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Three-Dimensional Optical Diffraction Tomography
With Lippmann-Schwinger Model

Thanh-an Pham ¥, Emmanuel Soubies

Abstract—A broad class of imaging modalities involve the res-
olution of an inverse-scattering problem. Among them, three-
dimensional optical diffraction tomography (ODT) comes with its
own challenges. These include a limited range of views, a large
size of the sample with respect to the illumination wavelength,
and optical aberrations that are inherent to the system itself. In
this work, we present an accurate and efficient implementation of
the forward model. It relies on the exact (nonlinear) Lippmann-
Schwinger equation. We address several crucial issues such as the
discretization of the Green function, the computation of the far
field, and the estimation of the incident field. We then deploy this
model in a regularized variational-reconstruction framework and
show on both simulated and real data that it leads to substantially
better reconstructions than the approximate models that are tra-
ditionally used in ODT.

Index Terms—Optical diffraction tomography (ODT),
Lippmann-Schwinger equation, Green’s function discretization.

1. INTRODUCTION

PTICAL diffraction tomography (ODT) is a noninvasive
O quantitative imaging modality [1], [2]. This label-free
technique allows one to determine a three-dimensional map
of the refractive index (RI) of samples, which is of particular
interest for applications that range from biology [3] to nan-
otechnologies [4]. The acquisition setup sequentially illuminates
the sample from different angles. For each illumination, the
outgoing complex wave field (i.e., the scattered field) is recorded
by a digital-holography microscope [5], [6]. Then, from this set
of measurements, the RI of the sample can be reconstructed by
solving an inverse-scattering problem. However, its resolution
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is very challenging due to the nonlinear nature of the interaction
between the light and the sample.

A. Related Works

To simplify the reconstruction problem, pioneering works
focused on linearized models. These include Born [1] and Ry-
tov [7] approximations, which are valid for weakly scattering
samples [8]. Although originally used to deploy direct inversion
methods, these linearized models have been later combined with
iterative regularization techniques to improve their robustness to
noise and to alleviate the missing-cone problem [9], [10].

Nonlinear models that adhere more closely to the physic of
the acquisition are needed to recover samples with higher vari-
ations of their refractive index. For instance, beam-propagation
methods (BPM) [11]-[14] rely on a slice-by-slice propagation
model that accounts for multiple scatterings within the direction
of propagation (no reflection). Other nonlinear models include
the contrast source-inversion method [15] or the recursive Born
approximation [16]. Although more accurate, all these models
come at the price of a large computational cost.

The theory of scalar diffraction recognizes the Lippmann-
Schwinger (LS) model to be the most faithful. It accounts
for multiple scatterings, both in transmission and reflection.
Iterative forward models that solve the LS equation have been
successfully used to reconstruct two-dimensional [17]-[19] or
three-dimensional [20] samples from data acquired in the radio-
frequency regime. An alternative approach is known as the
discrete dipole approximation (DDA) which, in addition, can
account for polarized light [4], [21], [22].

Finally, it is noteworthy to mention that the aforementioned
approaches have been extended to the phaseless (i.e., intensity-
only) inverse-scattering problem [23]-[27].

B. Challenges in Three-Dimensional ODT

So far, the use of the more sophisticated LS model and DDA
has been mostly limited to microwave imaging [28]-[30] (see
also the numerous references listed in [31]). Although led by the
same underlying physics, ODT differs from microwave imaging
on several aspects that further increases the difficulty of the
reconstruction problem.

e The direction of propagation of the incident wave is

restricted to a small cone around the optical axis (see
Fig. 1). This lack of measurements leads to the well-known
missing-cone problem [10].

For more information, see http://creativecommons.org/licenses/by/4.0/
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Fig. 1.
wave vectors {k;“}(?:l € R3 of the Q incident plane waves {u;"}qul which
are limited to a cone around the optical axis.

Principle of optical diffraction tomography. The arrows represent the

® In typical ODT applications such as biology, the size of
the sample is significantly larger (e.g., 100x) than the
wavelength of the incident wave. This requires a fine
discretization that entails very large memory requirements.

® The large size of the detector leads to numerical challenges
for the computation of the far-field.

® The benefit of a theoretical expression of the incident wave

field, as used in microwave imaging [31], is made unlikely
in ODT due to unknown distortions that are inherent to the
system.

These challenges hindered the adoption of sophisticated mod-
els in ODT, with notable exceptions [4], [22] that focused on the
reflective mode and considered relatively simple non-biological
samples.

