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ABSTRACT In many unmanned aerial vehicle (UAV) applications such as land assessment, search and
rescue, and precision agriculture, UAVs are often required to survey multiple spatially distributed regions.
To perform these applications, one of the key steps is to plan the path for the UAV to quickly cover all
regions. The new path planning problem explored here, which we call the TSP-CPP problem, can be viewed
as an integration of the traveling salesman problem (TSP) and the coverage path planning (CPP) problem,
which has not been well studied in the literature. In this paper, we conduct a systematic investigation on
the TSP-CPP problem. In particular, we first provide a mixed integer programming formulation for this
new problem, and then introduce a CPP method for covering a single convex polygonal region. Based
on this method, we then develop two approaches to solve the TSP-CPP problem, including 1) a dynamic
programming–based exact approach that can find the (near) optimal tour, and 2) a heuristic approach that
can generate high-quality tours very efficiently. Through comprehensive theoretical analyses and simulation
studies, we demonstrate the optimality and efficiency of the proposed approaches.

INDEX TERMS Path planning, traveling salesman problem, coverage path planning, multiple convex
polygonal regions, unmanned aerial vehicle, optimal path, heuristic algorithm.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have gained great popular-
ity in various fields, ranging from aerospace and transporta-
tion to environmental science, geophysics, agriculture, and
communication. The attracting features of UAVs including
flexibility, maneuverability, low cost and high mobility make
them widely applicable. Example UAV applications include
environmental monitoring [1], precision agriculture [2], land
assessment [3] and emergency response [4], to name a few.
To realize these applications, one of the key steps is path plan-
ning, which aims to design the path for the UAV such that,
by following this path, the UAV will successfully complete
the mission while satisfying mission-specific requirements
(e.g., complete the mission with the minimum time).

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Depending on the missions, UAV path planning can be
formulated as different problems, most of which fall into one
of the following three categories:

1) Shortest Path Planning Problem: This type of prob-
lems aims to find the optimal path from the UAV’s
present location to a desired future location such
that the travel cost (e.g., measured by travel time,
travel distance or energy consumption) is minimized
and the constraints (e.g., collision avoidance and
mission-related constraints) are satisfied. It emerges in
almost all UAV applications, and can be considered as
a sub-problem of the other two types of path planning
problems described below.

2) Traveling Salesman Problem (TSP): This type of prob-
lems seeks the optimal path that traverses a set of
target locations with the minimum travel cost. Exam-
ple missions include package delivery and data col-
lection. When a fleet of UAVs with limited capacity
are aimed to fulfill the demands of a set of spatially
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distributed customers, the planning for these UAVs’
paths, which is a variant of the TSP, is often called
the Vehicle Routing Problem (VRP), or also known as
the vehicle scheduling, truck dispatching or delivery
problem.

3) Coverage Path Planning (CPP) Problem: This type of
problems aims to find the optimal path that leads to full
coverage of a region by the UAV’s sensor footprint.
Example missions include 2D and 3D mapping, land
assessment, crop monitoring, etc.

In this paper, we consider a new path planning problem
that seeks the optimal coverage path for multiple separated
regions. This problem arises in many UAV applications.
For instance, when disaster happens, multiple regions may
need damage assessment. In precision agriculture, the crops
that need fertilization may occupy multiple areas. In search
and rescue missions, the possible active areas of the targets
may be spatially distributed over different locations. Besides
UAVs, many other robots applications may also encounter
this problem, such as lawn mowing, room cleaning and
infrastructure inspection.

This multi-regional coverage path planning problem can be
considered as an integration of the TSP and CPP problems,
where determining the optimal visiting order for the set of
target regions can be formulated as a TSP and finding the
optimal path to fully cover each region is a CPP problem.
However, this integrated TSP and CPP problem, named as
TSP-CPP here, is much more challenging than TSP or CPP
alone, as the optimization of the region visiting order (a TSP)
is interleaved with the optimization of the coverage path for
each region (a CPP problem), both of which are impacted
by the entrance and exit locations in each region. Therefore,
to obtain the optimal multi-regional coverage path, the region
visiting order, intra-regional coverage path, and the entrance
and exit locations at each region should be jointly optimized
and cannot be considered separately.

To the best of our knowledge, the TSP-CPP problem
has not been systematically studied. In our initial investi-
gation [5], we studied rectangular regions and introduced
two exact approaches, which are proved to be optimal under
mild assumptions. In this paper, we conduct a more sys-
tematic investigation on the TSP-CPP problem, with math-
ematical formulation provided.1 The main contributions are
summarized as follows:

• A Dynamic Programming based Exact Approach for
TSP-CPP: We develop a dynamic programming (DP)
based exact approach to solve the TSP-CPP problem,
which is proved to be able to find the (near) optimal
tour. This DP-based approach uses a new CPP method
to generate a set of candidate paths for covering each
region that are likely to yield optimal tours.

• Optimality and Complexity Analyses:We conduct com-
prehensive theoretical analyses on the optimality and

1This paper was presented in part at the AIAA Scitech 2019 Forum [6].

complexity of the proposed CPP method and the
DP-based exact approach for TSP-CPP.

• An Efficient Heuristic Approach for TSP-CPP: As the
DP-based approach is not scalable with the number of
regions, we further develop a heuristic approach that can
generate high-quality tours very efficiently.

• Extensive Simulation Studies: We conduct extensive
simulation studies to evaluate the proposed approaches
from different aspects. The results demonstrate the opti-
mality and efficiency of the proposed approaches.

In the rest of this paper, we first review the literature on
path planning in Section II. We then formulate the TSP-CPP
problem to be investigated mathematically in Section III.
To solve the TSP-CPP problem, we first describe a CPP
method for covering a single convex polygonal region in
Section IV, based on which, we then introduce the DP-based
exact approach for TSP-CPP in Section V and the heuristic
approach in Section VI. After that, we conduct extensive sim-
ulation studies to evaluate the performance of the proposed
approaches in Section VII, and finally conclude the paper in
Section VIII.

II. RELATED WORK
In this section, we review typical approaches to solve the
three types of path planning problems: shortest path planning
problem, TSP/VRP and CPP. The current research status on
the study of the TSP-CPP problem will also be discussed at
the end.

A. SHORTEST PATH PLANNING PROBLEM
The typical approaches to solve the shortest path plan-
ning problem include the 1) grid-based approaches, such
as Dijkstra’s algorithm [7], A* [8], D* [9], and Phi* [10];
2) sampling-based approaches, such as rapidly exploring
random tree [11], probabilistic roadmap [12], and expansive
space trees [13]; 3) evolutionary algorithms, such as genetic
algorithm (GA) [14], [15], ant colony optimization [16] and
particle swarm optimization [17], [18]; and 4) optimization
algorithms, such as mixed-integer linear programming [19].

