
Next-generation geospatial-
temporal information
technologies for disaster
management
Traditional geographic information systems (GIS) have been
disrupted by the emergence of Big Data in the form of geo-coded
raster, vector, and time-series Internet-of-Things data. This article
discusses the application of new scalable technologies that go far
beyond relational databases and file-based storage on spinning disk
or tape to incorporate both storage and processing data in the same
platform. The roles of the Apache Hadoop Distributed File Systems
and NoSQL key-value stores such as the Apache Hbase are
discussed, along with indexing schemes that optimally support
geospatial-temporal use. We highlight how this new approach can
rapidly search multiple GIS data layers to obtain insights in the
context of early warning, impact evaluation, response, and recovery
to earthquake and wildfire disasters.
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Introduction
Geographic information systems (GIS) have been around

for a long time. One of the earliest examples of geographic

analysis is the well-known work of John Snow in tracing the

location and source of a cholera outbreak in London in 1849

[1]. The term “GIS” was first coined by Roger Tomlinson in

1968, who was at the center of a Canadian land mapping

application [2]. The traditional data formats used in GIS are

vector and raster imagery with sparse temporal and limited

spatial coverage, but the dropping cost of sensors and

imagery acquisition combined with novel sensing system

like geo-tagged mobile, social, and crowdsource data

increased data volume exponentially. While a few years

back, a couple of terabytes were generated yearly from

earth observing satellites likes the land remote-sensing

satellite system (Landsat) and the moderate resolution

imaging spectroradiometer (Modis) imagery, currently GIS

data generation is in the range of hundreds of petabytes per

year [3]. The high density and wide coverage of earth-

surface data enable researchers to discover and monitor

changes remotely in near-real time.

With the extensive use of GIS data, new applications

have been developed in many industries to assess “what and

where” events are happening [4]. For example, in the

telecom industry, GIS data can help determine where to

build the next-generation cell tower network. In agriculture,

it might show where to apply fertilizers or plant the best

crop on a farm. In disasters like hurricanes, it can show

government agencies where to send first response teams

and what equipment is needed. Companies like Uber,

Foursquare, Zillow, and Garmin have merged GIS data

with social data and created new businesses [5] built on

open source data. The diversity and the volume of data

generated require a paradigm shift in data storage and

processing.

Traditional GIS data stores, which are generally using a

relational database with spatial extender in back end, are

being disrupted by the emergence of Big Data technologies

that offer a more comprehensive data management. First

and foremost, the nature of relevant GIS data is changing

drastically. Traditional GIS is designed to work with mostly

static spatial vector data, which is generally small-volume.

For example, all the vector data from openstreetmap.org,

which includes most roads and houses across the globe as

well as increasing coverage of human infrastructure such as

houses, stores, land use, traffic signs, hiking trails, etc., is

only a few gigabytes in size. There is much more data—

often orders of magnitude more—that is in the form of geo-

coded imagery from drones, cell phones, and satellites. The

data generation rate of the European Space Agency (ESA)
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is tens of terabytes per day. Point cloud vector data from

Light Detection and Ranging (LIDAR), which consists of

billions of reflected intensities from ground-pointing lasers,

has approximately 10 to 30 data points per square meter for

high-resolution mapping. Finally, the Internet of Things

(IoT) produces enormous volumes of geo-coded temporal,

real-time data. For example, geo-coded IoT data from the

advanced metering infrastructure monitors energy

consumption at each endpoint in an electric power grid.

Overlays of such real-time energy consumption data with

other data such as weather, renewable energy generation,

etc., would enable more efficient grid operations and faster

restoration of power after a disaster. Traditional GIS was

not primarily designed for real-time data and is aimed at

“what and where” use cases leveraging small-volume

vector data. However, today many “what, when, and

where” use cases have emerged, and these involve much

larger volumes of data of various types (vector and raster),

including the time dimension (static and temporal). The

next disrupting trend can be described by the notion of

“data gravity,” which is a result of two facts. First,

geospatial-temporal data is becoming so big for many use

cases that it cannot be downloaded to a local computer or

moved. The 10 TB of data generated daily by ESA would

take more than a day to download to a single disk drive.