C. Contributions and Outline

This paper builds upon the prior works [17]-[19] that are
dedicated to the resolution of the 2D inverse scattering problem
using an iterative LS forward model. We propose to extend
these works to the 3D ODT problem. Our main contribution
is the development of an accurate and efficient implementation
of the forward model in 3D. This is crucial to obtain good
reconstructions while keeping the computational burden of the
method reasonable for large-scale volumes.

More precisely, we provide a description on how to implement
the iterative LS forward model by tackling three challenging
difficulties.

® Discretization of the Green function (Section I1I-A): Fol-
lowing an idea proposed by Vainikko [32], we derive an
accurate discretization of the Green function and analyze
the errors that are produced when convolving it with a given
vector (Theorem 3.1). Moreover, we propose a new way
of building the discrete Green kernel that avoids a large
memory overhead (Proposition 3.2).

e Computation of the far field (Sections III-B and I1I-C): We
combine the convolutional nature of the model with the fact
that the measurements lie on a plane to derive an efficient
method to evaluate the far field.

e Estimation of the incident field (Section III-D): We
build the volume of the incident field through numerical
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propagation of a real acquisition of it at the detector plane.
In particular, we propose a strategy that results in signifi-
cantly reduced numerical errors.

Let us emphasize that, to the best of our knowledge, the
present paper is the first to provide practical details (e.g., dis-
cretization, speedup, and memory-saving strategies) concerning
the implementation of the iterative LS model in ODT.

Finally, to deal with the missing-cone problem, we deploy
a regularized variational reconstruction approach (Section I'V).
We then present in Section V reconstructions of biological
samples for both simulated and real data, and compare them
to those of baselines methods.

D. Notations

Scalar and continuously defined functions are denoted by
italic letter (e.g., n € R, g € Ly(R)). Vectors and matrices
are denoted by bold lowercase and bold uppercase letters,
respectively (e.g., f € RN, G € CN*N). For a vector f € RY,
||£]] stands for its £2-norm. Other p-norms will be specified with
an index (i.e., || - ||p). The nth element of a vector is denoted
as f[n]. Then, we denote by F the discrete Fourier transform
(DFT) defined in 1D by (Fv)[k] = S07% \ , v[nle ¥k,
(The higher-dimension DFT follows by recursive application of
the 1D DFT along each dimension.) The notations f and f refer
to the continuous Fourier transform of f and the discrete Fourier
transform of f, respectively. Finally, ® stands for the Hadamard
product and [1; N] :=[1... N].

II. PHYSICAL MODEL

A. Continuous-Domain Formulation

Let n : Q — R denotes the continuously-defined refractive
index of a sample whose support is assumed to be included in
the region of interest 2 C R3. Without loss of generality and to
simplify the presentation, let us consider that Q = [—L/2, L/2]3
for L > 0. The interaction of the sample with a monochromatic
incident field u™™ : R?® — C of wavelength A produces a scat-
tered field u*° : R® — C. The resulting total field u = u¢ + u"
is governed by the Lippmann-Schwinger equation

u6) =) + [ glx—a)f@ulm)dn 1)
where f(x) = kZ(n(x)?/n? — 1) is the scattering potential.
Here, ki, = 27, /A is the wavenumber in the surrounding
medium and 7, the corresponding refractive index. Finally,
g: R3 — Cisthe free-space Green function which, under Som-
merfeld’s radiation condition, is given by [33]

) — 2GRl

A x|

@)

Equation (1) completely characterizes the image formation
model in ODT. Using an interferometric setup, the total field
u is recorded at the focal plane T' = [~ L/2, L/2)?, L > L, of
the camera. This focal plane lies outside €2 at a distance denoted
by 21 > 0. Finally, we denote by M = m? the number of pixels
of the detector.
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B. Discrete Formulation

To numerically solve the ODT inverse problem, (1) has to be
properly discretized. To do so, we first discretize ) into N = n?
voxels.! Then, the computation of the scattered field y*¢ € C
at the camera plane I" follows a two-step process [17], [18],

u = (I - Gdiag(f)) ' u™ (3)

y* = PG diag(f)u, %)
where I € RY*Y s the identity matrix, diag(f) € RV is
a diagonal matrix formed out of the entries of f, and f € RV,
u™ € CV, and u € CV are sampled version of f, u!", and u
within €2, respectively. The matrix G € CN*¥ is the discrete
counterpart of the continuous convolution with the Green func-
tionin (1) (see Section III-A). Similarly, G € CM*¥ is a matrix
that, given u and f inside €, gives the scattered field at the
measurement plane I" (see Section I1I-B). Finally, P € CM*M
models the effect of the pupil function of the microscope and
can also encode the contribution of a free-space propagation to
account for an optical refocus of the measurements.

