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ABSTRACT The development of energy-resolving photon-counting detectors provides a new approach
for obtaining spectral information in computed tomography. However, the responses of different photon
counting detector pixels can be inconsistent, which will always cause stripe artefacts in projection domain
and concentric ring artefacts in image domain. Traditional ring artifacts processing methods are mostly based
on averaging and filtering. In this paper, we propose to use deep learning methods for ring artifacts removal
respectively in image domain, projection domain and the polar coordinate system. Besides, by incorporating
reconstruction process into neural networks, we unite the information from image domain and projection
domain for ring artifacts removal under the framework of deep learning for the first time. A traditional ring
artifacts removal method, which is based on wavelet and Fourier transform, is implemented for comparison.
Quantitative analysis is performed on simulation and experimental results and it shows that deep learning
based methods are promising in solving the problem of non-uniformity correction for photon-counting
detectors.

INDEX TERMS Ring artefacts removal, deep learning methods, photon counting detectors, spectral CT.

I. INTRODUCTION
Photon counting detectors (PCDs) are attracting more and
more attention in the next generation design of com-
puted tomography systems [1]–[3]. Commercial products
equipped with photon counting detectors for mammography
have already been available and prototypes of computed
tomography have also been demonstrated [4]–[8]. Energy dis-
criminating photon counting detectors can resolve the energy
information of incident X-ray photons by separating the
resulting voltage pulses into multiple energy bins according
to the pulse height, which is roughly proportional to the pho-
ton energy. Compared to energy integrating detectors (EIDs),
photon counting detectors have following advantages: (a)
the electronic noise and low energy scattering photons can
be effectively eliminated in photon counting detectors by
setting a suitable low-energy threshold, which will greatly
improve the signal to noise ratio (SNR); (b) the contrast to
noise ratio (CNR) and dose efficiency can also be improved
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by applying optimal energy weighting functions, such as
assigning a higher weight to low-energy photons for their
carrying more attenuation information [4]; and (c) with the
ability of acquiring the spectral information, images in multi-
ple energy windows can be generated with one-shot spectral
imaging using photon counting detectors (PCDs), enabling
more efficient quantitative material identification [9]–[11].
Therefore, photon counting spectral CT can be a great com-
petitor to the existing energy-resolving techniques such as
dual source CT, rapid kVp switching and differential beamfil-
tering [12]; (d) beam hardening artifacts can also be alleviated
by using spectral information obtained by photon counting
detectors [5].

In general, photon counting detectors (PCDs) have a
promising potential to offer significant improvements to the
existing CT imaging techniques and make completely new
CT applications possible. However, challenges still remain
for its clinical applications. One of the most common defects
of photon counting detectors is the inconsistence between the
detector pixels, which will lead to stripe artefacts in projec-
tion data and consequently cause concentric ring artefacts in
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reconstructed images. This kind of inconsistence can have
many causes: (a) some individual detector pixels can be
defective, whose values are close to zero or saturated in
projection domain; (b) insufficient detector calibration can
also cause inconsistence between different detector pixels; (c)
x-ray source structural patterns and changes of temperature
conditions over time are also possible reasons for this kind of
non-uniformity of detector sensitivity [13].

Due to the complex causes of detector sensitivity incon-
sistence and its relevance with the scanning object, it is
still a challenging problem to reduce ring artefacts with-
out impairing the image quality. Existing ring artefacts
reduction techniques can be generally divided into two
groups: pre-processing methods and post-processing meth-
ods. Pre-processing methods are performed in projection
domain. In projection domain, the non-uniformity artefacts
manifest as stripes, which are relatively easy to detect and
eliminate compared to concentric rings in image domain.
A common method for pre-processing in projection domain
is known as flat-field correction [14]. However, it is still
difficult to totally eliminate all the artefacts solely through
using flat-field correction because it doesn’t take the inci-
dent spectrum and the scanned object into consideration.
Besides flat-field correction, hardware based approaches like
moveable detector array [15] and dual gain calibration tech-
nique [16] were also proposed for non-uniformity correction.
Getzin et al. proposed a first and second moment correction
method based on the measured data for photon-counting
detectors. Considering the special morphological structure of
the stripe artefacts in projection domain, many inconsistence
correction methods based on filtering have been raised by
different researchers [17]–[23].