Second, geospatial-temporal data, like other data, can be

tremendously enhanced by other contextual information

that is linked in space and time. These links allow multiple

datasets to be overlaid to identify meaningful statistical

dependencies or enhance the fidelity of machine-learning

models. On an engineering level, data gravity means that

the next-generation GIS must heavily leverage cloud

computing to reach scalability. The additional need for

private data must be addressed using hybrid

implementations. In addition, and equally important, is the

requirement of new architectures and systems where the

computation is “moved” to the data rather than the

traditional way, where data are transferred to some local

memory near a processor. Only with highly parallel

processing close to the data can this massive and rich source

of geospatial-temporal information be fully exploited in a

timely matter.

As a consequence of data gravity, and to reduce the

amount of data movement, it has become clear that

geospatial information, especially imagery, has to be

indexed on a much more refined granularity than before so

that analytical tasks can be performed within the query or

data request itself, as opposed to by the application. Today,

most geo-encoded raster data are only indexed at the level

of the metadata associated with it, but what if someone

wants to search for certain data within the raster dataset? A

simple example would be to prepare an emergency response

to a major storm by searching weather forecast maps,

population distributions, and elevation data. A realistic

query might be: When and where will there be more than 10

inches of rain in the next 24 hours, where the elevation is

lower than sea level and the population density is larger

than 50 people per square km?

Today, such a search is performed after the various

datasets are downloaded or moved to the processors running

the user’s application. The requirement for finer indexing is

also important because many geospatial-temporal datasets

include physical quantities that one might want to use

directly. For example, weather datasets might include

temperature, precipitation, and wind speed in large files,

and only the temperatures are needed. Moreover, satellite

images might have several spectral bands that can be

combined for new insight.

As the amount of data acquired and stored in satellite

imagery is increasing exponentially, the ability to run

analytics and extract information from the data requires new

data storage architecture and coupling analytics with the data.

The current trends in geospatial data management systems

are described along with an implementation of a Big Data

platform called PAIRSGeoscope [6] that enable large-scale

analytics for disaster management. The performance of

PAIRSGeoscope is compared to conventional file store

platforms based on a set of queries that are relevant

demonstrating the advantages of spatially and temporally

aligned datasets for disaster management scenarios.

Next-generation GIS–IBM PAIRS geoscope
In the following, we describe an instantiation of a next-

generation GIS, the PAIRS Geoscope, which goes much

beyond current (commercial) implementations using

relational databases or files/object stores [6, 7]. PAIRS, an

acronym for Physical Analytics Integrated Data and

Repository Services, is specifically crafted for the

complexity and size of geospatial-temporal information.

As shown in Figure 1, PAIRS Geoscope entails three

components: Built on top of GDAL/OGR (an open-source

Geospatial Data Abstraction Library [8]), there is an

ingestion or data curation engine to support the upload of

more than 200 different formats (geotiff, grib, geojson, etc.)

that can seamlessly integrate all forms of geospatial-

temporal data, including weather data and models, satellite

and aerial imagery (raster data), map-like information

(vector data), and data from georeferenced devices and

sensors, including social and event data (e.g., Twitter and

GDELT) in standard or customized formats. During

ingestion, all data are curated by validating the quality,

aligning to a global reference system, and reprojecting or

resampling. The current parallel ingestion engine is based on

optimized Cþþ routines that allow to process over 20 TB

per day. Future versions will enhance the ingestion engine by

adding computational resources and expanding its

capabilities through orthorectification, three-dimensional

(3-D) mapping, and augmented data quality control.
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Once ingested to the core cluster, large, heterogeneous,

and complex datasets are tamed into a tidy aligned

“layered” structure. The data layers are stored as

multilevel key-value combinations. The key index

encodes space, time, and other dimensions required to

uniquely represent the value (e.g., for weather forecast, Dt,

the forecasting time horizon), while the value represents

data from a single pixel or an array of pixels (a

“supercell”). The keys and values are indexed for efficient

retrieval, conditional filtering, and aggregation. This core

cluster is built on an open-source distributed file system

and key-value technology (Hadoop/HBase) that is scalable

up to hundreds of petabytes. Users can upload their own

data to securely segregated “private” layers while still

having access to all “public” layers. The PAIRS Geoscope

system is being extended for big vector data by leveraging

other technologies (Geomesa and/or Geowave, which are

open-source, distributed, geospatial-temporal indexing

systems built for Bigtable-style databases [9, 10])

including point cloud data processing. New data

management libraries like Point Data Abstraction Library

complement the standard GDAL functions to quickly

cross the boundary from raster-based data to 3-D object

recognition and classification.