One will have noticed that (3) requires the resolution of
a linear system. This can be efficiently performed using a
conjugate-gradient method [18] or a biconjugate-gradient sta-
bilized method [34]. Yet, (3) carries the main computational
complexity of the forward process (3)—(4). To obtain the scat-
tered field at the camera plane I', a naive approach would
be to compute the total field u in (3) on a large region that
includes I'. Here, the introduction of G allows one to restrict
the computation of u to the smaller region {2 as soon as it fully
contains the support of the sample [17], [18]. This significantly
reduces the computational burden of the forward process.

Needless to say, the matrices G, G, and P are never explicitly
built. Instead, we exploit the fact that the application of the
corresponding linear operators can be efficiently performed
using the fast Fourier transform (FFT).

III. ACCURATE AND EFFICIENT IMPLEMENTATION OF THE
FORWARD MODEL

A. Green’s Function Discretization for the Volume: G

Because of the singularity of the Green function (2) as well as
of its Fourier transform (i.e., §(w) = 1/(kf — |w]|?) withw €
R?), G in (3) cannot be defined through a naive discretization
of g. In this section, we describe how G has to be defined in
order to minimize the approximation error with respect to the
continuous model (1).

First, let us recall that we aim at computing the total field «
only inside {2 and that the support of f is itself assumed to be
included in 2. Hence, (1) can be equivalently written as, Vx € 2,

u(x) = u" (x) + / a(x—2)f@u(z)dz,  5)

Q

I The generalization to the case where there is a different number of points in
each dimension is straightforward.
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supp(g:(- — o))
VdL

L

Fig. 2. Illustration in dimension two (i.e., d = 2) of the equivalence be-
tween (1) and (5). g+ (- — x0) denotes g; shifted by xo = (L/2, L/2).

where gy is a truncated version of the Green function. More
precisely, g; is defined by

(6)

where rect(z) = {1, |x| < 1/2; 0, otherwise}. With this defi-
nition, one easily gets the equivalence between (1) and (5), as
illustrated in Fig. 2.

To the best of our knowledge, this observation has to be
attributed to Vainikko [32] but has then been revitalized by
Vico et al. [35]. It is essential to a proper discretization of the
Lippmann-Schwinger equation (1). Specifically, we have that

5 (1 — V3L (cos (\/§L||w||>

lwl]|? = ki

+ Jhuv3Lsinc(v3L w]))

() !

for ||w|| # ku, which can be extended by continuity as
_ (V3L
gr(w) =] -

ej\/ng?b

k2

S sin (x/??Lk:b)> (8)
when ||w|| = kp. The practical outcome is that (5) can now be
discretized in the Fourier domain since g; is a smooth function.

We now show how g; * v, forv € Ly(R?), can be numerically
evaluated using FFTs and we provide error bounds on the
approximation. The proof is provided in Appendix B.

Theorem 3.1: Let v € Lo([—%,£]%) and v € CV be the
sampled version of v using n > kyL/m sampling points in
each dimension (N = n?). Let v, be the p-times zero-padded
version of v. Define h = L/n and 6 = 2w /(Lp). Then, Vk €
[Z +1; 5]

(Gv)K] = (F (g ©v,)) [K], ©)
where g = (7:(09)) gepze 41,2275 and v, = Fv,,.

Moreover, if v has (¢ — 1) continuous derivatives for ¢ > 3
and a qth derivative of bounded variations, we have the error
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Fig. 3. Relative error (11) as a function of the number of discretization points

n per side of 2. The truncated Green function approach is compared to a naive
discretization of the Green function in the spatial domain. The standard deviation
of the Gaussian source is set to o = 0.4, the size of the domain L = 1, and
the wavenumber kj, = 1.5. For the truncated Green function approach, we set
p=4.

bound

cte

Ctr C«al
+ + pT7

nd ni—2

(g * v)(hk) — (Gv)[K]| <

(10)

where C*, C* and C* are positive constants that are asso-
ciated to the errors due to the aliasing in v, the truncation of
the Fourier integral, and the trapezoidal quadrature rule used to
approximate this integral, respectively.

Remark 3.1: Equation (9) is hiding a cropping operation.
Indeed, the result of F~!(g; ®Vv,) is defined on the grid
[ + 1; Z2]° but we only retain the elements that belong to

[ +1; %]°
Remark 3.2: The assumption that n > kv L/7m < ky < 7/h
ensures that the “peaks” of |gi(w)| for |w]|| = kp are in-

cluded in the frequency domain associated to the DFT (i.e.,
[~7/h,7/h)?). This is a natural and minimal requirement to
reduce the approximation error.