Post-processingmethods are based on image domain. They
directly deal with the reconstructed images because raw pro-
jection data is not always available. Since ring artefacts man-
ifest as stripes after polar transform, many post-processing
methods are performed in polar coordinate system. Sijbers
and Postnov proposed a filtering method with a sliding win-
dow in the polar coordinate system [24]. Prell et al. compared
mean and median filtering respectively in Cartesian coordi-
nate and polar coordinate system and conclude that it is better
to perform their algorithm in polar coordinate system [25].
Some iterative methods based on prior information were also
put forward. Liang et al. proposed to use an iterative frame-
work with relative total variation for ring artefacts removal
[26]. Yan et al. proposed an variation-based ring artefacts
removal method with sparse constraint [27]. Titarenko et al.
proposed to use a two-stage method with a prior information
on the attenuation coefficients for ring artefacts removal [28].
Wu et al. proposed a ring artefacts removal method based on
TV-Stokes and unidirectional total variationmodel [29]. Sale-
hjahromi et al. proposed an iterative reconstruction method
with a directional total variation regularization term for ring
artefacts removal [30]. However, most of these methods seem
to oversimplify the problem or impose strong assumptions.
And some iterative methods suffer from high computational

cost. Also, the performance of these methods can be highly
dependent on the extent and severity of the ring artefacts.

Recently, deep learning techniques have achieved great
success in computer vision field [31]. Deep learning has
also generated huge enthusiasm in the field of medical
imaging. Deep learning techniques have been widely used
for low dose CT denoising [32]–[34], metal artefacts sup-
pression [35], [36] and spectral CT material decomposi-
tion [37]. Deep learning can also perform well on ring
artefacts removal. Some initial results have been reported.
Matthew Holbrook et al. proposed to use a convolutional
neural network for removing stripe artefacts in projection
data [38]. Chang et al. proposed a hybrid method which
combines the advantages of deep learning and traditional
methods for ring artefacts removal [39]. Wang et al. proposed
a ring artifacts removal method for CBCT images by using
a generative adversarial network with unidirectional relative
total variation loss [40]. More work should be done in this
direction. In this paper, we perform ring artefacts respectively
in image domain, projection domain and polar coordinate
system. Besides, by implementing image reconstruction pro-
cess as a neural network module, it is for the first time
that we unite the structural information in image domain
and raw information in projection domain for ring artefacts
removal under the framework of neural network training.
The rest of this paper is organized as following. Section II
describes the non-uniformity problem of photon-counting
detector, the preparation of the training dataset, the archi-
tecture of the network and the training of the neural net-
work using simulated data. Section III presents the testing
simulation results and corresponding quantitative analysis.
Section VI is about the results of applying the simulated-
data-trained neural networks on the experimental data and
quantitative evaluation is also presented. Section IV is the
discussion and section V is the conclusion.

II. METHODS AND MATERIALS
A. PROBLEM STATEMENT
The cause of non-uniformity in photon-counting detector is
complicated. Generally, the relationship between the incident
and measured photon counts can be depicted like this [30]:

Ii = CmI0exp
(
−Dm

∫
rayi

µdl
)
, (1)

where Ii and I0 respectively represent the received and emit-
ted photon counts. The integral represents the sum of the
attenuation coefficients along the ith ray. Two factors are
introduced to depict the non-ideality in the detection process.
The factor Cm represents the linear gain coefficient between
the measured counts and the incident photon counts for the
mth detector pixel, which relates to the response function of
the detector pixel. The factor Dm represents the gain factor
caused by unwanted physical effects like beam hardening and
scattering while the line-ray penetrating the scanned object.
By performing some transformations, formula (1) can be
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rewrittern as:∫
rayi

µdl = −
(

1
Dm

)
log

(
Ii
I0

)
+

log (Cm)
Dm

. (2)

Then the relationship between the real projection data and
the measured projection data for themth detector pixel can be
illustrated as a linear model:

preal = gm · pmeasured
+ om. (3)

The gain factor gm and the shift om are decided by Cm and
Dm in formula (2). We assumed that factors Cm and Dm are
constants for themth detector pixel. So, the gain factor gm and
the offset om are also constants for the mth detector pixel.