RESTful APIs and SDKs (for Python, R, etc.) enable

users to interface with the system, whether this includes the

PAIRS Geoscope client (an interactive tool to create

queries) or any other third-party or custom software. IBM

has open-sourced a Python API wrapper: https://github.

com/IBM/ibmpairs. Applications can be built on top of

PAIRS. The results from a query are available—to avoid

moving the data—as an in-memory data frame for further

analytics, or they can be converted to different formats

(ESRI Shapefile, GeoJSON, GeoTiff, Comma Separated

Value text file) for downloading.

The first distinguishing characteristic of PAIRS to the

best of our knowledge is being the only “commercial” big

geospatial-temporal platform that indexes raster data on a

pixel or supercell level. The basic technical challenges lie in

the design of the key and the supercell as well as efficient

indexing. Today, commercial big geospatial-temporal data

analytics platforms rely on relational databases (e.g.,

PostGIS), which become highly inefficient at large data

sizes (>10 terabytes), or are based on files (geotiff, ESRI

shapefile, etc.) in object store or file systems, whose content

is very difficult and slow to search. Consider, for example, a

search for the time-series surface reflectance in satellite data

files. Doing this today with satellite image repositories is

quite involved, and may require searching for the available

tiles, and then downloading, resampling, reprojecting, and

opening each one to extract pixels within the area of interest

(AOI). Alternative approaches, which go beyond file-based

indexing, have been proposed, but are still not demonstrated

on a large scale.

The second distinguishing characteristic of PAIRS

Geoscope is the availability of hierarchical resolution levels

to accommodate for different spatial and temporal

resolutions, thereby linking the different layers of

geospatial-temporal information. For the spatial domain, in

the current system, the keys are arranged in z-order, where

the length of the key determines the resolution, which

ranges from centimeters to kilometers. Extending this

concept to the temporal domain, adding more information

to the key, optimizing the order of the information in the

key, etc., are current research goals.

The third characteristic of PAIRS Geoscope is the

alignment of all data to a global grid and the organization of

it in linked layers at the time of ingestion, contrary to

ingestion on demand, which enable superior and scalable

performance plus rapid response to queries involving

multiple layers. For such ingestion, key design and

supercell design must be optimized. In fact, PAIRS

Geoscope enables complex analytics during the query. In

addition to filtering and aggregating across time and space,

user-defined functions can be included in a query that

allows for arbitrary mathematical manipulations between

layers. An example would be a machine-learnt decision

tree, which can be submitted within the query. Finally,

PAIRS includes Apache Spark and GPU nodes on the

PAIRS Geoscope core cluster to host query results and

enable users to interact with these results using a

Figure 1

Overview of PAIRS Geoscope architecture.
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containerized Python environment for customized

analytics; this also minimizes data movement.

From a user’s perspective, PAIRS Geoscope offers four

core services. First, on a very basic level, PAIRS Geoscope

provides data services for the 4 PB of curated information.

On the next level, search or query services can be used to

run basic analytics on the PAIRS Geoscope data; for

example, filtering different layers of geospatial-information

or aggregations. For users who want to develop custom

analytics, PAIRS provides analytics platform services such

as a containerized, isolated Python environment. Finally,

users can upload their own data using the data curation and

ingestion services. This allows users to run scalable search

and analytics on their data along with the other 4 PB of

PAIRS Geoscope data.

Disaster monitoring is a Big Data problem
One area where GIS-based data has recently gained traction

is in disaster management. The frequency and spatial extent

of natural disaster events are steadily increasing driven by

weather and climate change [11]. Earthquakes, heatwaves,

flooding, wildfires, tornadoes, landslides, and power

outages [12] all have a strong spatial-temporal component.

On a global scale, using open-source satellite data like

Landsat or Modis across multiple years, forest [13], water

[14], and urban areas [15] have been mapped to establish

baseline GIS layers for every location on the Earth. Change

detection is a powerful tool to quantify the impact of a

disaster event, comparing the most current imagery, during

or shortly after the event, to a historical snapshot of the

same area.