From Theorem 3.1, one sees that the number of sampling
points n controls both the aliasing error and the error due to
the truncation of the Fourier integral. It is noteworthy that these
bounds decrease with the smoothness of v (i.e., ¢). On the other
hand, the padding factor p controls the error that results from
the trapezoidal quadrature rule.

Remark 3.3: A simple argument suggests that the padding
factor should be atleast p = 4 to properly capture the oscillations
of ¢;. Indeed, in the spatial domain, the diameter of the support
of g; is 2v/3L ~ 3.4 L. Hence, in order to satisfy the Shannon-
Nyquist criterion, the considered spatial domain should be at
least of size 4 L, which corresponds to a padding factor p = 4.

To assess the accuracy of the implementation of G provided
by Theorem 3.1, we consider the convolution of the Green
function with a three-dimensional Gaussian source v(x) =
exp(—||x||2/(202))/(03(27)2). For this particular setting, an
analytical expression of ¢ * v is known [35]. In Fig. 3, we report
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the relative error

exact G
€ro] = M, (11)

‘ ‘ Uexact ||

where Uexact = ((g * v)[hk])ep=n 41,275 contains the samples
of the analytical solution. We compare the proposed discretiza-
tion (Theorem 3.1) with a naive discretization of g in the spatial
domain (by “cropping” the singularity). Clearly, the truncated
Green function approach is by far superior to a naive discretiza-
tion of g in the spatial domain.

Memory Savings: According to Theorem 3.1, an accurate
computation of the field inside {2 requires one to zero-pad the
volume v. From Remark I11.3, we should set at least p = 4. This
can lead to severe computational and memory issues for the
reconstruction of large 3D volumes. Fortunately, as mentioned
in [35], this computation can be reformulated as a discrete
convolution with a modified kernel that only involves the twofold
padding p = 2. We summarize this result in Proposition 3.2 and
provide a detailed proof in Appendix C. Moreover, we provide
an expression of the modified kernel that reveals how one can
build it directly on the grid [—n + 1;n]?>.

Proposition 3.2: Let p € 2N \ {0}. Then, Vk e [5* +
1; %]]3, we have that

(Fl&ov) K= (F'(ow))k, a2

where v, is a twofold zero-padded version of v, and gf is the
modified kernel

gk=> S Fl(gt

se0;5-1]3

—2jm kT

—s]) [KJe™r %,

13)

Iterative LS versus Born and BPM: To conclude this section,
we compare the accuracy of the iterative LS forward model
with the popular Born and BPM approximations. To that end,
we consider the interaction of a plane wave with a bead since
an analytical expression of the total field is known for this
setting [36]. The total fields computed by the three approaches
are displayed in Fig. 4. In addition, we provide the theoretical
total field. One can appreciate the gain in accuracy that the
proposed method brings over the standard approximations used
in ODT.

B. Green’s Function Discretization for the Measurements: G

In works dedicated to the 2D ODT problem, G € CM*N
is sometimes accessible explicitly [17]-[19]. By contrast, the
scale of the 3D ODT problem prevents this in the present work.
Fortunately, we are only interested in the evaluation of the
total field at the M voxels of the camera plane. By exploiting
this planarity, we can significantly reduce the memory and the
computational burden of the evaluation of Gv.

Let zr > 0 be the axial position of the measurement plane I"
(i.e.,, Vx € I, 3 = xp). Then, letting v = f - u and expressing
the integral in (1) using a numerical quadrature along the third
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Born

3

LS model

3

Fig. 4. Simulated scattering of a monochromatic wave (A = 532 nm) by a
bead embedded in water (7, = 1.3388). The bead has a diameter of 31 and
a refractive index of 1.4388. The reported total fields are obtained through
the analytical solution, the Born model, and the Lippmann-Schwinger iterative
forward model for p = 4 and h = 1/16 (i.e., n = 144).

Analytical solution

.
3

dimension, we get, Vx = (21,22, 2r) € T,

n
2

> h

k=—241

. g(x — zy)v(zy) dzg, dzg,,

(g +v)(x) =

(14)
where zy, = (2g, , Zk,, k).

From (14), g * v is computed as a sum of 2D aperiodic convo-
lutions. Considering that the sampling step at the camera plane I'
is identical to that of the volume (2, the 2D convolutions in (14)
is evaluated in the same way as described in Theorem 3.1. This
strategy reduces the computational complexity of the application
of G to O(nM log(M)). Note that, if the sampling step at the
camera plane is ¢ times that of the volume (i.e., b’ = ¢h,q € N),
one can simply downsample the result of the above procedure

by q.