B. TRAINING DATA PREPARATION
It is difficult to acquire experimental training dataset includ-
ing both ring artefacts corrupted images and correspond-
ing clean images. So, it is necessary to simulate training
dataset for network training. In this part, a CT image database
including non-uniformity corrupted data and corresponding
non-uniformity free data respectively in image domain, pro-
jection domain and polar coordinates is established. Clinical
CT images of 10 patients from 2016 AAPM Low Dose CT
Grand Challenge are used as artefacts free images. By per-
forming forward projection, we can get the reference sino-
gram from the artefacts-free images. The non-uniformity we
simulated is based on a realistic photon counting detector
(eV3500, eV PRODUCTS, Saxonburg). To extract the feature
of the detectors’ non-uniformity, firstly we apply an iterative
ring artefacts removal algorithm [41] to estimate the param-
eters of the non-uniformity for the photon counting detector.
This iterative algorithm assumes that the relation between the
real sinogram and the measured sinogram is a linear model as
demonstrated in formula (3). The goal of the algorithm is to
estimate the gain factor g and the offset o for each detector
pixel. The algorithm assumes that the projection pixel values
are spatially smooth while moving with respect to detectors.
The local spatially neighbourhood average pixel values are
used as the reference:

min .
∑
n

(gm · pmeasured
n,m + om − p

average
n,m )2, (4)

where n is the index of views, m is the index of detector
pixels and paveragen,m is the mean value of the neighborhood
pixels. By applying the gradient descent method, we can
finally obtain the optimized gain factor g and offset o for each
of the 256 detector pixels. We calculate the mean value and
covariance for the overall 256 g and denote them as g_mean
and g_cov. Similarly, we calculate the mean value and covari-
ance for the overall 256 o and denote them as o_mean and
o_cov. These four parameters indicate the statistical feature
of the gain and the offset coefficients. Also, they reflect the
severity of the inconsistence of the realistic detector pixels.
These parameters are used to build two random variables to
depict the distribution of gain and offset coefficients. Without

loss of generality, we assume that they subject to Gaussian
distributions:

G ∼ N (g_mean, g_cov), O ∼ N (o_mean, o_cov). (5)

With the above two Gaussian distributions, we can randomly
generate many gain and offset coefficients g′ and o′. These
randomly generated coefficients are used to introduce vari-
ational non-uniformity to the original reference sinogram,
which can be expressed as

psimu
= g′ · pref + o′, (6)

where psimu and pref respectively represent the simulated
non-uniformity corrupted projection data and the clean refer-
ence projection data measured by one certain detector pixel.
It should be noted that g′ and o′ are different for each detector
pixel and also different in different simulated sinograms.
Fig. 1 demonstrates the process of training dataset estab-
lishment. After we get non-uniformity corrupted sinograms,
we reconstruct them using FBP method to get ring artefacts
corrupted images.We also performCartesian-Polar transform
to the clean and corrupted reconstructed images and then
we can get corresponding images in the polar coordinate
system. In summary, after the whole training data preparation
process, we get three pair of data sets including corrupted data
and corresponding clean data respectively in image domain,
projection domain and polar coordinate system. It is worth
noting that the objective of this paper is not to obtain the
most accurate photon counting detector response function.
The non-uniformity simulation part can be simple and brief as
long as it can help generate similar ring artefacts to the exper-
imental ring artefacts. That’s why a simple linear model can
be used for generating ring artefacts. Actually, the simplicity
of the training data preparation process to some extent exactly
shows the flexibility of deep learning techniques on removing
potential ring artefacts.

FIGURE 1. The process of training dataset establishment.