Access to historical imagery and IoT data as they are

stored in PAIRS Geoscope can enable a timely analysis to

establish the post-disaster event signal deviation from the

“normal” baseline. Quick access to historical data trends is

important as many events happen with little or no warning,

taking people and the authorities by surprise. Anomalies in

the GIS data caused by natural disaster events require a

quick, on-the-fly filtering of multiple data layers on a

computational platform that retrieves only data for the AOI,

avoiding time-consuming processing of file stored images.

Continental-scale data such as weather models to track

hurricane paths can be combined with local data to quickly

compare areas that are separated by hundreds of miles but

affected by the same event. In the case of earthquakes or

landslides, the events happen almost instantaneously, but

the results can be influenced by long-term effects like

precipitation, soil moisture, and state of vegetation. This

type of analysis requires a rapid assessment of the “normal”

state in a certain location followed by a quick overlay of

new GIS data as they became available after the event.

Other events like drought or ocean level rising can develop

in a season, requiring a longer baseline to see subtle

changes across multiseason or yearly time intervals. In

many disaster scenarios, timely access to information about

the extent and impact of events is critical [16]. In the

following, we will focus on the special case of earthquake

and wildfire events as two use cases, where the interplay

between sensing, modeling, and early warning can

significantly reduce the “time to response” of government

agencies.

Disaster monitoring and emergency response
management
During the first few hours, after a disaster event, there is

usually a lack of information about the extent, impact, and

severity of the damage. While the event may be broadcast

by news outlets, there is a lack of information in the form of

imagery or video. For the few hours after the disaster event,

an untapped data stream can be local sensor data, like

embedded sensors in infrastructures, mobile devices, or

social data streams. These local data sources, while they

currently exist, are stored in multiple databases and

platforms, requiring extensive processing to spatially

align and fill in the gaps. For first responders and aid

agencies, it is important to quickly combine the new

data streams with established GIS baseline layers to track

changes. A framework like PAIRS Geoscope enables the

spatial and temporal linking of the IoT data with GIS

baseline layers to quickly assess the impact of an

earthquake or other disaster.

The importance of GIS data can be ranked according to

how quickly the information becomes available after an

event.

During and shortly after an earthquake, the only available

data are from ground-based sensors like the seismic sensor

network operated by the U.S. Geological Survey (USGS).

The sensors pick up earth vibrations and use signal

triangulation to localize and to quantify the magnitude of

the event. In general, data from more than three stations are

necessary to localize the epicenter, consequently requiring

the operation of a dense sensor network that is evenly

spaced across the globe. The information generated by the

sensor network will be available in seconds or minutes after

the event. These dedicated earthquake sensors can be

augmented by less precise but more cost-effective sensors

on public mobile platforms, where a dense deployment

enables sensing close to the epicenter [17, 18].

Social media is emerging as a quick information platform

where the impact of a disaster is documented by

crowdsourcing. While the accuracy of the information may

be low, the spatial coverage and density can be high as

many people might be affected [19].

Remote sensing and drone imagery can highly increase

the spatial and temporal coverage of a disaster event. These

data can be quickly integrated into geophysical models to

assess the extent and severity of the damage [20] based on

earthquake wave propagation, vulnerability of buildings
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and infrastructure, and local conditions like terrain and

construction patterns. Models can also be statistical, based

on good knowledge of what is on the ground and how it is

impacted by vibrations.

Field surveys can be carried out by rescue teams

deployed by government agencies to visually inspect

buildings and infrastructure and build up knowledge based

on special assessments, drone, and airplane imagery [21].

These information sources require extensive processing to

convert professional assessments into action.

Long-term modeling of historical events and predictive

models that are general in nature can suggest trends and the

impact of similar events.

Given the variety of information created during and after

a disaster event, the GIS platform needs to quickly ingest all

the possible data sources, align as well as validate the data

sources, and carry out extensive analysis to assess the

impact. Many of the above data sources are input in damage

models that can quickly quantify the extent of damage

across an area. These models can be physics, statistical,

or data-driven. Recently, it has been demonstrated that

machine-learned models have similar accuracy to

GIS-based models [22]. Besides sensor data, semantic

information from social media that may have a roughly

localized GIS component may be an input to models

[23, 24]. The PAIRS Geoscope’s advantage is the ability

to quickly search across multiple data layers and integrate

the extracted information into a decision tool. The

disaster-related data can be quickly combined with census

information related to the number of people, houses, and

critical infrastructure that may be affected within the area.