C. Free-Space Propagation and Pupil Function: P

The last matrix to describe in (4) is P. It models the low-
pass filtering behavior of the microscope and can also be
used to perform a free-space propagation of the field. For in-
stance, this is required for the acquisition setup described in
Section V-B. Hence, P corresponds to the discrete convo-
lution operator associated to the continuously defined kernel
p € Ly(R?) that depends on the point-spread function (PSF)
of the system as well as the considered propagation kernel.
Although the output of G (scattered field on I') is not compactly
supported, it enjoys fast decay, which allows us to apply P via
a FFT with suitable padding.

D. Computation of the 3D Incident Field: u™

The evaluation of the forward model (3) and (4) at a given
point f € RY requires the knowledge of the 3D incident field
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u'™ € CV. Here, we propose to build this volume through the
free-space propagation of the 2D measurement y* € CM of
this field at the detector plane I'. This is possible as the area of '
is assumed to be larger than that of a face of the volume 2 since
L<L.

Let us denote by 3™ : I' — C the continuous version of y'*
to simplify the presentation. Then, we get from the angular
spectrum method [37] that, Vx = (21, 22, 23) € Q,

U(X) = (pay * Y™ (21, 72). (15)

There, p,, is the propagation kernel that is defined in the Fourier
domain by

p.(w) = exp (—j(xp —2)\/kp — (WP + w%)) , (16)

where zp denotes the position of the measurement plane I'.

Because both the propagation kernel and the measured in-
cident field are not compactly supported, a naive computation
of the aperiodic convolution in (15) would introduce significant
errors within the estimated volume »!". The difficulty lies in
the way of properly extending the measured field y'* outside
I" to ensure that the result of the convolution inside €2 is valid.
For instance, a zero padding or a simple periodization are not
satisfactory as they would introduce large discontinuities in the
amplitude and/or the phase of ™.

Instead, let us inject in (15) the expression of y™(x) =
a(x) exp(jxTk™), where a : T' — C is the complex amplitude
of the field and k™ = (ki*, ki) corresponds to the restriction of
the wave vector k'™ € R3 to its first two components, leading to

W () = (pay * ()" (%)

1 — ~ riny jwTx
= @ /R2 Dag (W)a(w — k™)™ *dw
i PR
- /R (@ + K)o dw

= K (g, () 10T (), (17)
with X = (21, 75) and w = (wy,ws) € R2. Hence, (15) can be
equivalently expressed as a 2D aperiodic convolution of the
complex amplitude a with the kernel p,, (-)e 30" ™ followed
by a modulation in the space domain. This approach is called
tilt transfer because the shift of 3™ in the Fourier domain is
transferred to the propagation kernel [38], [39]. The advantage
of this formulation is that, by contrast to 3™, the complex
amplitude a is not far from a constant signal, up to some noise
and optical aberrations. Hence,we compute (17) using a periodic
convolution with minor discretization artifacts.

The advantage of this approach is illustrated in Fig. 5 where
we propagate a slice of an ideal tilted plane wave ™ us-
ing the angular spectrum method with and without tilt trans-
fer. The difference between the expected incident field u!®
and the propagated field uip“mp is depicted in the bottom panel.
Clearly, the tilt transfer allows one to significantly reduce the
discretization errors and attenuate the aliasing artifacts.
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Fig. 5. Propagation of the incident field. Top: Scheme of the numerical
experiment (left) and phase (arg(-)) of the expected propagated field (right).

Bottom: Error map \utme - uﬁm of the angular spectrum (AS) method [37]

without and with tilt transfer (left and right respectively).

IV. RECONSTRUCTION FRAMEWORK
A. Problem Formulation

We adopt a standard variational formulation to recover the
scattering potential f from the @ scattered fields {y } ~_, that
are recorded when the sample is impinged with the in01dent fields
{u;“}?zl. Specifically, the reconstructed f* is specified as

2
vl

Q
1
f*e{argmm<§ |H,(f) —
RN 2]ly5el?

+7R(F) + i>0(f)) } (18)

In (18), H, : RY — CM denotes the forward model described
by (3) and (4) for the gth incident wave u;“, R:RY 5 Ryg
is a regularization functional, and 7 > 0 balances between
data fidelity and regularization. The term i>o(f) = {0,f €
(R>0)™; 400, otherwise} is a nonnegativity constraint that is
suitable for our applications. For other applications that in-
volve inverse scattering, this term is modified to constrain the
scattering potential to a given range of values. Such priors
have been shown to significantly improve the quality of the
reconstruction [9], [10]. Finally, we consider as regularizer R
either the total-variation seminorm [40] or the Hessian-Schatten
norm [41].

