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ABSTRACT Automatic license plate recognition (ALPR) is generally considered a solved problem in
the computer vision community. However, most of the current works on ALPR are designed to work on
license plates (LP) from specific countries and use country-specific information which limits their practical
applicability. Such ALPR systems require changes in the algorithm to work on other countries’ LPs. Previous
works on multinational LP recognition are tested on datasets from various countries that share the same
LP layout. To address this issue, this study presents a deep ALPR system designed to be applicable to
multinational LPs. The proposed approach consists of three main steps — LP detection, unified character
recognition, and multinational LP layout detection. The system is mainly based on the you only look
once (YOLO) networks. Particularly, tiny YOLOv3 was used for the first step whereas the second step
uses YOLOV3-SPP — a version of YOLOV3 that consists of the spatial pyramid pooling (SPP) block. The
localized LP is fed into YOLOv3-SPP for character recognition. The character recognition network returns
the bounding boxes of the predicted characters and does not provide information about the sequence of
the LP number. A LP number with an incorrect sequence is considered wrong. Thus, to extract the correct
sequence, we propose a layout detection algorithm that can extract the correct sequence of LP numbers from
multinational LPs. We collected our own Korean car plate (KarPlate) dataset and made it publicly available.
The proposed system was evaluated on LP datasets from five countries which include South Korea, Taiwan,
Greece, USA, and Croatia. In addition, a small dataset containing LPs from 17 countries was collected to
evaluate the effectiveness of the multinational LP layout detection algorithm. The proposed ALPR system
consumes about 42 ms per image on average for extracting LP number. Experimental results demonstrate

the effectiveness of our ALPR system.

INDEX TERMS License plate detection, license plate recognition, multinational license plate recognition.

I. INTRODUCTION

Automatic license plate recognition (ALPR) has huge
applicability in various applications such as stolen vehicle
identification, parking lot management, electronic toll col-
lection, traffic flow monitoring, etc. This topic has been
extensively researched by researchers worldwide to improve
performance of ALPR in real-world scenarios. Current ALPR
algorithms achieve exemplary performance in controlled
environments; however, performance is decreased when deal-
ing with complex scenes. The current challenges in ALPR
includes multinational ALPR, dealing with uncontrolled con-
ditions such as uneven illumination, weather (snow, fog,
rain, etc.), image distortion, image blurring, occlusions, etc.
Multinational ALPR is a challenging issue due to the differ-
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ences in license plate (LP) layouts among different countries
and the non-availability of public multinational LP datasets.
Different LP layouts and lack of publicly available multi-
country datasets are responsible for the meager amount of
research work conducted on the problem of multinational
ALPR. Few research works [6], [15] have proposed multi-
national ALPR systems that claim to work on LPs from
different countries. However, these methods were validated
on datasets from various countries that shared a common LP
layout. Based on our analyses, most of the LPs worldwide can
be broadly classified into single line or double line LP. The
datasets used in previous works [6], [15] contain only single
line LPs and may require additional steps to recognize double
line LPs.

A typical ALPR pipeline commonly consists of the fol-
lowing three steps: license plate detection, character segmen-
tation, and character recognition. License Plate detection is
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responsible for finding the location of the LP in a given
image. Character segmentation is responsible for segmenting
individual characters from the detected LP whereas the role
of character recognition is to classify each of the segmented
characters. The first two steps are crucial for correct ALPR
since it directly affects the character recognition stage. Failure
to localize the LP in the first stage leads to failure in the
subsequent stages. In order to overcome this issue, some
literature merges the character segmentation and recognition
steps as object recognition step. Few recent publications
proposed end-to-end deep learning structures to completely
remove inter-dependency among the three stages. However,
as mentioned in the preceding paragraph, these methods are
either tailored to work on specific country’s LPs or are tested
on multi-country datasets that share a common single line LP
layout.

This paper presents a highly accurate deep ALPR system
that is applicable to license plates belonging to multiple
countries. In this study, we propose a three-stage deep multi-
national ALPR approach that combines deep learning with
an image processing-based multinational LP layout detection
algorithm. LP detection is the first stage of the proposed
ALPR system which is responsible for detecting the LP
region in an image. This stage uses tiny YOLOv3 network
architecture [22] for detecting the LP region and is referred
to as the ““attention network™ since it provides the LP region
to the next stage of our ALPR system. Tiny YOLOv3 was
selected since LP detection is a relatively simpler object
recognition task and does not require an extremely deep net-
work. Unified character recognition is the second stage of our
ALPR pipeline and uses YOLOv3-SPP which we call as the
“recognition network’. YOLOv3-SPP is a modified version
of YOLOV3 [22] that includes a spatial pyramid pooling
(SPP) [23] block. YOLOvV3-SPP was chosen due to its ability
to deal with multiscale and small objects. LP region from the
attention network is fed as input to the recognition network.
The recognition network recognizes all the characters printed
on the LP. The recognition network provides no information
about the order of the recognized characters. For extracting
an ordered string from the recognized characters, we propose
a multinational LP layout detection algorithm. The proposed
layout detection algorithm is based on image processing tech-
niques and can extract the correct sequence of the LP number
from multinational LPs. It does so by effectively classifying
among single line and double line LPs. The proposed ALPR
system was tested on Korean (KarPlate dataset), Taiwanese
(AOLP dataset [26]), American (Caltech Cars (Rear) 1999
[28]), Greek (Medialab LPR Database [29]), and Croatian
(University of Zagreb [30]) license plate datasets. Our own
KarPlate dataset was generated by using our semi-automatic
dataset generation strategy. Our ALPR system outperformed
previous works in terms of performance and speed which
is evident in Section 5. In order to test our layout detection
algorithm, we collected a small dataset consisting of LPs from
17 different countries and tested it on the layout detection
algorithm. The results show the effectiveness of our layout
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detection algorithm and validates the applicability of our
ALPR system to multinational LPs.

The main contributions of our study are summarized
below:

1) We present a deep end-to-end ALPR system which is
applicable to multinational LPs without the need of
any additional steps. Given an image containing a LP,
the proposed system can extract the LP number with the
correct sequence. The proposed ALPR system does not
require any specific pre-processing to be used on differ-
ent datasets. Previous studies could also be finetuned
on other countries’ datasets, however, modifications in
the algorithm would be required to work on different
LP layouts.