C. COORDINATE SYSTEM TRANSFORM
The details of Cartesian-Polar coordinate system transform
are illustrated in this part. We denote the image in Cartesian
coordinate system as C(x, y), where x and y respectively
represent the pixel index in width and height direction. And
we denote the image in polar coordinate system as I (ρ, θ),
where ρ and θ respectively represent radial distance and polar
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angle. The pixel index in Cartesian coordinate system and
polar coordinate system has a relation:

x = ρ cos(θ)+W/2, y = ρ sin(θ )+ H/2, (7)

where W and H respectively represent the width and height
of the image in Cartesian coordinate system. In our experi-
ment, the image size in Cartesian coordinate system is [256,
256]. Tominimize the resolution loss in the coordinate system
transform, we set the radial sampling rate in polar coordinate
system two times of the sampling rate in the Cartesian coor-
dinate system. The sampling interval for polar angle is one
degree. So, the size of transformed image in polar coordinate
system is [256,360]. It should be noted that the region in the
original image that is transformed to polar coordinate system
is the inscribed circle, not the whole image, which is denoted
as red circle in Fig. 1.

D. NETWORK STRUCTURE AND TRAINING
Fig. 2 illustrates the network we applied in image domain
for ring artefacts removal. The input of the network is the
corrupted image and the output of the network is the ring
artefacts. After subtracting the estimated ring artefacts from
the original corrupted image, we can get the artefacts free
image. The main framework of the network is a modified
5-stage U-net [42]. The network has a contracting path and
a symmetric expanding path, which are composed of convo-
lution layers, batch normalization layers and rectified linear
unit (ReLU) activations. The left part of the network is con-
nected with max-pooling layers between stages and the right
part of the network is connected with max-unpooling layers
between stages. The left half of the network can be seemed
as an encoding path and the right part of the network is a
decoding path. For the convolution layer, the kernel size is
3 × 3 and the stride size is 1. Padding is added to keep the
image size unchanged in the convolution layer. The number
of feature channels is doubled after each pooling layer in
the encoding path for better ring artefacts feature extracting.

FIGURE 2. The architecture of ring artefacts removal network in image
domain.

Vertically, the network has five stages, which are designed
to process information in five different scales. The copying
and concatenation process help recover the information lost
in the down sampling process of the encoding path. And the
pooling layers can help increase the effective receptive field
of the network.

Fig. 3 illustrates the diagram of ring artefacts removal in
projection domain. The input of the network is the corrupted
projection data and the output is the estimated stripe arte-
facts of the projection data. The artefacts free projection data
can be obtained by subtracting the stripe artefacts from the
original corrupted projection data. After the subtraction, FBP
algorithm is used for reconstruction. The architecture of the
network for projection domain processing is the same with
the modified U-net in Fig. 2 except for that the input image
size is different. The input size of the projection domain
network is [360, 601], which is the size of the input sinogram.
In the projection simulation process, the number of views for
forward projection is 360 and the number of detector pixels
is 601.

Fig. 4 shows the diagram of ring artefacts removal in the
polar coordinate system. Firstly, the original ring artefacts
corrupted image is transformed to polar coordinate system.
The red circle represents the region that is transformed to
polar coordinates. The non-uniformity manifests as horizon-
tal stripe artefacts in the transformed image. This image is
then input to the network for stripe artefacts estimation. The
network here is a modified 5-stage U-net, which has the same
architecture with the image domain network. The output of
the network is the estimated stripe artefacts. The artefacts
free image can be obtained by getting the estimated stripe
artefacts subtracted. After that, the image is transformed back
to Cartesian coordinates.

The modified 5-stage U-structure networks in above
three methods are all trained using stochastic gradient
descent (SGD) method. The learning rate is set to 0.001 and
the momentum is set to 0.9. The loss function for the network
is mean square error (MSE) and the number of training epoch
is 250. PyTorch is used for the network implementation.
The computation is performed on a stand-alone work station
equipped with a GTX 1080Ti graphic processor. Of all the
simulated images, 4800 images from 8 patients are used for
training dataset. 610 images and 526 images from another
two patients are respectively used for validation and testing.
The dataset of each patient includes around 600 slice images
which range from chest to thigh.