The grid-based approaches are resolution-complete, but
are computationally expensive for high-dimensional complex
problems [20]. The sampling-based approaches are usually
more efficient and have demonstrated their advantages in
solving high-dimensional problems. In addition, they are
probabilistic complete as they guarantee to find a feasible
solution when it exists [20], [21]. The evolutionary algo-
rithms can also solve high-dimensional problems efficiently,
but can easily be trapped in local optima. The optimization
algorithms are deemed to find (near) optimal solutions. The
vehicle’s physical dynamics can also be incorporated to for-
mulate path planning as an optimal control problem [22].
However, these approaches encounter the same challenge as
the grid-based approaches when the problem dimension is
high. To learn more about shortest path planning approaches,
readers can refer to the survey articles, e.g., [20], [21], [23].
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B. TSP/VRP
The TSP is a classical combinatorial optimization problem
that has been well studied [24]. Typical exact methods that
guarantee of finding optimal solutions include the branch-
and-bound [25], branch-and-cut [26], cutting plane [27], and
DP [28]. Among these methods, the branch-and-bound is
convenient for TSP of 40 to 60 nodes [29]. The branch-
and-cut can solve large-scale TSP of up to 2000 nodes [29].
The DP is feasible for TPS of up to 17 nodes [28].
To improve computational efficiency, non-exact methods that
offer sub-optimal solutions have also been explored. Typical
non-exact methods include the NN [30], 2-Opt [30], GA [31],
simulated annealing [32], [33] and neural network [34]. More
thorough overviews of different TSP techniques can be found
in survey articles, e.g., [29], [35], [36]. A generalization
of TSP to multiple salesmen, known as MTSP, is surveyed
in [37]. TSP with time windows (TSPTW) is another popular
variant of TSP, which restricts the salesman to visit each
target location within a particular time window. Reviews of
existing solutions for TSPTW can be found in [38]–[40] and
the references therein.

The VRP, an extension of TSP, plays a central role in
physical distributions and logistics transportation. The VRP
with time window [41]–[43] and capacitated VRP [44], [45]
are the two most typical variations of VRP that have been
extensively studied [46]. Of interest, article [47] studies the
drone delivery problem and takes the unique features of
drones including limited flight range and carrying capac-
ity into the consideration. To solve this class of problems,
a wealth of exact and heuristic approaches exist (see, for
example, the surveys in [37], [48], [49]), and many of
them are directly derived from the procedures for solving
TSP [49].

C. CPP
Based on whether full coverage can be provably achieved,
the CPP methods can be classified into two categories: 1) the
heuristic or randomized approaches and 2) the complete
approaches [50]. The heuristic or randomized approaches are
simple to implement, but take a long time to achieve full
coverage. Many floor-cleaning robots [51] rely on this type
of approaches. The complete approaches are advantageous in
that they provide full-coverage guarantee. A two-step proce-
dure is often adopted by this type of approaches to achieve full
coverage. In particular, the first step decomposes the target
region into a set of sub-regions (or called cells) by cellu-
lar decomposition. Typical cellular decomposition methods
include the Trapezoidal decomposition [52], Boustrophedon
decomposition [53] and Morse decomposition [54]. The sec-
ond step searches for the optimal path to traverse and cover
all cells. Typical search algorithms include the grid-based
wavefront algorithm [55], the spiral-spanning tree coverage
algorithm [56], and the backtracking spiral algorithm [57].
More comprehensive surveys of existing CPP methods can
be found in [50], [58].

D. TSP-CPP
The TSP-CPP problem integrates the TSP and CPP problems,
but further requires the optimization of the entrance and exit
locations in each region, which impact both the region visit-
ing order (a TSP) and intra-regional coverage paths (a CPP
problem). Hence, it cannot be solved by a direct extension
of existing TSP or CPP approaches, and the region visiting
order, intra-regional coverage paths, and the entrance and
exit locations at each region should be considered together
to derive optimal paths.

Comparedwith other path planning problems, the TSP-CPP
problem has been rarely studied in the literature. After our
earlier results on TSP-CPP [5] was published in June 2018,
a heuristic approach for TSP-CPP, called the two steps path
planning (TSPP) was developed [59]. This approach first
determines the visiting order for the regions using their
centroids, and then plans the coverage path for each region.
Although simple, this heuristic approach ignores the con-
nections between region visiting order and intra-regional
coverage paths, and thus produce sub-optimal paths.

III. PROBLEM FORMULATION
In this section, we describe the TSP-CPP problem to be
investigated and provide a mixed integer programming for-
mulation for this problem.

A. PROBLEM DESCRIPTION AND ASSUMPTIONS
Consider the scenario where a UAV equipped with a down-
ward facing camera is initially located at a depot with Carte-
sian coordinate v0. It is then dispatched to survey, assess or
monitor a set of N separated and spatially distributed convex
polygonal regions, with each region i described by a set of
vertices with known coordinates (vi1, vi2, . . . , vimi ) = Vi,
where vij is the coordinate of the j-th vertex of region i and
mi is the number of vertices. Note that for non-convex polyg-
onal regions, polygon decomposition [60] can be applied to
decompose the regions into a set of convex polygons, each of
which can then be regarded as a target region.

Suppose there are no exclusion zones that are forbidden
from visiting in the target regions. At the end of the task,
the UAV is required to return back to the same depot. Suppose
the UAV flies at a constant speed and at the same altitude,
so the task can be described in a 2-dimensional space. The
size of the camera footprint (area of ground captured in a
frame) is l × w (see Fig. 1), where the length l and width
w of the footprint are determined by the altitude of the UAV
and features of the camera [61]. Assume that the UAV has
sufficient power to complete the task. The objective of the
TSP-CPP problem considered here is thus to find the optimal
tour2 that starts and ends at the depot, such that the UAV’s
camera footprints along the path will cover each target region
completely and the total travel cost is minimized.

For some UAV missions, such as 3D mapping, overlap-
ping between consecutive images is required. This can be

2A tour is a feasible solution to the TSP-CPP problem.
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FIGURE 1. Camera footprint of the UAV.

achieved by restricting the distance between adjacent flight
paths [61], [62]. Here, we consider missions that do not
require image overlapping, such as crop fertilization, dam-
age assessment, and land monitoring. However, approaches
developed in this paper can be easily modified to address the
needs of other survey missions.

Depending on the type of the UAV, additional constraint on
the shape of the path may need to be introduced. For instance,
the fixed-wing UAV cannot make abrupt directional changes,
and its turn radius should be larger than a certain threshold to
ensure safety.3 This can be achieved by designing the UAV’s
turning curves as the Dubin’s path [64], [65]. In this study,
we consider multirotor UAVs that can make sharp turns with
arbitrary turn radius, which will significantly increase the
flexibility of the path design.

B. NOTATIONS
To formulate the TSP-CPP problem mathematically, let’s
first introduce a few notations. To describe the intra-regional
coverage path, we let Si = {sip} be a set of Cartesian
coordinates in region i ∈ [N ], such that by visiting these
locations, the UAV will cover the whole region completely,
where p ∈ [ni], ni = |Si| is the cardinality of set Si and
[n] = {1, 2, . . . , n}, n ∈ Z+. To capture the visiting order
of locations in Si, let yipq be a decision variable such that
yipq = 1 if the UAVmoves from location sip to location siq and
yipq = 0 otherwise, where p, q ∈ [ni]. Actually p, q depend on
i and are supposed to be pi and qi rigorously. For simplicity,
we use p, q to denote pi and qi when there is no confusion.
In the special case when region i can be fully covered by the
UAV’s camera footprint, ni = 1 and si1 is the centroid of the
region.

To describe the entrance location in region i, we introduce
decision variable eip, such that e

i
p = 1 if the UAV enters region

i from location sip, and eip = 0 otherwise, where p ∈ [ni].
Similarly, we introduce decision variable t ip to describe the
exit location in region i, such that t ip = 1 if the UAV exits
region i from location sip, and t ip = 0 otherwise. In the special
case when ni = 1, we have ei1 = t i1 = 1. Otherwise, when
ni > 1, we have eip + t

i
p ≤ 1, ∀p ∈ [ni], i.e., the UAV won’t

3The minimum safe turn radius of a fixed-wing is determined by its
mechanical structure [63]

exit a region from the entrance location, which will lead to a
longer tour.