2) We propose a simple and effective multinational LP
layout detection algorithm that can classify among vari-
ous LP layouts used in most of the LPs used worldwide.
Given the correct bounding boxes, the layout detec-
tion algorithm can extract the correct sequence of LP
number from various LP layouts belonging to different
countries.

3) To the best of our knowledge, we present the first
publicly available' Korean car plate dataset (KarPlate
dataset) containing more than 4,000 full HD images of
Korean cars.

4) Based on the experimental results on datasets from five
different countries, the proposed approach performs
better than previous works in terms of performance
even though many previous works utilize artificial data
to prevent overfitting and to increase the dataset size.
We did not use any artificial data in our system.

The remainder of the paper is organized as follows.
Section Il reviews related studies along with their limitations.
The details about our semi-automatic data annotation strategy
is discussed in Section III. The working of our algorithm
is explained in Section IV while experimental evaluation is
presented in Section V. Conclusion is covered in the last
section of this paper.

Il. RELATED WORKS

ALPR approaches can be broadly divided into two main
categories — traditional image processing methods and deep
learning methods. This section reviews the recent works in
the latter category since our approach also falls into this
category. Specifically, we will review the relevant literature
in license plate detection (LPD) and license plate recogni-
tion (LPR) subcategories. In addition, we also review com-
mercially available ALPR software and the work done on
multinational LP detection/recognition. Lastly, we discuss
the limitations of previous works.

A. LICENSE PLATE DETECTION

A cascade framework consisting of two convolutional neural
networks was used to detect the LP region in [1]. The first

1 Available at “http://pr.gachon.ac.kr/ALPR.html”.
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convolutional neural network (CNN) in the cascade frame-
work was responsible for extracting regions containing text
from the image while the second CNN classified text regions
as LP or as general text. Each image was divided into sub-
regions which were fed independently into a CNN in [4]. The
CNN outputs a score which indicates how likely a specific
sub-region is to contain a LP. A cascaded approach like the
one in R-CNN [27] was used in [5] for LP localization.
A weak SNoW classifier generates candidate LP regions
which were fed into a strong CNN classifier (AlexNet [16])
to be scrutinized. Images that failed to pass a confidence test
were fed into another CNN (AlexNet [16]) which identified
the reason of failure. Failure identification can help in identi-
fication of probable problem which helps in troubleshooting
the ALPR system at the earliest convenience. A simple CNN
was used in [5], [10] for LPD. Region Proposal Network and
Box Regression layer was used in [5] and [10], respectively,
to detect the LP location.

Many real-time LPD approaches [3], [7], [8], [11], [13]
used YOLO networks or its modified versions due to its
fast inference speed. Most deep neural networks struggle at
detecting small objects. To tackle this issue, the study in [7]
trained FAST-YOLO [18] to detect the frontal view of a
car. The detected frontal view was cropped and fed into the
same network to detect the LP. The LP appears bigger in the
cropped frontal view image which makes it easier for the net-
work to detect the LP. The study in [3] modified YOLO [18]
and YOLO9000 [19] for application in LPD and achieved
better accuracy than the original YOLO networks. A multi-
directional LPD method [8] used two networks to detect
rotated LPs. The first network, referred to as the attention
network, detected the LP region while the second network
MD-YOLO (modified version of YOLO [18]) detected the
rotated bounding box of the LP. Two YOLO networks, one
for vehicle detection and the other for LPD, were used in [13].
A CNN called WPOD-NET that regresses coefficients of an
affine transformation for detecting and unwarping distorted
LPs was proposed in [11]. The input to WPOD-NET is the
image of a vehicle which was detected by YOLO [18].

B. LICENSE PLATE RECOGNITION

Many studies [1], [5], [6] have tried to unify the subtasks
(character segmentation and character recognition) of LPR.
The studies in [1], [6] considered LPR as a sequence labeling
problem making the character segmentation step unneces-
sary. The study in [1] proposed the use of a recurrent neural
network (RNN) with long short-term memory (LSTM) and
Connectionist Temporal Classification (CTC) [20] for LPR.
On the other hand, the study in [6] used Bidirectional RNNs
(BRNNs) with CTC loss [20] for LPR. The study in [5]
employed a sweeping OCR technique that swept an OCR
classifier across the LP image and localized the characters
by utilizing a probabilistic inference method based on hidden
Markov models (HMMs). Viterbi decoding was used for
determining the most likely code sequence using a language
model. A slightly modified version of YOLO called CR-NET
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along with a heuristic method was used in [7] for Brazil-
ian LPR. A few other studies [9], [11] also used CR-NET
for LPR. A low-computation CNN inspired by SqueezeNet
Fire Blocks [21] and Inception Blocks was used for real-
time LPR in [10]. The work in [12] combined feature maps
after ROI pooling and fed them into subsequent classifiers for
LPR. A different approach which segmented characters from
a LP using semantic segmentation followed by a counting
refinement stage was adopted in [13]. A modified version of
DeepLabv2 ResNet-101 model was used for semantic seg-
mentation. The counting refinement stage extracted character
regions and fed them into AlexNet [16] for character count-
ing. A sliding-window single class detector via tiny YOLO
classifiers was used in [17] for LPR. 36 tiny YOLO models
were used to recognize characters in the AOLP dataset [26].

C. COMMERCIAL ALPR SOFTWARE

Commercially  available = ALPR  software include
Sighthound [2] and OpenALPR [14]. Sighthound outper-
formed OpenALPR and used a sequence of deep CNNs, how-
ever, exact details about the CNN architecture are unavailable
since it is a commercial product. It is worth mentioning
that [2], [14] were trained on their own large privately col-
lected dataset for various countries.

D. MULTINATIONAL LICENSE PLATE
DETECTION/RECOGNITION

To the best of our knowledge, there has been considerably
meager research conducted on the topic of multinational
license plate detection/recognition. The study in [15] pro-
posed a system for multinational license plate detection in
images with complex backgrounds. First, the rear vehicle
lights were extracted by converting the image to YUV color
space. Once the rear lights were detected, the LP area was
detected by using a histogram-based approach on the edge
energy map. The study by [6], although not termed as multi-
national, tested their approach on LP datasets from vari-
ous countries to validate the generalizing capability of their
method.

E. LIMITATIONS
Most related works have one of the following limitations:

1) Most previous works on LP detection/recognition
are tailored to work on license plates from specific
countries. Generally, such approaches use country-
specific information to constrain the issue of LP detec-
tion/recognition.