E. THE COMPREHENSIVE MODEL
In the past, the non-uniformity correction method is either
subject to pre-processing methods or post-processing meth-
ods. In other words, the method is performed either on
projection data or on the reconstructed image. These two
types of methods are isolated. In this paper, by incorporating
the reconstruction process into the neural network, we can
unite the image domain and projection domain processing
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FIGURE 3. The diagram of ring artefacts removal in projection domain.

FIGURE 4. The diagram of ring artefacts removal in polar coordinate system.

FIGURE 5. The diagram of ring artefacts removal using a comprehensive model.

for non-uniformity correction under the framework of deep
learning.

The FBP reconstruction method can be performed in the
form of matrix multiplying [43]:

µFBP = R−1 [BFW ·R(p)] , (8)

where p represents the projection data and µFBP denotes the
reconstructed image.R is an operator that reshapes projection
data into a vector and R−1 is the corresponding inverse
operator that reshapes the vector into the two-dimensional
reconstructed image. The matrixW is used for weighting and
F is for filtering. The matrix B performs back-projection to
the filtered projection. This form of reconstruction, which
is in the form of matrix multiplying, can be easily imple-
mented in PyTorch by using its interface for sparse tensor.
The operation behind thismatrixmultiplying form is the same
with regular FBP reconstruction. Also, the three matrixes
for reconstruction are fixed in the network training. The
reconstruction process functions as a connection between the
projection domain and image domain. Our comprehensive
model has two branches, just as illustrated in Fig. 5. The
first branch accepts corrupted projection data as input and
then reconstructs it using formula (8). After that, the recon-
structed image is input to a 5-stage U-net for image domain
ring artefacts estimation. The architecture of this U-net is

the same with the image domain network whose structure
is illustrated in Fig. 2. The output of this 5-stage U-net is
the estimated ring artefacts. The second branch also accepts
the corrupted projection data as input. It is connected with
a 5-stage U-net for projection domain stripe artefacts esti-
mation. This projection-domain U-net is the same with the
projection domain network in Fig. 3. The estimated stripe
artefacts are reconstructed using (8) to get corresponding
estimated ring artefacts. The estimated ring artefacts from the
first and second branches are respectivelymultipliedwith fac-
tor 0.5 and then added to get the final estimated ring artefacts.
The final estimated ring artefacts are subtracted from the
corrupted image and then we can get the final artefacts-free
image.

It will be very time-consuming to train the model from the
beginning because themodel consists of image reconstruction
process. The strategy we applied here is to use the models
that we already trained for image domain processing and
projection domain processing as the beginning state for the
two sub-networks in the two branches. And then we can train
the whole network for like 10 epochs. The advantage of the
comprehensive model is that it can combine the raw informa-
tion in projection domain and the structural information in
image domain for non-uniformity correction. The simulation
results show that the comprehensive model performs better

VOLUME 8, 2020 42451



W. Fang et al.: Removing Ring Artefacts for PCDs Using Neural Networks in Different Domains

than the ring artefacts removal method that merely in image
domain or projection domain.

F. TWO TRADITIONAL METHODS FOR COMPARISON
Two traditional ring artefacts removal methods are imple-
mented for comparison. The method we choose is popular
Wavelet-Fourier (WF) filtering method [17]. This method is
based on combined wavelet and Fourier analysis and can
eliminate horizontal and vertical stripes in images. We apply
this method respectively in projection domain and polar
coordinates as the artefacts in these two domains manifest
as stripes. After we applying this WF method on projec-
tion data, the processed projection data is reconstructed to
image domain for image quality evaluation. Similarly, theWF
method processed data in polar coordinates is transformed
back to Cartesian coordinates for image quality evaluation.

III. RESULTS ON SIMULATION DATA
A. SIMULATION RESULTS
According to the methods we have illustrated above, we have
six methods for non-uniformity correction. And they are
respectivelyWFmethod in projection domain, WFmethod in
polar coordinates, U-net in image domain, U-net in projection
domain, U-net in polar coordinates and the comprehensive
model. Fig. 6 shows the two cases of the 526 testing dataset.
And Fig. 7 shows the corresponding processed results and the
error of these two cases by using these six methods.