To capture the visiting order for target regions, we let xij,
i, j ∈ [N ]∪{0}, be a decision variable, such that xij = 1 if the
UAV moves from region (or depot) i to region (or depot) j,
and xij = 0 otherwise, where i = 0 refers to the depot.

C. MIXED INTEGER PROGRAMMING FORMULATION
With the notations defined above, a tour that originates and
ends at the depot and covers all regions can be described
by Si, yipq, e

i
p, t

i
p, i ∈ [N ], p, q ∈ [ni], and xij, i, j ∈ [N ] ∪ {0}.

Its total travel cost J can be calculated by

J =
N∑
i=1

N∑
j=1,j6=i

ni∑
p=1

nj∑
q=1

xijt ipe
j
qd(sip, sjq)

+

N∑
i=1

ni∑
p=1

ni∑
q=1,q6=p

yipqd(sip, siq)

+

N∑
i=1

ni∑
p=1

x0ieipd(v0, sip)+
N∑
i=1

ni∑
p=1

xi0t ipd(sip, v0)

where function d(sip, sjq) calculates the travel cost from
location sip to location sjq. Here we adopt the Euclidean
distance to measure the travel cost. In the above cost function,
the first two terms evaluate the total travel cost for inter- and
intra-regional movements, respectively. The last two terms
calculate the travel cost for moving from the depot to the first
region in the tour and from the last region back to the depot,
respectively.

To ensure that the tour is valid, the following constraints
can be introduced:

N∑
j=0, j6=i

xij = 1, ∀i ∈ [N ] ∪ {0} (1)

N∑
i=0, i6=j

xij = 1, ∀j ∈ [N ] ∪ {0} (2)

ni∑
q=1,q6=p

yipq = 1− t ip, ∀i ∈ [N ], p ∈ [ni] (3)

ni∑
p=1,p6=q

yipq = 1− eiq, ∀i ∈ [N ], q ∈ [ni] (4)

ni∑
p=1

eip = 1,
ni∑
p=1

t ip = 1, ∀i ∈ [N ] (5)

∑
i,j∈M1

xij ≤ |M1| − 1,

∀M1 ⊂ [N ] ∪ {0}, 2 ≤ |M1| ≤ N − 1 (6)∑
p,q∈M2

yipq ≤ |M2| − 1,

∀i ∈ [N ],M2 ⊂ [ni], 2 ≤ |M2| ≤ ni − 2 (7)

xij ∈ {0, 1}, ∀i, j ∈ [N ] ∪ {0} (8)

yipq, e
i
p, t

i
p ∈ {0, 1}, ∀i ∈ [N ], p, q ∈ [ni] (9)
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eip + t
i
p ≤ 1, ∀i ∈ [N ], ni > 1, p ∈ [ni] (10)

In the above constraints, (1)-(2) ensure each region is
surveyed by the UAV exactly once. Constraints (3)-(4) ensure
each location sip ∈ Si in region i is visited exactly once.
Constraint (5) guarantees that there is only one entrance and
one exit in a region and hence only one way to connect two
regions. Constraints (6)-(7) eliminate sub-tours and maintain
the continuity of the tour [66]. The last three constraints are
introduced to ensure the decision variables take valid values.

The TSP-CPP problem can then be expressed as

min
Si,yipq,e

i
p,t

i
p,∀i∈[N ], p,q∈[ni]

xij,∀i,j∈[N ]∪{0}

J

subject to: constraints (1)-(10) (11)

Note that the TSP-CPP problem is reduced to a TSP when
ni = 1 for all i ∈ [N ] (each region can be fully covered
by UAV’s camera footprint at the centroid of the region) or
a CPP problem when N = 1 and ni > 1 (there is a single
region to visit and this region is larger than the UAV’s camera
footprint).

D. DISCUSSIONS
The TSP-CPP problem formulated in Eq. (11) cannot be
directly solved, as there are infinite number of possible
choices of Si for each region i. To address this challenge,
a straightforward way is to first determine the set Si by
decomposing each region into a set of grid cells smaller
than or equal to the UAV’s camera footprint. The centroids
of the grid cells constitute Si, which will lead to full cov-
erage of region i if each centroid is visited by the UAV.
With Si obtained for each region, the TSP-CPP problem
formulated in Eq. (11) can then be solved using mixed inte-
ger programming solvers. Furthermore, if we relax the con-
straints (1), (2), (5), (6) and (10) to allow UAV to enter or exit
a region for multiple times, decomposing regions into grids
reduces the TSP-CPP problem to a TSP [5], which can then
be solved by methods reviewed in Section II.

Although the aforementioned grid-based approach can
generate optimal tours if each grid cell exactly matches the
UAV’s camera footprint, which can be proved based on our
previous study [5], it is computationally expensive to use.
In particular, its computational cost grows exponentially with
the increase of the region size or the number of regions. In the
following sections, we propose more efficient solutions to
the TSP-CPP problem, which adopt paths of back-and-forth
pattern to simplify the tour design.

IV. BACK-AND-FORTH COVERAGE PATH PLANNING FOR
A SINGLE REGION
In this section, we introduce a simple CPPmethod that gener-
ates paths of back-and-forth pattern for covering a single con-
vex polygonal region, as a step towards solving the TSP-CPP
problem efficiently.

The back-and-forth pattern [53], [67] is widely adopted by
many CPP methods, as it greatly simplifies the path design

FIGURE 2. A BFP (red line) that covers a hexagonal region. The LOS are
represented by dashed blue lines.

and is easy to implement. Given a convex polygonal region,
the back-and-forth path (BFP) that covers this region can be
found by a set of parallel lines of support (LOS), as illustrated
in Fig. 2. The distance between the LOS that intersect the
region at a single vertex or edge is called the span of the
region. Here we refer to the path segments along the direction
of the LOS as the flight lines. The line sweep direction is
defined as the direction perpendicular to the flight lines and
pointing towards the moving direction of the UAV.

As the line sweep direction is a key factor that impacts the
length of the derived BFP, in the rest of this section, we first
describe how to generate the BFP given a particular line
sweep direction, and then discuss how to select the line sweep
direction. After that, we summarize the procedures of the
proposed CPP method and end this section with theoretical
analyses on the performance of the proposed method.

A. GENERATION OF BACK-AND-FORTH PATHS
Given the line sweep direction, the span of a region, denoted
asW , can be determined. Theminimumnumber of flight lines
required to fully cover this region is thus dWw e, where w is the
width of UAV’s camera footprint, indicating the maximum
distance between two adjacent flight lines.4

To find the BFP, we first perform cellular decomposition to
decompose the region into a set of sub-regions along the line
sweep direction. We then construct rectangular cells that just
cover sub-regions as illustrated in Fig. 3. In order to obtain
steady high-resolution images, which requires the distance
among flight lines to be constant, and to ensure full coverage
while minimizing the path length, we set the width of the first
and last cells to w and the width of intermediate cells to w+d

2 ,
where

d =
W − w
dW/we − 1

is the distance between two adjacent flight lines. The shortest
flight line that is parallel to the LOS and fully covers each
cell can then be found, which has end-points min{ l2 ,

l′
2 } away

from cell edges along the line sweep direction, where l ′ is the
length of the cell. Note that the flight lines in the first and

4In case when overlapping between consecutive pictures is required in
missions like 3D mapping, the minimum number of flight lines should be
d

W
w(1−r) e, where r represents the overlapping percentage.
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FIGURE 3. A BFP obtained at line sweep direction α.

last cells are w
2 away from the region’s edges that are along

the direction of LOS (see Fig. 3). In the special case when
d
W
w e = 1, only one cell of widthW exists. The derived flight

line is thus W
2 away from cell edges along the direction of

LOS. With the flight lines, the BFP can finally be generated
by connecting the flight lines in adjacent cells in such a way
that the path segments in any two adjacent cells point toward
opposite directions. The start and end points of the BFP are
the locations from which the UAV will enter and exit the
region, respectively.