2) The previous works [6], [15] dealing with multinational
license plates were tested on datasets from various
countries, however, it must be noted that the datasets
used for testing contained the same single-line license
plate layout. In short, the datasets used lack diversity in
LP layouts.

3) Certain previous works [1], [17] that test their approach
on AOLP dataset require additional pre-processing
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FIGURE 1. Block diagram of semi-automatic data generation strategy.

using Hough transform when testing on subset RP to
tackle the rotated LPs.

Ill. SEMI-AUTOMATIC DATA GENERATION STRATEGY
Most Korean license plate datasets are not available publicly.
Therefore, we create our own Korean car plate (KarPlate)
dataset by using our own semi-automatic dataset generation
strategy as illustrated in Fig. 1. The details about our dataset
generation strategy are described below:

A. INITIAL DATA COLLECTION AND TRAINING

We collected image data from a car parking lot in South
Korea. This initial dataset consists of 372 images — each
image containing a distinct car. We manually annotate this
data using an open-source image labeling software known
as Labellmg [24]. After labeling our data, we generated two
datasets — one consists of full car images with bounding box
annotations for LP while the other dataset consists of images
of cropped LPs with bounding box annotations for every
character.

After dataset annotation, we augmented our dataset by
using the augmentation strategy shown in Fig. 2. We designed
this augmentation strategy in a way that enhances the robust-
ness of our system across varying conditions. The system was
trained by using the augmented images. Our networks were
trained to an extent where it could be tested on unseen data
with enough accuracy. The weights of the trained network
were saved and used in the next step for automatic annotation
of unseen data.
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B. AUTOMATIC ANNOTATION

We collected raw video data for many days from a CCTV
camera installed at a car wash facility in South Korea. From
the raw video data, we extracted video clips which contain
cars and merge all clips into one clip of about 32 hours
duration.

The merged video clip was tested on our network which
was trained in the previous step. If the system detected a
LP in the frame, a script saves the frame along with the
detected bounding box annotations and LP number. A total
of 471,981 frames along with annotations and LP numbers
were saved after running inference on video data.

However, these 471,981 images contained many redun-
dant frames. These frames looked identical in appearance.
It is important to extract only unique frames with distinct
appearance.

C. KEYFRAME EXTRACTION

This step deals with the automatic selection of unique frames
(keyframes) and deletion of the redundant ones. The primary
goal of this step is to discriminate keyframes Iz, from redun-
dant frames /.. Simply, the keyframes are found by calcu-
lating the similarity among the two images using correlation
coefficient r. The overall approach is shown in Fig. 3.

Given a sequence Iy, of images containing n number
of images, the first frame was set as the initial reference
frame I.r. The histogram of the reference frame H,.s was
calculated and recursively compared with the histogram of
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the following query frame H, until the distance d between
the two histograms reaches a threshold value T. Correlation
coefficient was used as the distance measure. The criteria
used to discriminate among frames is defined as follows:

o Ley ifd>T

= 1
Sed 1, ifd <T %
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Redundant frame I,.

Keyframe I,

r= d(Hrefa Hq)
_ Y ENHey () — Hy)(Hy() — Hy)
S B8 Hyr () — Ho 2 S 53, () — Hy P

@

where, IS"eq is the nth image in Iy, Hyer (i) and H,(i) denote

the normalized frequency at pixel value i in the histograms
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FIGURE 4. Block diagram of Proposed ALPR System.

H, and Hy, respectively, and H,s and H, represent the
arithmetic mean of H, and H,,y, respectively.

If d is below the threshold value, then that query frame
is considered as redundant and the comparison is continued
with the following query frame. On the other hand, if d
exceeds the threshold then the query frame is considered
as a keyframe. As soon a keyframe is found, the initial
reference frame is switched with the found keyframe and
the process continues until no frame remains in I . A total
of 3,893 keyframes were extracted from the 471,981 images
by using keyframe extraction.

D. MANUAL VERIFICATION

In this step, we manually verify the annotations of the
3,893 extracted keyframes which were automatically anno-
tated. This was to ensure that all the annotations were correct.
Firstly, we verified the LP numbers of each image. This was
followed by verification of bounding box coordinates and
bounding box labels. In case of any incorrect annotation,
the image’s annotation file was corrected and updated.

IV. PROPOSED ALPR SYSTEM

In this section, we describe the working of our proposed
ALPR approach. Our system is primarily based on YOLOv3
[22]. The overall block diagram of our algorithm is illustrated
in Fig. 4. The proposed algorithm can be divided into three
main steps:

1) License Plate Detection
2) Unified Character Recognition
3) Multinational License Plate Layout Detection

A. LICENSE PLATE DETECTION

This step of the algorithm deals with the detection and
localization of the LP. The primary goal of this stage is
to constrain or restrict the search area for the character
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Unified Character
Recognition

Recognized Characters

recognition step. The localized LP plays is a crucial role
in reducing the number of false character detections out-
side the LP area. We propose to use the YOLO network
architecture in this stage of our system. Specifically, we use
tiny YOLOV3 for this step of our proposed algorithm. Tiny
YOLOV3 is a smaller version of YOLOv3 and achieves
high FPS at the expense of decrease in mAP score. Tiny
YOLOV3 is feasible for our application since LP detection
is a simpler task as compared to LP recognition.

The YOLO object detector works by splitting an image into
an S x § sized grid. For each grid cell, K number of bounding
boxes along with the confidence scores Pr(Object) x IOU ;‘;g’
are predicted. The confidence score indicates the extent to
which the model is confident about the existence of an object.
Confidence score is zero in the absence of an object. In the
presence of an object, confidence score is equal to the IOU
between the predicted and the ground truth bounding box.
A conditional class probability score Pr (Class;|Object) is
also predicted for each grid cell containing an object. The
class-specific confidence score for each box is calculated
using Equation 3 and is encoded as an S x S x (K x (54 C))
tensor.