B. Optimization

Following [17]-[19], we deploy an accelerated forward-
backward splitting (FBS) algorithm [42], [43] to solve the
optimization problem (18). The iterates are summarized in
Algorithm 1, with some further details below.
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Rytov Ground truth

BPM

LS model

Fig. 6. Reconstructions of the simulated RBCs by Rytov, BPM, and the
proposed method (LS model).

Algorithm 1: Accelerated FBS [42], [43] for Solving (18).
Requlre £0 € RY, (v > 0)ren {0}

1. vi=1f0
2: ] = 1
3 k=1
4: while (not converged) do
5:  Selecta subset QcC[l...Q]
6: Z v R(Tgr, (£7) (H, (£5) — y5))
7 f - prOXrykTR+i20( - ’}/kdk)

1 1+ 4a?
o e VT

-1
9. yktl— gk (L)(fk )
Qk+1

10: k< k+1
11:  end while

® Asin[18], weimplemented a stochastic-gradient version of
the algorlthm by selecting a subset of of the measurements
{yff} ~_, ateachiteration (Line 1). This allows us to reduce
the computational burden of the method.

e Line 1 corresponds to the evaluation of the gradient of
m >ogco IHG () — y5°lI?. An explicit expression of

the Jacobian matrix Jg, (f¥) of H, can be found in [18],
[19]. Similarly to the forward model (3), the applica-
tion of this Jacobian matrix to a given vector of CM
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z1 = —1.092pm

BPM Rytov

LS model

Fig. 7.
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—0.496um 1.48

1.338

Reconstructions of the yeast cell with Rytov, BPM, and the proposed method (LS model). The first column corresponds to the central XZ slice of the

sample. Then, from left to right: XY slices at depths 21 = —1.092 pum, zo = —0.496 pm, and z3 = 0 pm.

requires the inversion of (I — diag(f)G*). Again, this
inversion is performed using a conjugate-gradient-based
algorithm.

e For both the TV and Hessian-Schatten-norm regularizers,
no known closed-form expression exists for the proximity
operator of y,7R + i>¢ (Line 1). However, there exist
efficient algorithms to evaluate them. Specifically, we use
the fast gradient-projection method for TV [44] and its
extension to the Hessian-Schatten-norm regularizer [41].

e We set the sequence of step sizes to v, = Yo/ Vk for
Yo > 0. This is standard and ensures the convergence of
incremental proximal-gradient methods [45].

The whole reconstruction pipeline is implemented within the

framework of the GlobalBiolm library® [46] and will be made
available online.

V. NUMERICAL RESULTS

In this section, we present two types of experiments. First we
validate our computational pipeline on simulated data. Then, we
deploy the proposed approach on some real data. For both cases,
we provide comparison with existing algorithms.

A. Simulated Data
1) Simulation Setting: We simulated red blood cells (RBCs)
with a maximal RI of 1.05 (see Fig. 7 top row) [14]. This

2[Online]. Available: http:/bigwww.epfl.ch/algorithms/globalbioim/

sample is immersed in air (1, = 1) and is illuminated by tilted
plane waves with wavelength . = 600 nm. To simulate the ODT
measurements, we used the discrete dipole approximation model
on a grid with aresolution of 50 nm. To probe the sample, we gen-
erated 40 views within a cone of illumination whose half-angle
is 45°. This corresponds to severely restricted angles of view
and makes the reconstruction problem very challenging. Each
view has 5122 measurements (resolution of 150nm). Finally, we
have simulated, independently for each view, an acquisition of
the incident field on I'.

2) Comparisons: We compare our LS-based reconstruction
method with the direct back-propagation algorithm that is based
on the Rytov model. In addition, we do compare it to BPM. For
each iterative method (BPM and ours), we used TV regulariza-
tion together with a nonnegativity constraint. Finally, the regu-
larization parameter 7 > 0 was optimized through grid search
in each scenario to maximize the performance with respect
to the ground truth. BPM took about 31 seconds per iteration
(proximity operator of TV included) for a reconstruction size of
512 x 512 x 150 (200 iterations). The proposed method took
about 112 seconds per iteration (proximity operator of TV
included) for a reconstruction size of 144 x 144 x 144 (300
iterations).

In Fig. 7, one observes that our method faithfully recovers
RBCs at several orientations. In comparison with the considered
baselines, we observe that the LS model allows to recover more
accurately the RBCs shape (and RI) as pointed out by the white
arrows. In Table I, we present the relative error of the RBCs
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TABLE I
RELATIVE ERROR OF THE RBCS RECONSTRUCTIONS

Method |  Rytov |  BPM | LS model
N 2
W ‘ 1.8231 x 104 ‘ 2.4585 x 105 ‘ 9.0120 x 106
g
Rytov BPM LS model

T

RS &
ﬁm“ '.,.