B. SELECTION OF LINE SWEEP DIRECTION
It is shown in [68] that for a path of fixed length, the travel
time and energy consumption will grow when the number
of turns increases, as the UAV has to change its speed to
make a turn. The line sweep direction that leads to the least
number of turns is thus desired, which happens when the span
W is minimized, as the number of turns of a BFP equals to
2(dWw e−1). According to [68], the minimum span of a convex
polygonal region, defined as the width of the region, only
appears when the line sweep direction is perpendicular to one
of the region’s edges.

Although we are able to find the BFP with the minimum
number of turns, it may not lead to the optimal TSP-CPP
tour, because the tour is not only impacted by intra-regional
BFPs, but also impacted by the region visiting order and the
entrance and exit locations (start and end points of the BFPs).
To address this issue, we consider all BFPs that have line
sweep directions perpendicular to the region’s edges.
Proposition 1: Consider a convex polygonal region. Let W

and L be the span of the region derived using LOS parallel
to and perpendicular to an edge of the region, respectively.
Then the number of possible BFPs with line sweep direction
perpendicular to this edge is

1, if d
W
w
ed
L
l
e = 1

2, if d
W
w
e = 1 or d

L
l
e = 1

4, else

Proof: When dWw ed
L
l e = 1, the region can be fully

covered by visiting the centroid of the region, leading to 1

FIGURE 4. Possible BFPs with line sweep directions perpendicular to the
bottom edge of a hexagonal region.

possible BFP. When dWw e = 1 (or dLl e = 1), the region
can be fully covered by a single rectangular cell with width
(or length) no larger than w (or l), leading to 2 possible
BFPs that traverse the same set of waypoints in reverse order.
In other cases, as shown in Fig. 4, there are two possible line
sweep directions that are perpendicular to the edge and two
possible BFPs for each line sweep direction, thus leading to
4 possible BFPs.

C. BACK-AND-FORTH COVERAGE PATH PLANNING
ALGORITHM
Consider a convex polygonal region with its vertices V =
(v1, v2, . . . , vm) ordered in counter-clockwise. Algorithm 1
summarizes the procedures to generate all BFPs with line
sweep directions perpendicular to the region’s edges. In par-
ticular, for each edge, we first check whether parallel edge
exists and has been examined (Lines 2-3). If not, we then
calculate the span of the edge (Line 5) and the distance
among flight lines (Lines 6-9). After that, we apply the
FINDWAYPOINTS() function described in Algorithm 2 to
identify the set of waypoints to be visited by the UAV
(Lines 10), and finally generate all possible BFPs for this edge
(Lines 11-12).

D. PERFORMANCE ANALYSIS
In this section, we analyze the performance of the back-
and-forth CPP (BF-CPP) algorithm (Algorithm 1) from
the aspects of full coverage guarantee, optimality, and
complexity.

1) COVERAGE ANALYSIS
Lemma 1: Given a convex polygonal region and the

size of UAV’s camera footprint, all BFPs generated by the
BF-CPP algorithm (Algorithm 1) guarantee full coverage of
the region.

Proof: As each rectangular cell fully covers the corre-
sponding sub-region and each flight line ensures full cov-
erage of the corresponding rectangular cell, the BFPs that
are derived by connecting flight lines for all sub-regions
guarantee full coverage of the whole region.
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Algorithm 1 BF-CPP(V , l, w)
Input: Vertices of a region V = (v1, v2, . . . , vm),

size of UAV’s camera footprint l × w
Output: BFPs B

1 for i← 1 to m− 1 do
2 if there exists an edge vjvj+1, j ∈ [i− 2], parallel

to edge vivi+1 then
3 Continue;
4 else
5 Find the span of edge vivi+1 by W = max

j∈[m]
uj,

where uj is the distance between edge vivi+1
and vertex vj;

6 if dWw e = 1 then
7 d ← 0;
8 else
9 d ← W−w

dW/we−1 ;

10 S ← FINDWAYPOINTS(W , d , vivi+1, l, w);
11 Link points in S to generate all possible

BFPs;
12 B← {B,BFPs};

13 return B.

Algorithm 2 FINDWAYPOINTS(W , d , vivi+1, l, w)
Input: Edge vivi+1, span W , cell width d , size of

UAV’s camera footprint l × w
Output: Waypoints S

1 S ← ∅;
2 if dWw e > 1 then
3 Perform cellular decomposition to decompose

the region into dWw e sub-regions, with the width
of the first and last sub-regions to be w and the
width of intermediate sub-regions to be w+d

2 ;

4 Construct rectangular cells for each sub-region;
5 foreach cell k ∈ {1, 2, . . . , dWw e} do
6 lk ← length of cell k;
7 if dWw e = 1 then
8 Find the flight line that is W

2 away from cell
edges parallel to vivi+1 and min{ l2 ,

lk
2 } away

from cell edges perpendicular to vivi+1;
9 else if k = 1 or k = dWw e then

10 Find the flight line that is w
2 away from the

cell edge parallel to vivi+1 and intersecting
the region at its vertex or edge, and
min{ l2 ,

lk
2 } away from cell edges

perpendicular to vivi+1;
11 else
12 Find the flight line that is d

2 away from cell
edges parallel to vivi+1, and min{ l2 ,

lk
2 } away

from cell edges perpendicular to vivi+1;

13 S ← {S, end point(s) of the flight line};

14 return S.

2) OPTIMALITY ANALYSIS
Lemma 2: Given a convex polygonal region and the size of

UAV’s camera footprint, the BFPs generated by the BF-CPP
algorithm (Algorithm 1) includes the optimal path that has
the minimum number of turns.

The proof of Lemma 2 is straightforward according to the
discussions in the previous subsection and is thus omitted
here.
Lemma 3: Consider a rectangular region of size L1 × L2.

Given the size of UAV’s camera footprint l × w, the BFPs
generated by the BF-CPP algorithm (Algorithm 1) includes
the shortest path to cover this region, whose length is
min{dL1w e(L2 − l)+ (L1 − w), d

L2
w e(L1 − l)+ (L2 − w)}.

Proof: According to Lemma 1 in [5], we can eas-
ily derive that the shortest travel distance for the UAV to
cover the rectangular region is min{dL1w e(L2 − l) + (L1 −
w), dL2w e(L1− l)+(L2−w)}. This occurs when the line sweep
direction of the BFP is perpendicular to the edges of length
L1 if dL1w e(L2 − l) + (L1 − w) < dL2w e(L1 − l) + (L2 − w),
or edges of length L2 otherwise.
Remark: For non-rectangular regions, the BF-CPP algo-

rithm performs well in generating short BFPs with minimum
number of turns, but cannot guarantee the shortest coverage
paths.

3) COMPLEXITY ANALYSIS
Let’s now analyze the computational complexity of the
BF-CPP algorithm (Algorithm 1). Note that for each edge of
the region, it takes O(m) amount of time to compute the span
W of the edge (Line 5), and O(dWw e) amount of time to find
BFPs (Lines 6-12). The complexity of the BF-CPP algorithm
is thus

O(m2
+ mWmax),

where m is the number of vertices andWmax is the maximum
span of the region. Note that m and Wmax characterize the
shape and area of the region.