PR (Class;|Object) * Pr(Object) IOU;;’;Z’

= Pr(Class)) = IoUpatt ~ (3)

The main reason for selection of YOLO is its real-
time performance and high accuracy. Specifically, we uti-
lize the latest YOLOV3 instead of YOLOV2 even though
YOLOV2 achieves higher frames per second (fps). This is
because YOLOv3 achieves a higher mean average precision
(mAP) score and makes predictions at three different scales.
An accurate system with a reasonable level of real-time speed
is preferred over a high fps system with a low accuracy. The
ability of YOLOV3 to make predictions at varying scales
preserves fine features which enables the network to detect

VOLUME 8, 2020



C. Henry et al.: Multinational LPR Using Generalized Character Sequence Detection

IEEE Access

small objects. Previous versions of YOLO struggled to detect
small objects. The YOLOV3 used in this step is referred to
as the attention network since it extracts important region for
the recognition network. The network was trained on images
resized at 640 x 640 for KarPlate subset LPD, AOLP [26],
and Medialab [29] datasets. In case of Caltech Cars [28] and
University of Zagreb [30] datasets, network input image size
of 704 x 416 and 640 x 480 was selected based on LP
aspect ratio, respectively. We changed the number of filters
used in the last convolution layer of YOLOv3. The number
of filters depends upon the number of classes (1 in this case)
to predict and is calculated by using Equation 4. YOLO
utilizes anchors A to predict bounding boxes with coordinates
coords (x,y,w, h). The default value of A was used in our
experiments. YOLO requires a confidence threshold value.
An object’s location will be returned only if it is over the
confidence threshold. Sometimes, YOLO predicts other sim-
ilar objects (like billboards, etc.) as LP. To solve this issue
and improve LP detection and localization, we added negative
image samples during training.

no. of filters = (no. of classes + coords +1) x A (4)

B. UNIFIED CHARACTER RECOGNITION

This step is responsible for recognizing characters in the
extracted LP from the previous step. Contrary to most previ-
ous works, which address character recognition as a two-step
problem (segmentation and recognition), we pose character
recognition as an object recognition problem. Using object
recognition, we unify the character segmentation and recog-
nition step into one by treating characters as objects. This
stage uses YOLOV3-SPP which is an improved version of
YOLOv3 that uses spatial pyramid pooling (SPP) block [23].

Contrary to traditional pooling, spatial pyramid pooling
splits a feature map into B; = n; x n; bins where B; denotes the
number of bins in the i-th layer of the pyramid. The feature
maps are then pooled by using max pooling into the same size
as its bin. This produces an N x B vector, where N denotes the
number of filters in the convolution layer and B denotes the
number of bins. By pooling in local spatial bins SPP generates
fixed-length vectors by pooling the features together. The
filter size in traditional pooling is fixed whereas the filter size
in SPP depends upon the input and output size. The use of SPP
block has shown to improve performance in various CNNs
since SPP handles multi-scale images effectively.

The network was trained on images resized at 384 x 192,
288x224, 256x224, 384 x224, and 384x224 for KarPlate
subset LPR, AOLP [26], Caltech Cars [28], Medialab [29],
and University of Zagreb datasets, respectively. The network
input image sizes were chosen based on the aspect ratios of
LPs. For the KarPlate LPR dataset, the network was trained
to recognize 45 classes. Korean LPs consist of 35 Korean
alphabetic (Hangul) characters and 10 numerical characters.
The details about the 35 Hangul and 10 numerical characters
are shown in Table 1. In case of other datasets, the network
was trained to recognize 36 classes (A-Z and 0-9). Like the
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TABLE 1. Table showing the Hangul and numerical characters used in
Korean LPs.

Type Characters
7} (Ga), U (Na), T} (Da), 2} (Ra),
u} (Ma), 7| (Geo), 1 (Neo),H (Deo),
2 (Reo), # (Meo), H| (Beo), 4] (Seo),
o] (Eo), A (jeo), 1L (Go), 1= (No),

Korean
. T (Do), Ro), & (Mo), Bo),
alphabetic (Hangul) i( (503)’53( (8))’ = ((Joi )—T’-%C(}u;), )
= (Nu), 7 (Du), £ (Ru), 7 (Mu),
£ (Bu), 4= (Sw), ¢ (U), = (Ju),
5] (Heo), 5} (Ha), © (Ho)
Numerical 0,1,2,3,4,5,6,7,8,9

preceding step, YOLO filters were recalculated for improving
object detection. Since the number of characters n. in a spe-
cific country’s LP are known, we use this information to filter
out the top n. characters from the detected characters. This
way characters with low confidence scores can be filtered
out and false positive can be reduced. In case the number of
characters is variable, we compute IOU among the detected
objects and reject the object with lower confidence if the IOU
among two bounding boxes is greater than a threshold.

C. MULTINATIONAL LICENSE PLATE LAYOUT DETECTION
There is a specific layout for every country’s LP. Every LP
number should be extracted in the correct order. The output
from the recognition network does not provide information
about the order of the LP number. Therefore, certain heuris-
tics are required to extract the final number. Most previous
works design methods for extracting the correct order of
license number. However, these methods work only on spe-
cific countries’ LPs and fail when applied to other countries’
LPs. In this study, we propose an algorithm for extracting the
correct order of the LP number that generalizes to multina-
tional LPs.

In order to develop a universal algorithm, we first ana-
lyze the layouts of LPs existing in the world. We examine
LPs belonging to various countries from all continents of
the world (except Antarctica). Particularly, we analyze LPs
from 17 countries belonging to different continents as shown
in Fig. 5. Based on our analyses, we observed that most LPs
in the world can be classified as single line or double line
license plate as shown in Fig. 5.

The block diagram of our algorithm is shown in Fig. 6.
First, we sought all the recognized bounding boxes by anL
(top left x coordinate). Let bboxes be the sorted list of lists in
ascending order.