This information can direct first-response teams and help in

the rescue and extraction of survivors. Access to the most

recent and accurate GIS data [25, 26] can enable this

assessment to be partially automated such that data

processing is triggered by the severity of a disaster event

like an earthquake. Then, all these information and model

results are distributed to stakeholders (see Figure 2).

Access to timely data like shelter location, potable water

sources and availability, and first aid stations could be

reduced to minutes instead of hours.

The data flow architecture of an early warning system

based on PAIRS Geoscope is shown in Figure 2. The

data distribution includes target industries and

stakeholders like public, first response teams, public

health institutions, transportation, insurance, retail, and

government who may need to change their business

practice depending on the collected information.

Information from either IoT-based sensor networks or

remote sensing data are continuously combined into early

warning and data distribution systems, while at the same

time, they can enable on-the-fly modeling to extract

potential damage and provide alerts.

Wildfire monitoring
There are numerous ways to model and monitor events in

the context of disaster management. Here, we focus on

wildfire detection as an example of combining

Figure 2

Early warning and information distribution system using multiscale GIS data processing and information dissemination.
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heterogeneous data sources. Considering a fire life cycle,

one might think about physical and statistical models of

ignition, the availability and distribution of burnable

material, spread of the fire and smoke and their effects,

management of ongoing fires, and finally, mitigation. While

there is ongoing research into all these directions and more,

one might argue that the central problem to all of them is a

good understanding of the ignition and spread of a wildfire:

Any effort to manage an ongoing fire requires reliable

estimates of its future path. In what follows, we will focus

on models of wildfire spread. We are especially interested

in the extent to which research efforts have been or will be

affected by the emergence of Big Data and the machine-

and deep-learning techniques they facilitate.

Rothermel’s work [27] and its subsequent refinement by

Albini [28] constitute an early yet hugely impactful example

of a wildfire model. Note that Rothermel focuses on surface

fires since “mechanisms of heat transfer in a crown fire are

considerably different than those for a ground fire.” In a

nutshell, a model such as Rothermel’s gives a number of

semi-empirical equations that reflect the fire’s spread in

terms of various input parameters. These input parameters

are essentially concerned with the distribution and properties

of fuels as well as environmental parameters such as wind

and moisture. Due to the vast variety of fuels occurring in

nature as well as the different states they can be in, it is

generally necessary to encapsulate the fuels in a fuel model.

It is striking to note that Rothermel’s work still

constitutes the basis of a large number of modern wildfire

models that are under active development. Indeed, Andrews

writes in 2018 [29] that “the Rothermel surface fire spread

model is the most commonly used in U.S. fire management

systems, with a significant use outside the United States.”

For a wider outlook regarding the model landscape,

consider Sullivan’s reviews of model developments

between 1990 and 2007 [30–32].

As exemplified by its dependence on spatial and temporal

input distributions of fuel and environmental parameters,

wildfire modeling is highly dependent on geospatial-

temporal data. Indeed, a problem of ongoing active research

is the characterization of vegetation and fuel distributions

[33, 34]. Given progress in large-scale geospatio-temporal

data processing as well as machine learning, one

immediately wonders to what extent one can leverage purely

data-driven methods to approach the issue of wildfire

modeling, or that of fuel distributions, for that matter. After

all, by considering the temporal evolution of the wildfire

distribution given both the fuel distribution as well as

external variables (and possibly statistical forecasts for the

future evolution of these external variables), wildfire

propagation can be rephrased as a supervised learning

problem and thus be amenable to deep learning. Surprisingly

though, any direct application of deep learning to fire

propagation seems to be limited to a small number of studies

[35]. Very similar approaches have been explored for flood

monitoring [36, 37] and earthquake monitoring [24].

Remote sensing-based wildfire monitoring has been

proposed as one scalable way to track global-scale wildfires.