V. A DP-BASED EXACT APPROACH FOR TSP-CPP
With BF-CPP, which generates a set of candidate paths to
cover a region, we are now ready to solve the TSP-CPP prob-
lem. In this section, we introduce an exact approach, which
adopts the dynamic programming (DP) algorithm [69]. In the
following, we first describe the key idea of the DP-based
TSP-CPP approach, with pseudocode provided.We then con-
duct theoretical analysis on the performance of the proposed
approach.

A. ALGORITHM DESCRIPTION
Suppose the UAV covers each region i by following one
of the BFPs generated by the BF-CPP algorithm and we
denote the set of all BFPs as Bi. Let bij be the j-th possible
BFP, where j ∈ [|Bi|] and |Bi| is the cardinality of set Bi.
Denote the first and last waypoints in path bij as b

(1)
ij and b(e)ij ,

respectively, which are also the candidate locations to enter
and exit region i. Now let T ⊆ [N ] be a non-empty subset of
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target regions, and define D(T , i, j), i ∈ T , j ∈ [|Bi|], as the
travel cost of the optimal path that starts at the depot and fully
covers each region in T , with region i being the last region
in the path and bij being the j-th coverage path for region i.
Under these definitions, the optimal tour to cover all regions
can then be found by minimizing D([N ], i, j) + d(b(e)ij , v0),

where d(b(e)ij , v0) is the travel cost to depart from the last
region i back to the depot. This new objective function allows
us to find the optimal tour recursively.

To calculate the value of D(T , i, j), we consider the path
that ends at the region visited prior to region i. In particular,
suppose the UAV visits region k ∈ T by following path bkh ∈
Bk prior to region i. Therefore, D(T , i, j) can be computed
by adding three parts: 1) D(T \ {i}, k, h), 2) the cost to travel
from region k to region i, i.e., d(b(e)kh , b

(1)
ij ), and 3) the travel

cost of path bij. As k can be any region in set T \ {i} and bkh
can be any path in set Bk , D(T , i, j) is solved by considering
all k ∈ T \{i} and all h ∈ [|Bk |] for each k . The mathematical
formulation of D(T , i, j) is then given by
D(T , i, j)

=



∞, if i /∈ T

d(v0, b
(1)
ij )+ g(bij), if T = {i}

min
k∈T\{i}
h∈[|Bk |]

D(T \ {i}, k, h)

+d(b(e)kh , b
(1)
ij )+ g(bij), else

(12)

where function g(bij) computes the travel cost of path bij.
Algorithm 3 provides the pseudocode of the proposed

DP-based exact approach for TSP-CPP. In particular,
the BFPs for each region are first generated using BF-CPP
(Lines 1-5). DP is then performed to search for the optimal
tour (Lines 6-17). Table P in Lines 5 and 15 is used to track
the locations along the path.

B. PERFORMANCE ANALYSIS
In this section, we first prove in Theorem 1 the optimality of
the proposed DP-based exact approach and then analyze its
computational complexity.

1) OPTIMALITY ANALYSIS
Theorem 1: Consider the TSP-CPP problem formulated

in Eq. (11) and assume that the UAV can only choose from
the BFPs generated by the BF-CPP algorithm (Algorithm 1)
to cover each region. The tour found by the DP-based exact
approach (Algorithm 3) is optimal.

Proof: The optimality of the DP-based approach can be
proved by induction [28]. In particular, for any collection of
regions T , as D(T , i, j) calculated in each recursion step is
the travel cost of the optimal path that fully covers all regions
in T , and ends at region i with bij as the path adopted for
covering region i, Lines 16-17 in Algorithm 3 find the optimal
tour with the minimum travel cost to cover all regions.

2) COMPLEXITY ANALYSIS
Let’s now analyze the computational complexity of the pro-
posed DP-based exact approach for TSP-CPP (Algorithm 3).

Algorithm 3 EXACT(v0, V , l, w)
Input: Depot v0, vertices of all regions

V = (V1,V2, . . . ,VN ), size of UAV’s camera
footprint l × w.

Output: Tour τ ∗, travel cost J∗.
1 for i← 1 to N do
2 Bi← BF-CPP(Vi, l, w);
3 for j← 1 to |Bi| do
4 D({i}, i, j)← d(v0, b

(1)
ij )+ g(bij) ;

5 P({i}, i, j)← (v0, bij) ;

6 for t ← 2 to N do
7 foreach T ⊆ [N ] where |T | = t do
8 foreach i ∈ T do
9 for j← 1 to |Bi| do
10 foreach k ∈ T − {i} do
11 for h← 1 to |Bk | do
12 dist ← D(T \ {i}, k, h)+

d(b(e)kh , b
(1)
ij )+ g(bij);

13 if dist < D(T , i, j) then
14 D(T , i, j)← dist;
15 P(T , i, j)← (bkh, bij);

16 J∗← min
i∈[N ],j∈[|Bi|]

D([N ], i, j)+ d(v0, b
(e)
ij );

17 Backtrack over arcs in table P to derive the optimal
tour τ ∗;

18 return τ ∗, J∗.

Let mi and Wmax
i be the number of edges and the max-

imum span of region i, respectively. As the complexity
of Algorithm 1 is O

(
m2
i + miW

max
i

)
for each region i,

it takes O
(∑N

i=1m
2
i + miW

max
i

)
amount of time to process

Lines 1-5.
Furthermore, it can be derived that it takes O

(∑N
t=2∑

T⊆[N ],|T |=t

∑
i∈T

∑
k∈T\{i}

|Bi||Bk |
)

amount of time to process

Lines 6-15. To simplify this expression, let m̂ = max
i∈[N ]

mi

and Ŵ = max
i∈[N ]

Wmax
i . As |Bi| ≤ 4mi ≤ 4m̂

according to Proposition 1, the complexity of Lines 6-15
can be simplified to O

(
16m̂2∑N

t=2 t(t − 1)
(N
t

))
=

O
(
4m̂2(N 2

− N )2N
)
= O

(
m̂2N 22N

)
. As the minimum

cost in Line 16 can be computed in O
(∑N

i=1 log |Bi|
)
=

O
(
N log m̂

)
amount of time, the complexity of the DP-based

approach is thus O(
∑N

i=1(m
2
i + miWmax

i ) + m̂2N 22N+
N log m̂), which can further simplified to

O
(
m̂N 2Ŵ + m̂2N 22N

)
.

This indicates that the DP-based approach scales well with
respect to the region size, characterized by m̂ and Ŵ ,
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Algorithm 4 HEURISTIC(v0, V , l, w)
Input: Depot v0, vertices of all regions V , size of UAV’s

camera footprint l × w
Output: Tour τ ∗, travel cost J∗

1 for i← 1 to N do
2 ci← centroid of region i;
3 Bi← BF-CPP(Vi, l,w);

4 c0← v0, c← (c0, c1, . . . , cm), B← (B1, . . . ,Bm);
5 (τ , o)← INITIALIZATION(c,B);
6 τ ∗← IMPROVETOUR(τ , o, c,B);
7 J∗← g(τ ∗);
8 return τ ∗, J∗.

but suffers from the curse of dimensionality with respect to
the number of regions, N .

VI. A HEURISTIC APPROACH FOR TSP-CPP
While the DP-based exact approach generates (near) optimal
tours, it is not scalable with the number of regions. To address
large-scale TSP-CPP problems,more efficient approaches are
desired. In this section, we introduce an innovative heuristic
approach for TSP-CPP, which generates high-quality tours
very efficiently.