TL .TL .BR _BR
bboxes = (x17, ¥, %] Y] s

g B yIE BB GBRY LT IRy, (I yBRY)
)

where x/F and yIT represent the top left x and y coordinate
whereas xBR and yBR represent the bottom right x and y
coordinate of n-th bounding box. After sorting, we make line

segments on the left side of all bounding boxes. The end
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FIGURE 5. License plates from 17 different countries belonging to various continents.
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FIGURE 6. Block diagram of multinational license plate layout detection.

points of the line segments / (see blue line in Fig. 7 and 8)
are given by:

1= [TF 3Ty, T, B8R,
[T, Y5y, GdE V8B, L T, 3Ry, (o TE, yBRY)

(©)

This is followed by extracting the left (/j;) and right (/;gp,)
borderline (see yellow line in Fig. 7 and 8). Since the bboxes
list is sorted in ascending order, therefore, the end points of
liefy and Iy;gn, borderline can be found by using the first and
the last bounding box coordinates in bboxes, respectively. The
coordinates for [;,; and lgp, are:

lee = (&, yT5), (E, yBR) @)
Lighe = (x5, yiE), (e, yBR) ®)

Then, we draw a line segment [l.onzr (See purple line
in Fig. 7 and 8) with the midpoints of the borderlines
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j

If double line LP

(Liefr and I ;gp) as its endpoints. The end points of /¢, are:

BR TL BR TL
. Y1~ ) w Yn Y
leenter = (x] , /), (x £ -2

) n 7 ) ©)
Next, we need to check the number of line segments inter-
secting the center line leepser. If leenser intersects all the line
segments, then the LP is a single line LP (see Fig. 7’s right
most image). On the contrary, if l..nzr intersects a few line
segments then the LP is a double line LP (see Fig. 8’s right
most image). To find the number of intersections, we generate
line equations in general form (ax+by = c) by converting the
end points of line segments (/). The intersection point P(x, y)
can be calculated by:

ciby — caby  ajcr — axcy

P(x, y) =( ) (10)

a1b2 — a2b1 ’ a1b2 — a2b1
where ai, by, and ¢ represent the coefficients of one line
while a», b>, and ¢, represent the coefficients of the other
line. Note that equation 10 finds the point of intersection for
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FIGURE 7. Explanatory image for single line LP. From left to right: input image with bounding boxes around detected characters, detected lines
(see blue lines), detected borderlines (see yellow lines), and the center line (see purple line).

FIGURE 8. Explanatory image for double line LP. From left to right: input image with bounding boxes around detected characters, detected lines
(see blue lines), detected borderlines (see yellow lines), center line (see purple line), and the top and bottom line (see green dots).

infinitely long lines defined by end points, rather than the line
segments between the end points. Therefore, to find whether
an intersection point exists within the line segments, we apply
the following criterion:

1, if min (x/, xB%) < P(x) < max (x]*, xBK)

fo= and min (y2£, y8R) < P(y) < max (yiF, y5F)
0, otherwise
(11)
If f(x) = 1, it means that an intersection point exists

within the two line segments while f(x) = 0 means that an
intersection point does not exist within the two line segments.
Based on the number of line segments that intersect lcenser,
we can find the type of LP by using the criterion:

g(x) — L, lﬂ\]int : Npboxes — 2 (12)
2, otherwise

where N;,;; is the number of intersections and Nppoxes 1S the
total number of bounding boxes in bboxes. The function g(x)
returns a 1 for a single line LP and 2 for double line LP. For
a single-line LP, the final number will have the same order
as bboxes. For double-line LP, the bounding boxes lying on
the top and bottom area of the LP must be found. To find the
bounding boxes lying in the top part of the LP, the following
criterion is applied:

10Pline

_ bboxesin;, if leL € bboxesi,; < leL € bboxess;

bboxes—

= i leL € bboxesip; > leL € bboxes;—

int

13)

where bboxes;y; and bboxess; are lists of bounding boxes that
intersect and do not intersect l.enzer, respectively. bboxesiy;
and bboxes; are sorted by x,{L (top left x coordinate) in
ascending order. bboxes;,; includes bounding boxes that
are associated with the borderlines (lip and lyigns). leL
is the top left y coordinate of the lst bounding box in
bboxesin; or bboxess;. The bounding boxes in the top area
will be written first while the ones in the bottom area will be

written at the end in the final string.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

A. DATASETS

The proposed approach was validated on datasets contain-
ing license plates from South Korea, Taiwan, United States
of America, Greece, and Croatia. Dataset details about the
Korean (KarPlate dataset), Taiwanese (AOLP dataset [26]),
American (Caltech Cars (Rear) 1999 [28]), Greek (Medialab
LPR Database [29]), and Croatian (University of Zagreb [30])
datasets are briefly described in the following subsections.
The publicly available datasets [26], [28]-[30] were manu-
ally annotated since none of these datasets provided bound-
ing box annotations for LP detection (except for AOLP
dataset) or character recognition.

1) KARPLATE DATASET (SOUTH KOREA)

The KarPlate (Korean car plate) dataset is publicly available
and can be downloaded from our project webpage'. The
details about our dataset generated using the semi-automatic
dataset generation strategy will be discussed in this section.
The KarPlate dataset is divided into subset LPD, subset
LPR, and subset EER. Subsets LPD and LPR each con-
tain 3,417 images for training and 850 images for testing.
Subset EER contains only 929 test images along with the LP
numbers. Among the 929 images in subset EER, 850 images
are same as the test images in subset LPD while the remaining
79 images were captured by a mobile phone’s camera. These
79 images are relatively more challenging since each image
contains multiple LPs.

Each subset is intended to be used for a specific task.
Subset LPD is for license plate detection, subset LPR is
for license plate recognition, and subset EER is for end-
to-end recognition. Each image in subset LPD and subset
EER have a resolution of 1920x1080. The train-split is
augmented using the augmentation strategy shown in Fig. 2.
After augmentation, more than 30,000 and 60,000 images for
training were generated using subset LPD and subset LPR,
respectively. The annotations of the augmented images were
also augmented using the imgaug library [25]. Sample images
from each subset can be visualized in Fig. 10. It should be

1 http://pr.gachon.ac.kr/ALPR html
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FIGURE 10. Samples from KarPlate dataset. From top to bottom; images from subset LPD, images from subset LPR, and images from subset EER.

noted that our dataset does not contain images of commercial
and rental vehicles in South Korea since none passed through
our camera setup.

2) AOLP DATASET (TAIWAN)

The application-oriented license plate (AOLP) [26] database
is a public dataset consisting of 2,049 images of Taiwanese
license plates. The dataset is divided into access control
(AC), law enforcement (LE), and road patrol (RP) subsets.
Subset AC, subset LE, and subset RP consist of 681, 757,
and 611 images, respectively. License plates in each subset
present varying application parameters (like tilt, width ratio,
distance, etc.) depending upon the application case. Subset
AC comprises of images of vehicles passing through fixed
passages such as toll stations. Images captured by roadside
cameras which are used for checking traffic law violations
are included in Subset LE. Lastly, subset RP contains images
taken by handheld cameras which are used for finding parking
violations, searching lost vehicles, etc. Following previous
works, two subsets were used for training while the third
subset was used for testing.