The European Union system EFFIS1 and National

Aeronautics and Space Administration system2 provide

operational data for wildfire tracking. Information carried by

spectral bands is a good indicator of phenological changes

that happened to vegetation after a wildfire event. The most

common approach is to use the near-infrared and short-wave

infrared wavelength as they are sensitive to the biomass, thus

indicating a plant’s health. Many of the common satellites

like Sentinel 2, Landsat, andModis have spectral bands in

the infrared spectrum. Furthermore, MODIS, the Visible

Infrared Imaging Radiometer Suite, and the Geostationary

Operational Environmental Satellite have detectors in the

thermal band that can detect anomalies due to wildfires. All

these data sources provide information at the spatial scale of

500 m or above. Processing Landsat or Sentinel 2 data can

improve the spatial resolution down to 10 m and leverage the

multiple spectral bands that these satellites carry.

A few of the spectral indices that are studied in the

context of vegetation burn are described in Table 1 [38].

Different indices will capture subtle changes in the

vegetation state and the impact and severity of the wildfire.

The most commonly used indices are normalized difference

vegetation index (NDVI), normalized difference water

index (NDWI), and normalized burn ratio (NBR) that are

calculated as a combination of spectral bands in visible

(RED), near infrared, and short-wave infrared (SWIR). The

subtle difference between NDWI and NBR is the

wavelength of the short-wave infrared band used for

calculations; sSWIR is sensitive around 1.6 mm, while

lSWIR is sensitive around 2.2 mm. A common approach for

Table 1 Satellite imagery extracted spectral

indices to characterize vegetation burn after a

wildfire.

1
[Online]. Available: (http://effis.jrc.ec.europa.eu/)

2
[Online]. Available: (https://firms.modaps.eosdis.nasa.gov)
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wildfire impact assessment is to calculate the difference of a

given vegetation index from after and before the wildfire

event. The differential Normalized Burned Ratio (dNBR)

can be expressed as follows:

dNBRdNBR ¼ NBRNBRð Þafterafter � NBRNBRð Þbeforebefore: (1)

The dNBR values range from –1 to 1, where a value of –1

represents an area that became richer in vegetation, while a

value around 1 indicates that vegetation vanished from that

area. Taking a snapshot of NBR before and after a wildfire

event, dNBR is classified in six groups ranging from

vegetation growth to severe vegetation burning. The change

in dNBR can be used to delineate the total burned area for

regions where ground validation may be missing. InTable 2,

the severity is ranked based on a USGS proposed range [39]:

NBR indices can be calculated at 20 m resolution for

Sentinel 2, 60 m for Landsat, and 250 m for MODIS data.

Extensive studies in Australia demonstrated that different

spectral indices (NDVI, NDWI, NBR) may be more

indicative for different forest species [38]. Modis provides a

monthly operationally calculated burned area (MCD64A1),

and recently Landsat provides a similar dataset [40].

One example of wildfire normalized burned ratio

detection in PAIRS is shown in Figure 3(a) for the region

around Santa Paula, CA, USA, for the Thomas wildfire. The

Thomas wildfire was initially detected on December 6,

2017, and contained on January 12, 2018. The dNBR is

calculated from Sentinel 2 acquired at December 5, 2017,

and January 12, 2018, and the red pixels show the area with

high-severity burning. In addition, Figure 3(b) illustrates a

snapshot from PAIRS with a time series of NDVI values

extracted for an area having highly severe burning. The

time series indicates that vegetation vanished from the area

and is slowly regrowing after the wildfire event.

Nevertheless, the long-term time series demonstrates that

vegetation values are well below historical values and the

vegetation is regrowing slowly (upward slope of time series

after the event).

The combination of dNBR and NDVI is a good proxy to

validate the extent of a wildfire and quantify the severity of

the burned regions. Information extracted from multiple

spectral indices combined with weather data can provide

indications where replanting will be the most effective,

and when the vegetation is fully restored.

Earthquake monitoring and modeling
The global seismic sensor network can estimate in a time

frame of minutes the epicenter of an earthquake using

Table 2 Severity of wildfire

burned area as classified based

on differential Normalized

Burned Ratio to classify wildfire

impact.