Our heuristic approach solves the TSP-CPP problem by
performing two steps: 1) initialization that initializes the tour
and 2) tour improvement that iteratively improves the tour
until convergence. The procedures of the proposed approach
are summarized in Algorithm 4. Next, let’s describe each step
in more detail.

A. INITIALIZATION
The first step aims to quickly initialize the tour. A straight-
forward way is to generate a random tour, which however
may cause the convergence of the tour improvement step to
be very slow. Another approach is to apply the two steps
path planning (TSPP) algorithm [59], which first uses genetic
algorithm (GA) [31] to find the visiting order for the regions,
with each region regarded as a point located at the centroid of
the region. It then finds the coverage path of back-and-forth
pattern for each region, with the start and end locations being
the centroids of the regions to be visited right before and right
after the current region, respectively. Although the TSPP is
simple to implement and performs well for small number of
regions, it may take a long time to generate a good tour when
the number of regions is large.

To achieve higher efficiency, we propose a modified
nearest neighbor (NN) algorithm with pseudocode pro-
vided in Algorithm 5. In this algorithm, the NN [70] is
first applied to determine the region visiting order based
on regions’ centroids, which finds NN paths for multi-
ple starting points and returns the best of those paths
(Lines 1-11). After that, the complete tour to fully cover all
regions is determined using function FINDTOUR() described
in Algorithm 6 (Line 12), which selects the best BFP for each

Algorithm 5 INITIALIZATION(c, B)
Input: Region centroid c, BFPs B
Output: Tour τ , region visiting order o∗

1 for i← 0 to N do
2 oi(0)← i;
3 h← i;
4 W ← {0, 1, 2, . . . ,N } \ {h};
5 for k ← 1 to N do
6 j← argmint∈W d(ch, ct );
7 oi(k)← j;
8 W ←W \ {j};
9 h← j;

10 o∗← argmin
i∈{0,1,...,N }

g(oi);

11 τ ← FINDTOUR(o∗, c,B);
12 return τ , o∗.

Algorithm 6 FINDTOUR(o, c, B)
Input: Region visiting order o, region centroids c,

BFPs B
Output: Tour τ

1 Sort o without changing the region visiting order to
make o(0) = 0;

2 τ ← {v0};
3 for t ← 1 to N do
4 i← o(t);
5 if t < N then
6 k ← o(t + 1);
7 else
8 k ← 0;

9 bij←
argmin
h∈[|Bi|]

g(bih)+ d(τ (end), b
(1)
ih )+ d(b

(e)
ih , ck ),

where τ (end) is the last location in path τ ;
10 τ ← {τ , bij};

11 τ ← {τ , v0};
12 return τ .

region sequentially in the region visiting order, with the start
location being the depot and end location being the centroid
of the region to be visited next.

B. TOUR IMPROVEMENT
As the initialization step ignores the correlation between
region visiting order and intra-regional paths, the generated
tour may not be optimal. This issue is especially outstanding
when the problem scale is large. The tour improvement step
aims to resolve this issue to some extent by using a mod-
ified 2-Opt algorithm [30], [71] to improve the tour in an
iterative manner. In particular, at each iteration, we perform
a 2-Opt move to update the region visiting order, which
replaces two region-to-region links with two other links
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FIGURE 5. Region visiting order a) before and b) after applying a 2-Opt
move.

Algorithm 7 IMPROVETOUR(τ , o, c, B)
Input: Tour τ , region visiting order o, region

centroids c, BFPs B
Output: Improved tour τ ∗

1 τ ∗← τ ;
2 cost ←∞;
3 while g(τ ∗) < cost do
4 cost ← g(τ ∗);
5 for i← 0 to N − 1 do
6 for j← i+ 2 to N + 1 do
7 if d(co(i), co(i+1)) > d(co(i), co(j)) then
8 o′← o with links (o(i), o(i+ 1)) and

(o(j), o(j+ 1)) replaced with
(o(i), o(j)) and (o(i+ 1), o(j+ 1)),
respectively;

9 τ ′← FINDTOUR(o′, c,B);
10 if g(τ ′) < g(τ ) then
11 τ ∗← τ ′;

12 return τ ∗.

(see Fig. 5 for an illustration). With the new region visiting
order, we then use the FINDTOUR() function (Algorithm 6) to
find the corresponding tour, which is then used to update the
current tour if shorter in length. This procedure is repeated
until no more improvements are possible.

The original 2-Opt procedure evaluates all possible moves
for one that shortens the tour, which can make the search
very time consuming, especially when the problem scale is
large or the initial tour is far from optimal. To improve the
efficiency, we adopt a constraint proposed in [30] to reduce
the search space. Algorithm 7 provides the pseudocode of the
tour improvement step, where the constraint in Line 7 limits
the 2-Opt moves to be evaluated. It is worthy to note that this
constraint won’t exclude an improving move for TSP [30],
but this may not be the case for TSP-CPP, due to the influence
of intra-regional paths. Nevertheless, as we will show in the
simulation studies, this constraint significantly speeds up the
computation and only degrades the optimality slightly. For
convenience of reference, we name this NN- and 2-Opt-based
heuristic approach with constraint as Fast NN-2Opt, and the
one without constraint as NN-2Opt.

FIGURE 6. The BFPs (blue lines) generated by a) the proposed BF-CPP,
b) benchmark method 1, and c) benchmark method 2 to cover a
rectangular region. The area covered by the UAV is highlighted in orange.

VII. SIMULATION STUDIES
In this section, we conduct simulation studies to evaluate
the performance of the proposed approaches, including the
BF-CPP algorithm, DP-based exact approach for TSP-CPP
and the heuristic approach for TSP-CPP. All approaches are
implemented using MATLAB, and the experiments are con-
ducted on a Microsoft Surface Pro 7 with Intel Core i5, 8GB
memory and 256GB storage.

A. PERFORMANCE OF THE BF-CPP ALGORITHM
Lemmas 1 and 3 indicate that the BFPs generated by the
BF-CPP algorithm guarantee the full coverage with the short-
est tour in case of rectangular regions. In this study, we design
experiments to illustrate the capability of BF-CPP in dealing
with rectangular regions and also non-rectangular regions.

1) BENCHMARK CPP METHODS
For comparison, we also implement two benchmark methods
that adopt traditional cellular decomposition methods.

• Benchmark Method 1: This method decomposes a
region into cells of the same width equal to d = w. It is
adopted in TSPP [59].

• Benchmark Method 2: This method decomposes a
region into cells of the same width equal to d = W

dW/we .

For both benchmark methods, flight lines that are d
2 away

from cell edges along the direction of LOS and min{ l2 ,
l′
2 }

away from cell edges along the line sweep direction are found
to cover a given region, where l ′ is the cell length.

2) COVERAGE PATH PLANNING FOR A RECTANGULAR
REGION
In the first experiment, we consider a rectangular region of
size 15 × 10, with the size of UAV’s camera footprint set to
2.4 × 2.4. Fig. 6 shows the BFPs with upwards line sweep
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FIGURE 7. The BFPs found by a) the proposed BF-CPP; b) benchmark
method 1; and c) benchmark method 2 to cover a triangular region.

direction generated by the three CPP methods. As shown
in the figure, all three paths lead to complete coverage of
the region. Moreover, the path generated by our method
(Fig. 6(a)) has the shortest length of 70.6, leading to the
smallest covered area that exactly matches the region. The
first benchmark method (Fig. 6(b)) generates the longest path
of length 72.6, leading to the largest covered area. Of note,
in Fig. 6(b), the top flight line is outside of the region,
as the others are not sufficient to fully cover the region. For
the second benchmark method (Fig. 6(c)), it generates a path
of length 71 and has the covered area slightly larger than the
region.