3) MEDIALAB LPR DATABASE (GREECE)

The Medialab LPR database consists of 716 images con-
taining Greek license plates and is provided by the National
Technical University of Athens. It is divided into a normal
subset and a difficult subset which covers situations like
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shadows, low-light, blur, dirt, etc. The normal subset contains
437 images while the difficult subset contains 279 images.

Considering the previous works, normal subset was used
for testing and difficult subset was used for training our
system. However, it must be noted that the difficult subset
contains only 279 images out of which 20 images contain
unreadable license plates due to small image dimensions.
This leaves us with 259 images which are extremely less for
training our deep neural networks even after applying data
augmentation. To tackle this issue, we used 501 images from
the University of Zagreb [30] dataset, 108 images from the
OpenALPR Europe dataset [31], and 1,428 images from Reld
dataset [32]. All the images taken from other datasets contain
European LPs. For testing, 431 out of 437 images were used
from the normal subset since the remaining images contained
unreadable LPs. The characters ‘1’ and ‘I” were trained as a
single class due same appearance in Greek LPs. ‘0’ and ‘O’
were also trained as single class due to the same fact. These
characters were swapped during the testing phase since the
first two or three characters in Greek LPs are always letters
while the remaining four characters are always digits.

4) CALTECH CARS (REAR) 1999 DATASET (USA)

The Caltech Cars (Rear) 1999 dataset contains 126 images
of vehicles containing license plates from different
states of USA. The images have a resolution of 896 x592 pix-
els and were captured at Caltech parking lot with a cluttered
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TABLE 2. LP detection comparison in terms of precision (P) and recall (R) at 10U of 0.5.

Approach AC Ai)é P RP MediaLab Caltech Cars | University of Zagreb | KarPlate Subset LPD
P/R P/R P/R P/R P/R P/R P/R
[34] - - - 87.68/91.30 - - -
[1] 98.53/98.38 | 97.75/97.62 | 95.28/95.58 - -
[8] 99.51/99.51 | 99.43/99.43 | 99.46/99.46 - -
[17] 100.00/99.53 | 99.01/98.62 | 95.67/95.71 - -
[35] - - - - 98.64/97.95
[36] - - - - 99.13/99.13 - -
Proposed | 98.98/100.00 | 97.70/98.96 | 98.23/100.00 | 98.85/99.76 | 100.00/100.00 98.01/99.00 100.00/100.00

background. The dataset was randomly spitted into 80 images
for training and 46 images for testing. The train-test split was
inspired by previous works. In addition to the 80 images,
244 images from OpenALPR US dataset, 108 images from
OpenALPR Europe dataset [31], and 501 images from the
University of Zagreb [30] dataset were used for training
the character recognition network. On the other hand, only
OpenALPR US dataset [31] was used for training the LP
detection network.

5) UNIVERSITY OF ZAGREB DATASET (CROATIA)

This database comprises of 510 images of vehicles con-
taining Croatian license plates collected by the University
of Zagreb, Croatia. Among the 510 images, 9 images were
discarded, and the remaining 501 images were utilized for
training and testing. The dataset was randomly spitted which
resulted in 401 images for training and 100 images for testing.
108 images from OpenALPR Europe dataset [31] were also
used for training. The characters ‘0’ and ‘O’ were trained
and tested as a single due to the same appearance in Croatian
license plates.

B. IMPLEMENTATION DETAILS

The proposed system was trained and tested on a personal
computer containing an Intel Core i7-4770 processor along
with NVIDA Titan X Pascal and 24 gigabytes of RAM. Alex-
ayAB’s version of Darknet [33] was used to train the YOLO
networks. The overall system was programmed using python
and a python wrapper was used for incorporating Darknet
in the system. Imgaug [25] was used for data augmentation
along with the bounding boxes.

C. EXPERIMENTAL RESULTS

The proposed method was evaluated on five LP datasets each
belonging to a different country to validate the effective-
ness of our approach. The performance evaluation is divided
into five sections — license plate detection, license plate
recognition, end-to-end recognition, multinational LP layout
detection, and time consumption. The sections are described
below:

1) LICENSE PLATE DETECTION

The LP detection performance was evaluated on AOLP [26],
Caltech Cars (Rear) 1999 [28]), Medialab LPR Database [29],
University of Zagreb [30], and KarPlate subset LPD datasets
in terms of precision and recall and is presented in Table 2.
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Precision can be calculated by dividing the number of cor-
rectly detected LPs by the total number of detected LPs.
Recall can be calculated by dividing the number of correctly
detected LPs by the total number of ground truth LPs. Preci-
sion and recall are mathematically defined as follows:

. TP
Precision = —— (14)
TP + FP
TP
Recall = ——— (15)
TP + FN

where TP, FP, and FN represent true positive, false positive,
and false negative, respectively. The detected LP bounding
box is considered correct if it there is an overlap greater
than 0.5 between the predicted and the ground truth bounding
box. Considering the evaluation criterion of previous works,
we select the threshold value of 0.5 for a fair comparison.

The LP detection performance was compared the recent
methods [1], [8], [17], [34]-[36]. It is evident from
Table 2 that the proposed approach outperformed most
previous works on the five datasets. The proposed approach
outperforms the work by [34] with precision/recall rate
of 98.85/99.76% on the Medialab dataset [29]. Similarly,
a high precision/recall rate of 100.00/100.00% surpassed
the results by the methods in [35-36] on the Caltech Cars
dataset [28]. A high precision/recall rate of 98.01/99.00 and
100.00/100.00 was obtained on the University of Zagreb [30]
and KarPlate subset LPD datasets, respectively. In addition,
our system achieves high recall rate of 100.00% on both
AOLP subset AC and AOLP subset RP.

2) LICENSE PLATE RECOGNITION

In this section, the LP recognition performance is compared
with the previous works [1], [11], [13], [17], [37]. The
accuracy shown in this section corresponds to the combined
accuracy of the character recognition network and the layout
detection algorithm. It should be noted that the input to the
character recognition network is the cropped LP image. Given
the cropped LP image, the character recognition network
detects characters in the image which are later fed into the
layout detection algorithm resulting in a character sequence
which represents the LP number. The result is considered as
correct only if all the characters are detected correctly and the
LP number is in the correct sequence. The result is declared
incorrect if certain characters are not detected or if more
characters are detected.
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TABLE 3. LP recognition comparison in terms of accuracy (%).