Fig. 8. Iso-surface color renderings of the reconstructions of the yeast. The
isovalues are 1:35, 1:38, and 1:46 for the blue, red, and green color channels,
respectively.

reconstructions. As expected, the more sophisticated LS model
obtains the lowest relative error.

B. Real Data

1) Acquisition Setup: We acquired real data using the exper-
imental tomographic setup described in [47]. The sample is a
yeast cell immersed in water (1, = 1.338) and is illuminated
by tilted incident waves with wavelength A = 532 nm. As in
our simulation setup, we acquired 61 views within a cone of
illumination whose half-angle is 35". The measurements lie
on a plane that is centered and perpendicular to the optical
axis. The complex fields with and without the sample were
acquired for each view, thus providing the total and incident
field, respectively. The pixel size is 99 nm.

The reconstructions are performed on a grid of the same
resolution than that of the measurements. We used the Hessian-
Schatten-norm regularization as we found it more suitable for
this type of sample. Finally, we model P as the composition of a
linear filtering by an ideal pupil function (binary disk in Fourier
domain with radius 2NA /A, NA = 1.45) and a free-space prop-
agation to the center of the sample. BPM took about 33 sec-
onds per iteration (proximity operator of the Hessian-Schatten-
norm included) for a reconstruction size of 150 x 150 x 100
(200 iterations). The proposed method took about 38 seconds
per iteration (proximity operator of the Hessian-Schatten-norm
included) for a reconstruction size of 96 x 96 x 96 (200 itera-
tions).

2) Reconstruction Results and Discussion: The recon-
structed volumes obtained with the Rytov method, the BPM,
and the proposed approach are presented in Fig. 8. Once again,
nonlinear models clearly outperform the (linear) Rytov recon-
struction. Moreover, the reconstruction of the RI obtained by
the LS model does not suffer from the artefacts indicated in
BPM slices zo, 23 with thick white arrows. Also, the areas with
higher RI are better resolved (z1, 22, thin red arrows) when the
LS model is deployed. Finally, one can appreciate in that the
inner areas with higher RI (green) are more resolved for the LS
model than for BPM.
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VI. CONCLUSION

Three-dimensional optical diffraction tomography recon-
struction is a challenging inverse problem. Its success depends
on the accuracy of the implementation of the physical model.
In this work, we proposed an accurate and efficient imple-
mentation of the forward model that is based on the exact
Lippmann-Schwinger model. To that end, we tackled important
difficulties that are related to the discretization of the model, the
computational and memory burden, as well as the calibration
of the incident field. Finally, we showed on both simulated
and real data that the use of the proposed model improves the
quality/faithfulness of the reconstructions.

APPENDIX A
PRELIMINARY LEMMAS

Lemma A.1 (Smoothness of a function and decay of its
Fourier transform in R3): Letv € Lo(R3) have (¢ — 1) contin-
uous derivatives in Ly(IR3) for some ¢ > 1 and a gth derivative
of bounded variations. Then,

(W) < —2L Ve st ||w| > C (19)
e RS
where C and (5 are positive constants.

Proof: Tt is an extension of the well known result in one-
dimension, see for instance [48, Theorems 6.1 and 6.2]. |

Lemma A.2 (DFT aliasing for compactly supported func-
tions in R3): Let v € Lo([~L/2,L/2]*) be compactly sup-
ported, have (¢ — 1) continuous derivatives in Ly (R?) for some
q > 3, and a gth derivative of bounded variations. Let v € RV
(N = n?) be a sampled version of v with sampling step h =
L/n. Finally, denote by § = 27 /(hn) the frequency sampling
step of ¥, the DFT of v. Then, forall q € [ + 1; g]]?’

0(0q) —

for a positive constant C' > 0.
Proof: From Poisson’s summation formula and the compact
support of v, we have that

>

ke[5+1;30°

h*¥(q]| < ChTT! (20)

vlkle —jhkTw h3 Z (w+2mm/h). (21)

meZ3

Setting w = dq = 27q/(hn) in (21), one recognizes that the
left-hand side is the DFT of v. Hence, we obtain that

0(0q) = h*v[q] — Z 0 (dq+2mm/h).

meZ3
m#0

(22)

Then, from Lemma A.1, we obtain that there exists C' > 0 such
that

[5(6a) — W*lal] < 3 ©
= 2 [loq + 2rm/h]+1
m#0
Chatt 1

= me 22 Jla/n+ m]et
m#0

(23)
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Let us now study the convergence of the series in (23). Using
the fact that || - |2 < || - [[1 < V/N| - ||2, we obtain that