FIGURE 6. Two cases of testing data. (a) The simulated corrupted image.
(b) The introduced ring artefacts. (c) The reference image. (d, e, f) are the
corresponding images for the second case. The display window for the
corrupted image and the reference image is [0,0.4]. The display window
for the introduced ring artefacts is [−0.1,0.1].

We can see that the processed images of traditional WF
methods remain a lot of low-frequency ring artefacts whether
it is performed in projection domain or polar coordinate
system. The filtering process in WF method does not com-
pletely remove artefacts but tends to change the severe
high-frequency artefacts into smooth low-frequency ring arte-
facts. Compared to WF method, deep learning methods per-
form relatively better. The results obtained by different deep
learning methods are all visually similar to standard images
and almost indistinguishable. By judging from the error

FIGURE 7. Images in the first and third column are the processed results.
The images in the second and fourth column are corresponding error
images of the six methods. From top to bottom, the methods are
respectively WF method in projection domain, WF method in polar
coordinates, U-net in image domain, U-net in projection domain, U-net in
polar coordinates and the comprehensive model. The display window for
the processed results is [0,0.4]. The display window for the error image is
[−0.1, 0.1].

image, we can tell the slight difference between the deep
learning methods that work respectively in image domain,
projection domain, polar coordinates and the comprehensive
model. There seems to be not too much difference between
the results obtained by the U-net in image domain and pro-
jection domain. The network that works in polar coordinate
system performs well in ring artefacts removal but seems to
suffer from the resolution loss caused by the Cartesian-polar
coordinate transform judging from the error image. The com-
prehensive model has the best performance after combin-
ing the structural information in image domain and the raw
information in projection domain for ring artefacts removal.
It is better than estimating artefacts merely in projection
domain or image domain judging from the error image. This
can be seenmore clearly from the quantitative analysis below.

B. SIMULATION RESULTS EVALUATION
To quantitatively compare the above six methods, two indica-
tors are chosen to evaluate the proposed network, including
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the relative root of mean square error (RRMSE) and the
structural similarity (SSIM) index. The original artefacts free
image is used as the gold standard in the evaluation. The two
indicators are defined as:

RRMSE =
||µ̂− µ||2

||µ||2
, (9)

SSIM =
(2µ̂µ+ C1)(2σµ̂µ + C2)

(µ̂
2
+ µ2

+ C1)(σ 2
µ̂
+ σ 2

µ + C2)
, (10)

where µ̂ represents the processed image and µ is the cor-
responding reference image. µ̂ and µ represent their mean
values. σµ̂ and σµ represent the standard deviations of µ̂
and µ respectively. σµ̂µ represents the covariance between
µ̂ and µ. We calculated the RRMSE and SSIM for each
of the 526 images in the test set. The results are shown in
Fig. 8 and Fig. 9. We also calculated the mean value and
standard deviation of these RRMSE and SSIM achieved by
these six methods for the whole test set, which are shown
in Table 1.

FIGURE 8. RRMSE achieved by the six methods on the testing dataset.

FIGURE 9. SSIM achieved by the six methods on the testing dataset.

We can clearly see that the four deep learning based
methods get lower RRMSE and higher SSIM compared to
traditional WF methods, which shows great power of deep

TABLE 1. Means and Stds of RRMSE and SSIM over the testing dataset.

learning methods for ring artefacts extraction. Among the
four deep learning based methods, the comprehensive model
achieves the lowest RRMSE and the highest SSIM after
combining the information from both the image domain and
projection domain. The standard deviation represents the sta-
bility of the method.We can conclude that the comprehensive
model is also the most stable one.