3) COVERAGE PATH PLANNING FOR A NON-RECTANGULAR
REGION
As we mentioned before, for non-rectangular regions, our
BF-CPP algorithm may not be able to find the shortest BFPs.
To demonstrate this, we consider a triangular region of size
4.3×16.9×17.6 in this experiment. The size of UAV’s camera
footprint is still set to 2.4 × 2.4. The BFPs with downwards
line sweep direction generated by the three CPP methods are
shown in Fig. 7. Among them, the path generated by the
first benchmark method (Fig. 7(b)) has the shortest length
of 22.6802, and the one generated by the second benchmark
method (Fig. 7(c)) is the longest with length of 23.6854. The
length of the path generated by our method is 23.3703.

By comparing Fig. 7(b) and Fig. 7(a), we can find that,
the first benchmark method generates a shorter path because
its cells have a larger width than the ones defined in
our method, which cause the flight line in the small cell
in Fig. 7(b) much shorter than the one in Fig. 7(a), thus
leading a shorter BFP. Of note, this situation does not happen
when the region is a rectangle, as the cell width does not
impact the length of the flight lines for rectangular regions.
On the contrary, a larger cell width will lead to a larger dis-
tance between adjacent flight lines and thus longer coverage

FIGURE 8. The tours generated by the a) proposed DP-based approach
and b) TSPP. Shaded grey areas and the red triangle represent regions
and the depot, respectively.

paths for rectangular regions. This further explains the opti-
mality of our method in case of rectangular regions. More-
over, it is also worthy to note that although our method does
not guarantee the shortest BFP for non-rectangular regions,
it generates shorter tours, compared with benchmark meth-
ods, in most cases we have evaluated.

B. PERFORMANCE OF THE DP-BASED EXACT APPROACH
In this study, we investigate the performance of the DP-based
exact approach for TSP-CPP in terms of optimality and
efficiency.

1) OPTIMALITY STUDY
Theorem 1 points out that our DP-based approach can find the
optimal tour given that the UAV follows the BFPs generated
by the BF-CPP algorithm to cover the regions. In this study,
we design two experiments to demonstrate the optimality
of DP-based approach when its underlying assumption is
satisfied and also when the assumption is violated.
Experiment 1: The first experiment aims to demonstrate

the performance of DP-based approach when its underlying
assumption is satisfied. In this experiment, we consider five
convex polygonal regions distributed randomly around the
depot. The size of UAV’s camera footprint is set to 1.5 × 3.
For comparison, we also implement the TSPP [59], in which
we use DP to determine the region visiting order [28]. For
fairness, we also let the TSPP adopt BFPs generated by our
BF-CPP algorithm.

Fig. 8 visualizes the tours generated by the DP-based
approach and the TSPP, whose lengths are 117.9461 and
124.2275, respectively. The TSPP generates a longer tour,
because it considers the optimization of the region visiting
order and the optimization of intra-regional paths separately.
Of note, we also evaluated our heuristic approach. In partic-
ular, the NN-2Opt finds the same tour as the one generated
by the DP-based approach, and the Fast NN-2Opt generates
a slightly longer tour of length 123.207. More investiga-
tions on the proposed heuristic approach will be discussed
in Section VII-C.
Experiment 2: The second experiment aims to demonstrate

the performance of DP-based approach when its underlying
assumption is violated. To relax this assumption, we allow
the UAV to follow non-BFPs by adopting the grid-based
approach described in Section III-D, which decomposes each
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FIGURE 9. The tours generated a) before and b) after its underlying
assumption is relaxed.

region into grids smaller than or equal to the UAV’s camera
footprint, and generates coverage paths that traverse the cen-
troids of all the grids. We then consider a single pentagonal
region and set the size of UAV’s camera footprint to 3× 3.
Fig. 9 shows the tours generated by the DP-based approach

before and after its underlying assumption is relaxed.
As expected, when UAV is not restricted to follow BFPs,
a shorter tour is generated, which has a length of 23.6047.
In contrast, as the BFPs constrain the entrance and exit
locations in a region, the resulting tour is longer, which
has a length of 26.3118. Furthermore, we note that the
intra-regional path of back-and-forth pattern (Fig. 4(a)),
which has a length of 13.2677, is shorter than the one gen-
erated by the grid-based approach (Fig. 4(b)), which has a
length of 14.4361. This demonstrates the significant role of
entrance and exit locations in determining the tour. Finally,
we would like to mention again that although the grid-based
approach can generate shorter tours, it is neither scalable
with the region size nor the number of regions, as we have
illustrated in [5].

2) EFFICIENCY STUDY
In Section V-B, we have derived the complexity of the
DP-based approach, which isO

(
m̂N 2Ŵ + m̂2N 22N

)
. In this

study, we design three experiments to further validate this
result and demonstrate the impact of the three parameters
(N , m̂, Ŵ ) on the efficiency of the DP-based approach. For
comparison, we also evaluate the TSPP and the proposed
heuristic approach, Fast NN-2Opt.
Experiment 1: In the first experiment, we study the impact

of the number of regions N . To generate regions of constant
size, we apply the nsidedpoly() function in MATLAB,
which produces regular polygons. For each region, we fix the
number of edges and the length of each edge to 5 and 128,
respectively. We then generate different numbers of regions,
and execute the three compared approaches to measure their
execution times for each scenario. The size of UAV’s cam-
era footprint is set to 1.5 × 3. To reduce uncertainty, each
experiment is repeated for 10 times and the mean execution
times are recorded. Fig. 10(a) shows the simulation results.
As expected, the execution time of the DP-based approach
grows exponentially with the increase of the number of
regions, and both TSPP and Fast NN-2Opt are significantly
more efficient than DP-based approach.

FIGURE 10. The mean execution times of different approaches with the
increase of a) the number of regions, b) the number of edges of each
region, and c) the length of the edges of each region.

Experiment 2: In the second experiment, we study the
impact of the number of edges m̂ of a region. In particular,
we fix the number of regions and the length of the edges of
each region to 6 and 28, respectively, and set the size of UAV’s
camera footprint to 1.5× 3. We then increase the number of
edges of each region simultaneously from 3 to 10. As shown
in Fig. 10(b), the execution time of the DP-based approach
grows quadratically with the increase of the number of edges,
and both TSPP and Fast NN-2Opt outperform DP-based
approach.
Experiment 3: In the third experiment, we study the impact

of the maximum span Ŵ of a region. This is achieved by vary-
ing the length of the edges of each regular polygonal region.
The number of regions and the number of edges of each
region are fixed to 6 and 5, respectively. The size of UAV’s
camera footprint is still set to 1.5× 3. As shown in Fig. 7(c),
the execution time of the DP-based approach grows linearly
with the increase of the length of edges, and both TSPP and
Fast NN-2Opt are more efficient than DP-based approach.

C. PERFORMANCE OF THE HEURISTIC APPROACH
In this study, we investigate the performance of the proposed
heuristic approach for TSP-CPP in terms of optimality and
efficiency.

1) EXPERIMENT SETTINGS
For a thorough understanding, we compare the following six
TSP-CPP methods in this study:

• TSPP [59]: This method first uses GA to find the region
visiting order, and then determines the intra-regional
paths and the tour.

• Fast NN-2Opt: This is the proposed method described
in Algorithm 4.
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• Fast GA-2Opt: This is an alternative method to the Fast
NN-2Opt, which uses GA, instead of NN, to find the
region visiting order in the initialization step.