Approach AC = AOLII:P Average MediaLab | Caltech Cars | University of Zagreb | KarPlate Subset LPR
LSTM [1] 94.85 | 94.19 | 88.38 92.47
DeepFCN [37] 97.9 97.6 98.2 97.9
CR-Net [11] - - 79.21 - -
DeepLabv2 ResNet-101 [13] | 99.41 | 99.31* | 99.02 99.25 97.89P
Sliding-window YOLO [17] - - - 78 - - - -
Proposed 99.41 99.1 99.53 99.34 98.36° 95.65 98 98.59
4 Accuracy calculated only for 582 out of 757 images in AOLP subset LE.
b Accuracy calculated only for 427 out of 437 images in Medialab normal subset.
TABLE 4. End-to-end performance comparison in terms of accuracy (%).
AOLP . Lo
Approach AC IE RP Average MediaLab | Caltech Cars | University of Zagreb | KarPlate Subset EER
OpenALPR [14] 58.88 | 67.5 | 64.98 63.78 96.52 89.13 93 97.95
Sighthound [2] 95.01 | 98.01 | 90.18 94.4 83.29 95.65 96 -
BRNN:s [6] 9529 | 96.57 | 83.63 91.83 - - -
YOLOV2 + WPOD-Net [11] - - 98.36 - - -
YOLOV2 + CR-Net [36] - - - - - 98.7 - -
Proposed 99.41 | 97.88 | 99.51 98.93 96.98 97.83 97 98.17

The LP recognition results on the AOLP, Medialab,
Caltech Cars, University of Zagreb, and KarPlate subset
LPR datasets were compared with the results from previous
works [1], [11], [13], [17], [37] and are presented in Table 3.
The proposed approach achieves high accuracy on all the five
datasets. The results show that our method achieves an aver-
age accuracy of 99.34% on the AOLP dataset outperforming
the previous state-of-the-art method [13]. Our approach per-
formed well on all subsets of AOLP dataset. It should be noted
that the accuracy for AOLP subset LE by [13] was calculated
only for 582 out of 757 images whereas we present result
for all 757 images in AOLP subset LE. Hence, our method
is superior in results when compared to the results in [13].
In case of AOLP subset RP, the toughest subset in AOLP
dataset, we achieved an accuracy of 99.53%. It should be
noted that the study in [7] used Hough transform to straighten
the LPs as a preprocessing step before inputting it to their pro-
posed algorithm. Our algorithm can effectively handle rotated
LPs without requiring any pre-processing. The study in [11]
did not include results on subset AC and subset LE while
the study in [17] only provided average accuracy, hence, our
results could not be compared with theirs.

It must be considered that the accuracy mentioned by [13]
for Medialab dataset was calculated only for 427 images.
Hence, for a fair comparison, the accuracy of 98.36% pre-
sented in Table 3 for proposed approach was calculated only
for 427 images. The accuracy achieved by our method for
431 images was 97.75%. In case of Caltech Cars, University
of Zagreb, and KarPlate subset LPR datasets, an accuracy
of 95.65, 98.00, and 98.59 was achieved, respectively. To the
best of our knowledge, none of the previous works mentioned
accuracy only for LP recognition on Caltech Cars and Univer-
sity of Zagreb datasets.

3) END-TO-END RECOGNITION
This section evaluates the end-to-end performance of our
approach. The end-to-end performance indicates the overall
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performance of the proposed solution. The uncropped LP
image is passed into our three-step algorithm and the result is
the LP number. Note that the input image is not a cropped-out
LP image. The resultis correct if LP is detected correctly, rec-
ognized correctly, and layout is detected correctly. Incorrect
result at any of the three step leads to an incorrect recognition.
Simply, given an uncropped LP image, the resulting character
sequence must match the ground truth character sequence.

Table 4 presents the end-to-end performance of our method
and compares it with previous academic [6], [11], [36] and
industrial works [2], [14]. It is evident that the proposed
method surpasses results by commercial software [2], [14]
and academic works [6], [11], [36] on all five datasets. It is
worth mentioning that commercial software are generally
trained on much larger datasets which is huge advantage in
deep learning. Our method outperforms previous academic
works [6], [11], [36] and both the commercially available
software [2], [14] with an average accuracy of 98.93% on
the AOLP dataset. For OpenALPR [2], the region was set to
Europe when testing AOLP dataset since OpenALPR lacks
Taiwan region. Europe was chosen since both European and
Taiwanese LPs are single line LPs and use the same char-
acters. The work by [11] used artificial data to achieve the
accuracy of 98.36% on AOLP subset RP while ours did not
use artificial data. The performance of the work by [11] on the
AOLP subset RP drops down to 93.29% without using artifi-
cial data while our work achieves 99.51% accuracy without
artificial data. Also, the work by [6] cannot deal with rotated
LPs in subset RP which is evident from the low 83.63%
accuracy.

The proposed method outperformed commercial
software [2], [14] and achieved an accuracy of 96.98% and
97.00% on Medialab and University of Zagreb datasets,
respectively. An accuracy of 97.83% was obtained by our
method as compared to 98.70% by [36] on the Caltech Cars
dataset. However, it must be taken into consideration that
test data was randomly selected in [36] and in our work.
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FIGURE 11. The output from the multinational LP layout detection step (see bottom of every LP image shown).

TABLE 5. Time consumption (ms/image) of proposed system for LPD,
LPR, and end-to-end recognition.

Dataset LPD | LPR | End-to-End Recognition
AOLP 15.54 | 15.65 29.19
MediaLab 30.34 | 19.21 47.02
Caltech Cars 19.36 | 14.94 343
University of Zagreb | 14.69 | 17.03 32.18
KarPlate Dataset 4733 | 1591 65.12
Average 25.45 | 16.54 41.56

TABLE 6. Average execution time for end-to-end recognition assuming a
certain number of LPs/vehicles exist in an image. The execution time was
tested on KarPlate dataset (subset EER).

No. of Vehicles | Time (ms/image)
1 63.62
2 78.39
3 93.10

It may be possible that relatively difficult images might
have been included in our test set which can be respon-
sible for slightly lower accuracy. Lastly, a high accuracy
of 98.82% was achieved on KarPlate Subset EER dataset.
Since Sighthound [14] cannot detect Korean characters,
hence, we could not test KarPlate Subset EER dataset on it.