IV. RESULTS ON EXPERIMENTAL DATA
A. EXPERIMENTAL DATA PREPARATION
We also applied the simulation-data-trained networks on the
experimental datasets. The experimental projection data is
acquired by using a linear-array CdZnTe photon counting
detector (eV3500, eV PRODUCTS, Saxonburg, PA) which
has 256 pixels with the size of each pixel being 0.5 mm ×
2 mm. The x-ray source is a conventional benchtop x-ray
tube (G-297, Varian). Table 2 shows the detailed operational
condition of the experiment.

TABLE 2. Some operational parameters of the experiment.

The scanned object is a mouse in a cylindrical
container. Animal experiments were approved by the Lab-
oratory Animal Research Centre of Tsinghua University
(Animal Protocol (AP) code: 17-LL1, AP date:27/09/2017-
27/09/2020). Before network processing, experimental
dataset undergoes a linear mapping to get aligned with the
simulation dataset in respect of mean value and covariance.
The experimental images are back-mapped to the original
value level after the network processing.

B. EXPERIMENTAL RESULTS
Fig. 10 shows the performance of different ring artefacts
removal methods on the above four experimental cases.
The first row shows the four original reconstructed images.
We can see that the images are severely corrupted by the
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FIGURE 10. The comparison of different ring artefacts removal methods
on experimental dataset. Each row is the corresponding results obtained
by a certain method. From top to bottom, the results are respectively the
original images, the processed images of WF method in projection
domain, WF method in polar coordinates, U-net in image domain,
U-net in projection domain, U-net in polar coordinates and the
comprehensive model. The display window is [0, 0.46].

ring artefacts due to the detector non-uniformity. The red
rectangle shows the area we chose for quantitative analysis
later. The second and third rows show the results obtained by
traditionalWavelet and Fourier (WF) filteringmethod respec-
tively in projection domain and polar coordinate system. We
can see that the results still remain a lot of low-frequency
ring artefacts after processing whether the WF method is
performed in projection domain or polar coordinate system.
The reason for that may be the ring artefacts caused by the
non-uniformity of photon-counting detectors are so heavy
that it is difficult for this kind of filtering-based method to
handle. We have also seen a similar situation in the above
simulation results. Compared to WF methods, deep learn-
ing based methods have better performance on experimental

dataset. The fourth row shows the results obtained by the
image domain network. We can see that the image domain
network can remove most ring artefacts from the original
image, but there are still some slight ring artefacts left in
the processed images. The sixth row is the results obtained
by using deep learning methods in polar coordinate system.
We can find that extracting stripe artefacts in polar coor-
dinates performs not so well on the experimental dataset
since many small ring artefacts are still left in the processed
image. Besides, the results obtained by the polar coordinate
network tend to have a small dark point at the centre of the
image. We think this may be caused by the coordinates trans-
form. The central point in the Cartesian coordinate system is
corresponding to a line in the polar coordinate system. So,
a slight error in this line after network processing will finally
accumulate at the central point after transforming back to
Cartesian coordinate system. The fifth row and the seventh
row are respectively the results of projection domain network
and the comprehensive model. We can figure out that the
projection domain network and the comprehensive model
both perform impressively well on the experimental dataset.
For the comprehensive model, it combines the advantages
of the projection domain network and the image domain
network. The projection domain network part can effectively
remove most ring artefacts while the image domain network
part in the comprehensive model can help supress some small
artefacts and noise in the original image to make the image
clearer, which can be especially seen in the fourth case.

C. EXPERIMENTAL RESULTS EVALUATION
The experimental results are also quantitatively evaluated
to compare these different ring artefacts removal methods.
Since we do not have reference images like in simulation
dataset for the experimental dataset. Two other indicators
were used for evaluation. The first one is line-ratio, which
is inspired by a recent non-uniformity correction work [44].
The line-ratio is calculated in projection domain, so we firstly
performed forward projection on the processed results to
obtain the corresponding projection data according to the
original reconstruction geometry. And then we calculate the
line-ratio for each detector pixel in the projection domain.
The line-ratio can be defined as:

ratiom =
∑N

n=1

pn,m−1 + pn,m+1
2pn,m · N

, (11)

where p represents the projection data and N is the number of
view angles. The notation n and m respectively represent the
angle index and detector pixel index of the projection data.
For an image free of ring artefacts, the generated correspond-
ing projection data will also be free of stripe artefacts and
its line-ratio values will all approximate one. For an image
corrupted by ring artefacts, its corresponding projection data
will have a lot of stripe artefacts and the calculated line-ratio
valueswill have strong fluctuations around one. Fig. 11 shows
the calculated line-ratio values of the processed experimental
results obtained by different methods. We can see that the
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FIGURE 11. The line-ratios of experimental results for different ring
artefacts removal methods.