• NN-2Opt: This is the proposed method described in
Algorithm 4 without introducing the constraint in Line
7 of Algorithm 7.

• GA-2Opt: This is an alternative method to the
NN-2Opt, which uses GA, instead of NN, to find the
region visiting order in the initialization step.

• Extended GA: This method applies GA to optimize the
tour, which defines the chromosome as an ordered list of
regions presenting the region visiting order and defines
the fitness function as the travel cost of the resulting tour
derived using the FINDTOUR() function in Algorithm 6.

To evaluate the performance of these TSP-CPP methods,
we vary the number of regions and consider three scenarios:
N = 20, N = 50 and N = 100. The regions are randomly
generated convex polygons, which do not overlap between
with each other.

As the performance of GA largely depends on its param-
eters, we also vary its parameter setting. In this study,
we implement the GA based on the code in [72], which have
two parameters to configure: 1) number of iterations, denoted
as I, and 2) population size, denoted as ρ. To enable early
termination, we further introduce a parameter κ , such that the
algorithm will terminate either when the best fitness score is
unchanged for κ successive generations or when I iterations
have been evaluated. We then consider the settings with three
parameters:

• Setting 1: I = 104, κ = 10, and ρ = 100
• Setting 2: I = 105, κ = 50, and ρ = 100
• Setting 3: I = 106, κ = 100, and ρ = 100

These settings will impact the performance of four methods
that use GA, including TSPP, Fast GA-2Opt, GA-2Opt and
Extended GA.

In all experiments, we set the size of UAV’s camera foot-
print to 1.5 × 3. Each experiment is repeated for 10 times,
and the mean execution time of each method and the mean
travel cost of each derived tour, measured by the Euclidean
distance, are recorded.

2) OPTIMALITY STUDY
Fig. 11 shows the mean travel cost of the tour generated by
each TSP-CPP method, grouped by GA’s parameter setting,
when different numbers of regions are present. As an illustra-
tion, we also selectively show in Fig. 12 the tour generated
by each method when N = 100 and GA adopts the first
parameter setting.

From Fig. 11, we first see that the proposed NN-2Opt
achieves the best performance in most scenarios. Fast
NN-2Opt is less optimal than NN-2Opt, as the additional con-
straint it adopts can exclude good 2-Opt moves. Nevertheless,
such performance degradation is not significant, as shown
in Fig. 11 and Fig. 12. Note that, as GA is not used in Fast
NN-2Opt and NN-2Opt, the tours generated by these two

FIGURE 11. The mean travel costs of the tours generated by different
approaches when there are a) N = 20, b) N = 50, and c) N = 100 regions.

FIGURE 12. The tour generated by a) TSPP, b) Fast NN-2Opt, c) Fast
GA-2Opt, d) NN-2Opt, e) GA-2Opt, and f) Extended GA when there are
N = 100 regions and Setting 1 is adopted to configure the GA.

methods are deterministic and are not influenced by GA’s
parameters.

We can also see from Fig. 11 that TSPP generates the
longest tour in most scenarios, especially when the number of
regions is large. Increasing I and κ enhances the performance
of TSPP, due to the improved quality of the GA solution
(region visiting order). Moreover, we can observe from both
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FIGURE 13. The mean execution times of different TSP-CPP methods
when there are a) N = 20, b) N = 50 and c) N = 100 regions.

Fig. 11 and Fig. 12 that GA-2Opt and Fast GA-2Opt achieve
comparable performance with NN-2Opt and Fast NN-2Opt,
and always outperform TSPP. This demonstrates the effec-
tiveness of the proposed tour improvement step in improving
the quality of the tour. In addition, GA-2Opt outperforms Fast
GA-2Opt, as it does not exclude any possible 2-Opt moves.
We can also observe that the Extended GA outperforms TSPP
in all scenarios, as it considers the inter-dependencies of the
region visiting order and the intra-regional paths. In addition,
the performance of Extended GA improves with I and κ , and
sometimes even generates the shortest tours.

3) EFFICIENCY STUDY
Fig. 13 shows the mean execution times of different TSP-CPP
methods. As we can see from the figure, the Fast NN-2Opt
outperforms the other methods in all scenarios. NN-2Opt is
less efficient than Fast NN-2Opt, as it evaluates all possible
2-Opt moves. Moreover, its efficiency degrades quickly when
the number of regions N increases. This is because, with the
increase of N , the number of 2-Opt moves required to find
a shorter tour grows quadratically, according to Algorithm 7,
and the number of possible improvements grows quickly as
well.

We can also see from Fig. 13 that the TSPP is the second
most efficient method. The Fast GA-2Opt is relatively effi-
cient, but is less efficient than TSPP, as it further conducts tour
improvement after an initial tour is obtained. The GA-2Opt
is less efficient than Fast GA-2Opt, as expected, and its
efficiency degrades significantly when the number of regions
increases. The Extended GA is the least efficient when the
number of regions is small, but outperforms NN-2Opt and
GA-2Opt when the number of regions is large.

Another observation from Fig. 13 is that the efficiency of
both Extended GA and TSPP degrades with the increase of
I and κ . Nevertheless, when the number of regions is large,
the efficiency of Fast GA-2Opt and GA-2Opt improves with

the increase of I and κ . This is because, in Fast GA-2Opt
and GA-2Opt, the quality of the initial tour generated by the
GA-based method improves with the increase of I and κ ,
which causes the tour improvement step to converge more
quickly. Though the time reduced in the tour improvement
step is not obvious for small number of regions, in which case
the initialization step consumes the most time, it becomes
evident when the number of regions is large, in which case
the tour improvement step consumes the most time.

D. DISCUSSIONS
Through both theoretical analyses and simulation studies,
we have demonstrated the performance and capability of
the proposed TSP-CPP approaches from various aspects.
In particular, the DP-based exact approach can guarantee
a (near) optimal solution to TSP-CPP, but is not scalable
with the number of regions. It is thus suggested to use
this approach for small-scale TSP-CPP problems, e.g., less
than 17 regions [69]. Moreover, the Fast NN-2Opt generates
high-quality tours and is highly efficient even when the num-
ber of regions is large. It is thus suitable for cases when the
use of DP-based approach is time-prohibitive. In cases when
the quality of the solution is of most concern and a relatively
long computation time is acceptable, the NN-2Opt, GA-2Opt
or Extended GA may be used.

VIII. CONCLUSION
In this paper, we conducted a systematic investigation on a
new UAV path planning problem, namely TSP-CPP, which
aims to find the optimal tour for a single UAV to fully cover
multiple separated regions. To solve this problem, we first
investigated the coverage path planning (CPP) for a single
convex polygonal region, and developed a CPP method to
generate a set of back-and-forth paths, which likely lead to the
optimal tour. Based on this CPP method, we then developed
a dynamic programming (DP)-based exact approach to solve
the TSP-CPP problem, which was proved to be able to find
the (near) optimal solution. As the DP-based approach is not
scalable with the number of regions, we further developed a
heuristic approach, which adopts a two-step iterative proce-
dure to find high-quality tours very efficiently. To illustrate
the performance of proposed approaches, we conducted both
theoretical analyses and simulation studies comprehensively.
The results demonstrated the optimality and efficiency of
the proposed approaches in various scenarios. In the future,
wewill extend the proposed approaches to addressmore com-
plicated scenarios, such as when static or dynamic obstacles
are present. We will also generalize the results to multiple
UAVs and explore practical applications of the proposed
approaches.
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