4) MULTINATIONAL LP LAYOUT DETECTION
We already evaluated the proposed approach on five datasets
from different countries. However, to further validate the
applicability of our approach to multinational LPs, a demo
evaluation on LPs from 17 countries is presented. Demo
evaluation is presented since most countries do not have
public LP datasets. Even if public LP dataset for a specific
country is available, it must be annotated with bounding box
annotations since our method deals character recognition as
an object recognition problem. Annotating datasets for about
17 countries is extremely time consuming.

Hence, a demo dataset consisting of images each contain-
ing LP from a different country (some LPs belong to same
country but differ in layout). The purpose of this evaluation
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is to demonstrate the applicability of our work to multina-
tional LPs without the need of any additional steps. This
evaluation assumes that the character recognition network
outputs correct results. Fig. 11 shows the resulting correct
sequence of characters for the demo dataset. It is obvious
from Fig. 11 that the proposed layout detection algorithm can
successfully extract the correct sequence of the LP number.
However, it is worth mentioning that as time passes by, new
LP layouts may be made available and it is possible for
the algorithm to fail in that case. We show that our layout
detection algorithm can work on most of the LP with different
countries.

It is possible that the character recognition network might
also recognize the state’s name. For instance, ‘FLORIDA’ in
USA LP can be detected as characters even though it might
not be a part of the LP number. To cater this issue, such words
can either be trained as another class which can be rejected
later if recognized or can be used as a negative samples during
training the character recognition network.

5) TIME CONSUMPTION

This section evaluates the time consumption of the proposed
approach on three tasks. These three tasks include license
plate detection (LPD), license plate recognition (LPR), and
end-to-end recognition (EER).

The time consumption of our proposed system, presented
in this section, was computed using a computer with an
Intel i7-4770 processor, NVIDIA GTX Titan X Pascal and
24 gigabytes of RAM. It must be noted that the time con-
sumption for LPR includes the time taken by the layout
detection algorithm. Aslo, it is worth mentioning that the time
consumption for our approach reported in this paper includes
image reading time. The proposed system is faster if image
reading time is excluded.

Table 5 presents the time consumption for LPD, LPR,
and end-to-end recognition on all five datasets. For each
dataset, we take all test images from that dataset and test
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TABLE 7. Time consumption (ms/image) comparison with recent works for LPD and EER.

AOLP Caltech Cars | University of Zagreb
Method GPU LPD | EER | LPD | EER | LPD EER
BRNNs [6] NVIDIA Titan X N 400 - - N N
[38] NVIDIA Tesla K40c : : 2_0 : 2_0 :
Proposed | NVIDIA Titan X Pascal | 15.54 | 29.19 | 19.36 | 343 | 14.69 32.18

it on our ALPR system. The average of the time taken to
process each image is reported in Table 5. It takes our system
25.45 ms per image, 16.54 ms per image, and 41.56 ms per
image on average for LPD, LPR, and end-to-end recognition.
The highest execution time is for KarPlate dataset. This is
because the images in KarPlate dataset have a resolution
of 1920x 1080 pixels which is the largest among the other
four datasets. Another reason is that KarPlate subset EER
contains images consisting of multiple LPs whereas all other
four datasets contain images with single LP.

In practical applications, ALPR systems are required to
process images that contain multiple LPs which increases
time consumption. Therefore, for a more realistic evaluation,
Table 6 presents the time consumption assuming that a certain
number of LPs are present in an image. The execution time
presented in Table 6 is for KarPlate dataset (subset EER).
To compute the execution time for multiple LPs, we had to
manually divide the dataset into three subsets based on the
number of LPs. For each subset, we test all images in that
subset and report the average of the time taken to process
each image in Table 6. Execution time for multiple LPs could
not be computed for the other four datasets since none of
the images in other four datasets contain multiple LPs. It is
evident from Table 6 that the execution time increases by
a few milliseconds with the increase in the number of LPs.
The proposed system can process a full HD image with three
LPs in 93.10 ms (about 11 frames per second). Although,
11 frames per second is not blazing fast, however, this is
good enough for real-time usage. It is also worth mentioning
that the execution time will be decreased if our system is
implemented in C4+ and if multi-threading is integrated
in the source code. Unfortunately, due to time limitation,
the results presented in this study were computed using the
python implementation of our system which did not use
multi-threading.

Table 7 compares time consumption for LPD and end-
to-end recognition with recent works [6], [38]. For a fair
comparison, the hardware used in previous works [6], [38]
is mentioned in Table 7. The time consumption of previous
works [6], [38] were taken from the respective studies. It is
clear from Table 7 that our approach is faster than previ-
ous works [6], [38]. Our approach consumes 29.19 ms for
end-to-end recognition on AOLP dataset, which is consid-
erably less when compared to [6]. In case of LPD, the pro-
posed method outperforms [38] with a time consumption
of 19.36 ms and 14.69 ms for Caltech Cars and University
of Zagreb datasets, respectively. The time consumption for
LPR could not be compared since we could not find related
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works that report time consumption for LPR on the datasets
used in this paper.

VI. CONCLUSION

This paper presented a generalized solution for multina-
tional license plate recognition. Our algorithm consists of
LP detection, unified character recognition, and multina-
tional LP layout detection steps. LP recognition is posed as
an object recognition problem which unifies the character
segmentation and character recognition steps. Our system
is applicable to license plates from multiple countries by
using our proposed multinational LP layout detection algo-
rithm. To the extent of our knowledge, LPs from most of
the countries can be broadly classified into single line and
double line LPs. The proposed layout detection algorithm
is simple, yet it can effectively classify among various LP
layouts. Given the correct bounding boxes, our algorithm can
effectively extract the correct sequence of LP number from an
image. A new Korean car plate (KarPlate) dataset was made
publicly available for research purposes. The proposed solu-
tion was tested on license plates from South Korea, Taiwan,
USA, Greece, and Croatia. Results show that our proposed
approach outperforms previous research works and commer-
cial software. In addition, we collected a small demo dataset
consisting of LP images from 17 different countries and tested
our layout detection algorithm on it. The layout detection
algorithm extracted correct sequence of the LP number from
17 countries’ LPs. The proposed solution consumes about
42 ms per image on average which is considerably faster than
previous works. In a nutshell, our proposed algorithm can
work on datasets from multiple countries without the need of
any additional algorithms or country-specific information.
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