Figure 3

(a) Normalized burned ratio calculation for the Thomas Wildfire around Santa Paula, CA, with red/yellow area showing severe burning. (b) Time trace

of the Normalized Difference Vegetation Index for the same area showing an abrupt decrease after the event.
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triangulation from a sensor network. One result of a quake

is a deformation of the earth surface resulting in significant

changes in terrain and destruction of urban areas and

infrastructure. The large-scale damage can be quantified

from remote imagery. We present such a scenario based on

a 6.8-magnitude earthquake that happened on August 5,

2018, at 11:46 a.m. in Lombok, Indonesia. The epicenter of

the Earthquake was 10 km below ground, and the tremble

was detected by the USGS seismic sensor network.

Synthetic aperture radar (SAR) signals acquired by the

European Space Agency were analyzed to assess the impact

of Earth surface displacements that commonly occur after

an Earthquake. The deformation tends to be a few

centimeters in vertical changes that can lead to cracks in

roads, buildings, dams, and the Earth’s surface. The SAR

imagery was acquired on August 5, 2018, hours after the

earthquake, and it was compared to a previously acquired

snapshot covering the same area. The two images were used

to create an interferometry image that quantifies the

deformation of the earth from the change in the reflected

phase signal. The earth deformation is expressed in

centimeters [41]. Preprocessing of the Sentinel 1 data was

undertaken using the ESA-SNAP toolbox. The deformation

maps show the change in topography height of the Lombok

island referenced to the baseline. The largest change is

close to the epicenter, and it decreases with distance. The

sensitivity of the interferogram image is 2 cm in the vertical

direction and 20 m in the horizontal. The images are

corrected for terrain-induced artifacts and filtered to

minimize noise. The practice to generate interferometry is

an established technique for earthquake analysis. The

novelty is the fusion of different GIS layers including earth

displacement with the distribution of roads, bridges, and

population density. From a first aid perspective, reaching

the largest number of people affected by an earthquake in

the shortest time and knowledge of the available roads and

functional bridges can be critical to life-saving efforts. In

this context, the classification of road segments with the

smallest tilt or deformation can be a proxy for road

integrity. Combining multiple data layers as shown in

Figure 4 provides a quick insight into all relevant data that

can drive the decision support for providing relief and first

aid to the most affected areas. Allocation of resources to

areas with higher population densities and the largest

Figure 4

(a) Lombok Island, Indonesia, with the road and bridge network overlaid on a map. (b) Earth deformation after the earthquake on August 5, 2018.

(c) PAIRS Geoscope snapshot of population density on the island. (d) PAIRS Geoscope snapshot of elevation.
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damage can be the most effective way to mitigate the civic

disaster that follows. Analytical tools can use these GIS

layers to classify road segments that may be affected by the

tilt and shift in elevation from the earthquake. The data can

then be enhanced by IoT sensor data that locally quantifies

the disturbances. All these analyses require multilayer GIS

searching capabilities to quickly scan all relevant layers to

discover changes on the ground.

Evaluation of PAIRS geoscope’s performance
Disaster prediction and response require readily available

data analytics and the ability to run a disaster response

model almost on demand, as many disaster events occur

without prior indication. Therefore, it is crucial that

requested data can be retrieved as quickly as possible in

case of such an event for subsequent visualization and

analytics. Since geospatial-temporal data is inherently big,

retrieval time on such databases is nonnegligible. A concise

performance evaluation is presented, comparing PAIRS

Geoscope’s speed to retrieve data compared with a similar

geospatial-temporal data platform that stores the data in a

file format and retrieves individual tiles and loads them in

computer memory for further processing.

The data retrieval time is used as an evaluation metric,

where the retrieval time is defined as the time difference

between submitting a data request to the platform and

receiving the actual data back. This time difference includes

initialization, queueing, and processing time. Naturally, the

retrieval time will depend on the size and complexity of the

user’s requested data. Any request is formalized by a query

that defines the specific dataset and layer of interest, the

spatial extent, and the temporal range. Moreover, functions

to aggregate data across time and space can be specified

(e.g., provide the mean value for a time series or for a

spatial query or retrieve raster data where the medium value

across a time interval is larger than a certain threshold).

These query characteristics provide a proxy for the data

requests’ complexity. For this evaluation, a geospatial-

temporal database is more performant if it requires

consistently less retrieval time across most of the proposed

queries.

