cycles and five cycles later than their true RULs, respectively.
In comparison with NASA data with less than 200 cycles, these
increased delays are reasonable due to the accumulated predic-
tion errors in long iteration process. However, the corresponding
uncertainty bounds still cover true RULs (here is [457, 476] for
C16 and [352, 368] for C38), indicating that the uncertainty man-
agements in such cases are still reliable. It can be observed that
for the above experiments, the predicted capacity trajectories
all present smooth fluctuations. These predicted fluctuations are
reasonable due to the fact that after EMD decomposition, this
information within the IMFs can be extracted and learned. More
information regarding these phenomena can be found in [19].
Therefore, based on the above experimental analyses, we can
conclude that by training the developed model at early cycle
conditions, the efficient RUL prediction can be achieved with
acceptable accuracy and good robustness for different battery
health diagnosis.

D. Further Discussions

This article focuses on the development of a data-driven
approach to achieve reliable battery future capacities and RUL
prediction with uncertainty quantification for Li-ion batteries
by capturing both long-term dynamics and local regenerations
directly. Due to the calculation environment is MATLAB 2018,
the computational complexity is relatively low through using the
RNN and GPR toolboxes (here the maximum training time is
within 5 s). Indeed, developing a sufficiently accurate and robust
data-driven model including uncertainty management is an open
research problem. Even though the capacity long-term depen-
dence and the prediction confidence level can be simultaneously
considered by the proposed framework, the corresponding per-
formance highly depends on the form of data and quality of test
experiments, which is a common problem for pure data-driven
applications.

VI. CONCLUSION

In this article, an innovative data-driven approach was pro-
posed to enable accurate health prognosis with reliable un-
certainty quantification for Li-ion batteries. This was the first
known application of combining the superiorities of LSTM
(recurrent links and multiple gate) and GPR (nonparametric and
probabilistic) for future capacities and RUL prediction. Through
detailed result analyses and comparisons, some conclusions
were obtained as follows:

1) The long-term capacity degradation dynamics was cor-
rectly captured by the LSTM, while the uncertainties
caused by capacity regenerations can be wellexpressed
through using GPR, further resulting in an improved
prediction results.

2) In comparison with the solo GPR, solo LSTM, solo
GPR+EMD, and solo LSTM+EMD models, the pro-
posed LSTM+GPR model outperforms other counter-
parts with just 0.0032 RMSE and 0.6% maximum error,
respectively.

3) For both 1-step and multistep ahead predictions, the
LSTM+GPR model achieve satisfactory extrapolation

performance with less than 1.8% maximum error for all
cases.

4) Even starting the RUL predictions at the early cycle
stages, LSTM+GPR model also presents the good gener-
alization ability and reliable uncertainty management for
the applications of all “Case 1,” “Case 2,” and “Case 3”
batteries.

Future work includes effective feature extractions after col-
lecting valuable data for the second stage trend of Li-ion bat-
teries, and the improvement of our data-driven approach for the
battery “knee point” prediction.
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