line-ratios for the original image (orange line) go up and down
around one, indicating the strong non-uniformity between
detector pixels. While the calculated line-ratio values of the
results obtained by the projection domain U-net method (red
one) and the comprehensive model method (black one) are
much smoother, which means almost no ring artefacts are left
in the processed images.

Table 3 lists the standard deviations of the above line-
ratios. We can see that the line-ratio of the comprehen-
sive model is the smoothest one with the smallest standard
deviation value, which indicates the comprehensive model
achieves the best performance on ring artefacts removal.

TABLE 3. Standard deviations of line-ratios of experimental results.

To further compare the performance of ring artefacts
removal and noise suppression for different methods, we also
calculated the total variation of the four rectangle regions
in Fig. 10. The definition of total variation is as following:

TV =
∑
i,j

|xi,j − xi−1,j| + |xi,j − xi+1,j|

+ |xi,j − xi,j−1| + |xi,j − xi,j+1|, (12)

where x represents the reconstructed image. The notation i
and j are the vertical and horizontal index of the image pixels.
The calculated total variation values of the four experimental
cases are shown in Fig. 12.

We can see that the comprehensive model achieves the
lowest total variation value after combining the advantages
of both projection domain network processing and image
domain network processing. It is noteworthy that though the
image quality of the results obtained by projection domain
network is visually good, its total variation value is not

FIGURE 12. The total variation of the processed results by using different
methods.

very low. On the contrary, the total variation value of the
results obtained by image domain network is relatively low
though some slight rings are still left in the processed images.
We think the reason is that the convolution layer in the image
domain U-net has a tendency to smoothen the image and
suppress the noise, which leads to a lower total variation
value. The image quality evaluation is performed in image
domain. While the projection domain U-net is performed on
projection data and cannot guarantee a smoothness in image
domain.

V. DISCUSSION
The direct applying of the linear model [41] for ring artefacts
correction performs not so well. Fig. 13 shows the obtained
results of the four experimental cases by using the linear
model. The algorithm seems to just performs a low-pass
filtering to the images. We think the reason is that the algo-
rithm estimates the gain and offset for each detector by
assuming that the neighbouring pixel values in the sinogram
are similar, which may be not true when the ring artefacts
are very strong and bulky. But we think that the model is
feasible for ring artefacts generation as long as it can help
generate ring artefacts which are similar to the artefacts in
experimental data. Besides, we think that the simplicity of the
ring artefacts simulation exactly demonstrates the flexibility
of deep learning methods on removing potential ring artefacts
which may not be covered in simulation.

FIGURE 13. The experimental results of applying estimated gain and
offset for ring artefacts correction. The original images are at the first row
in Fig. 10.

VI. CONCLUSION
In this paper, we propose to use deep learning methods for
ring artefacts removal respectively in image domain, pro-
jection domain and polar coordinate system. We also put
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forward a comprehensive model for ring artefacts removal.
By incorporating reconstruction process into neural net-
works, the comprehensive model combines the information
from image domain and projection domain for ring artefacts
removal under the framework of deep learning. A traditional
stripe artefacts removal method, which is based on wavelet
and Fourier transform, is implemented for comparison. Quan-
titative analysis is performed on the simulation results and
it shows that deep learning based methods are promising
in solving the problem of non-uniformity correction for
photon-counting detectors. We also test the simulation-data-
trained networks on the experimental dataset. The experimen-
tal results show that the projection domain network and the
comprehensive model have a great performance on experi-
mental ring artefacts removal for photon-counting detectors.
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