A complete enumeration of all possible data queries

would serve as an appropriate basis for evaluating a data

platform’s performance. Unfortunately, this is impossible

due to the versatility of query specifications and the fact that

only a minority of them would be of practical interest for

disaster management. Therefore, for these performance

metrics, only a few queries are selected that reflect common

yet diverse geospatial-temporal data application scenarios

while testing crucial capabilities of the platform. The query

selection is guided by theoretical and practical

considerations to model spatial characteristics like

earthquake-generated damage or to calculate the extent of

burned area after a wildfire event.

In theory, three types of queries are representative to

evaluate a platform’s overall performance: 1) a query that

retrieves a time series for a given set of point coordinates;

2) one that extracts raster information across a given spatial

area for a fixed point in time; 3) a query that aggregates data

across a time interval for a given spatial area. The former

two queries assess a GIS platform’s ability to retrieve

purely temporal or spatial data, while the third query also

measures the platform’s computational efficiency to

perform statistical computations on the queried data. For

each query, data are retrieved according to the database’s

native resolution and coordinate projection system to

exclude computational effort due to sampling or

reprojection. The average location and dispersion

parameters of the query retrieval times are expressed as

median and interquartile range to make the evaluation more

robust with respect to potential outliers.

In practice, the three queries (Figure 5) are designed to

adhere to typical disaster management scenarios presented in

previous paragraphs. The specific queries may seem quite

general; however, the evaluation results apply to a wide class

of similar queries as subsequent empirical investigation

reveals. First, the temporal query is specified for wildfire

monitoring purposes. More precisely, it retrieves time-series

data of NDVI for 25 distinct point coordinates across the

Amazon rainforest for one year. This query serves the

purpose to track the long-term damage of wildfires on

vegetation [42]. Second, the spatial query relates to

Figure 5

Performance of PAIRS Geoscope compared to a conventional Geospatial

Information System for three queries (Q1-time series, Q2-Spatial query,

and Q3-Spatial Aggregation on raster data).
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earthquake emergency response, as it provides a single high-

resolution image of the island of Lombok. This image, in

turn, can be integrated into geophysical models or be

combined with other data layers such as population density or

infrastructure as shown in Figure 4 to assess disaster response

[43]. Finally, a query is submitted that provides the

maximum difference of near-infrared images of an area

across one year. (Near-) infrared remote sensing is not only

relevant for vegetation management, as it is a key ingredient

in NDVI, but has been discussed in the context of other

natural disasters such as volcano eruptions and landslides

[44–46]. For the analysis, the Sentinel 2 dataset has been

chosen as it offers high-spatial-resolution imagery in 13

bands including the ones proposed for the query [47].

The performance evaluation, across the three queries,

indicates PAIRS Geoscope’s advantage to spatially and

temporally align all data layers. It performs better across all

query types as its median retrieval times are consistently

shorter than that of the conventional geospatial-temporal

database. The difference is statistically significant for time

and space queries, respectively, as indicated by the

nonoverlapping error bars. The temporal query on PAIRS

Geoscope is processed by a factor of 100 faster than that on

the competing platform. This advantage is of major

importance as time-series data is ubiquitous for

meteorological and climatological geostatistics [48–50].

The conventional platform, on the other hand, requires

comparable retrieving time across all queries despite the

difference in the requested data types and sizes. Further

empirical investigations reveal that these performance results

are robust with respect to the choice of dataset and layer.

Moreover, the relative performance of the platforms remains

unchanged when increasing spatial extent or the number of

timestamps, i.e., the effective data size to be processed.

Conclusion
With the readily available GIS data acquired by government

agencies, commercial companies, and citizens, there is a

need for new data platforms that can easily process different

data formats and enable real-time processing and modeling.

The variety of data formats ranging from images, text, and

point clouds require a comprehensive data management and

processing platform. The description and performance

characteristics of such a platform called PAIRS is

presented, which spatially and temporally aligns all data

sources in a Big Data framework. While local measurement

based on special sensors in the context of IoT provides the

fastest detection of changes on the ground (detecting

earthquakes, assessing damage, disseminating the

information) and the scalability of this approach is under

investigation, remote sensing has the virtue of quickly

surveying large areas and observing ground-based changes.

The availability of curated data sets that are continuously

cross-validated with existing data sources enables quick

modeling and data retrieval of all relevant data layers in a

disaster scenario. Such large-scale surveys can enable

optimization on the ground for first responders and aid

agencies to assess damage and quickly allocate resources to

regions based on large-scale damage assessment.
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