1 vN
Z q+1 = Z q+1°
. a/m+mllit T = a/n+ml|]
m#=0 m#0

(24)

Then, for q € [5* + 1; 4]® and m € N we introduce the set

:{m€Z3:m§Hq/n—i—mH1<m+1}. (25)

Using the fact that g € [ + 1; 2]* = q/n € (—1/2,1/2]3,
we have that

[mlly = 3/2 < [la/n +ml; < [m] +3/2, (26)
which implies that
m—+2
Sei< > 188
m'=m-2
<5|Sg T =5 (4(m +2)* +2), (27)

where | - | stands for the cardinality of the set. Using the inequal-
ity (27), we can bound the right-hand side of (24) as

LSS SOTLA
meZ3 ‘|q/n+m||q+1 B m=1 mq+1
m#0
+o0 2
(4(m +2)% + 2
<y WNOWEITED) oy,

m=1

which is a convergent series when ¢ > 3. This completes the
proof. |

APPENDIX B
PROOF OF THEOREM 3.1

From the Fourier-convolution theorem, we have that

(g0 *v)(x) = / (% — 2)v(z) dz

_ (271T)3 /ngAt(w)@(w)ej“’Tx dw.

Letn € 2N \ {0} and h = L/n be the spatial sampling step
of the volume 2 in each dimension. It follows that the frequency
domain that is associated to the DFT is Q = [~ /h, 7/h]3.
Then, the padding factor p € N+ enlarges the spatial domain to
[—pL/2,pL/2)3, resulting in the frequency sampling step § =
21 /(hnp) = 27 /(Lp), so that € is sampled using np equally
spaced points in each dimension.

We are now equipped to discretize the integral in (29). To that
end, we use a trapezoidal quadrature rule on €2 and write that

(29)

53
(90 % 0)() ~ g S wqdi (6q) b (5q) e,
ac[="5]°

(30)
There, the weights wq are equal to 1, 1/2, 1/4, and 1/8 when
q belongs to the interior, the interior of the faces, the interior of
the edges, and the corners of the cube [ —22; “2]3, respectively.

2 72

735

The approximation we made in (30) generates two error terms.

1) The error £'P that is due to the trapezoidal quadrature
rule used to approximate the integral over the domain
). This error is well documented in the literature [49].
For integrand that are twice differentiable, such as w —
Gt (w)d(w)el®” > we have that

. 9 2T 2
[P <C6*=C| —

Iy €1y

for a positive constant C' > 0.

The error €' that is due to the truncation of the integral
in (29) to the domain €2, bounded as

/ G (w)d(w)el ™ dw‘
R3\$)

1 ~ ~ jwTx
< o o 1]

- C
= @y

2)

1
(2m)?

tr| —

dw, (32)

2
/]R3\§ (lwll = Fp) [|w][a+2
for a constant C' > 0.
The last inequality in (32) has been established in two steps.
First, the assumption that kp, < 7/h implies that Vw € R3 \ Q,
|w|| > kp. Then, one gets from (7) that, Vw € R3\ Q,

2

|9t (W)] < (33)
([lwll = Fon) [l

Second, Lemma A.1, along with the fact that v has (¢ — 1) con-
tinuous derivatives with a gth derivative of bounded variations,

implies that its Fourier transform decays as

N C

9)] < o (34)
for a constant C' > 0. Combining these two bounds with
lel“" x| = 1 finally leads to (32).

A further refinement of the bound (32) is needed to recover
the statement of Theorem 3.1. Denoting by Bfr = {weR3:
lw]| < 7/h} the £2-ball of radius 7/ h, one sees that the integral
in (32) is upper-bounded by the integration of the same integrand
over the larger domain R?\ 132 I This bound is easier to
evaluate using spherical coordinates, as in

s 29 L
-2 Jragz, (el = kp)lle]|e*?
2 r2sin(6
/ / /Tr ) rq+2 drdfde
= — //} dr. (35)

To evaluate (35), we use the partial fraction decomposition

| qZE 1 o)
(r —kp)re ki (r — k) kL pmad .

m=0



Hence, we have that

. C +0o0 1 +0o0
< (kqlog< k)| 7~ g lostr)]
— “+0o0
- g ()
k.Q*m mrm
m=1 ""b 7:%

- b\ L1 k™
= q—c; <log (1 — b) + — (b> > (37)
kym T m T

C X1 /kyh
e X (W> (38)
m=q
Evh q+°° Euh 1
e () 2 (%) &2
kym m+q

To obtain (38) from (37), we used the fact that kph/7m < 1
together with log(1 — z) = (= 325%™ /m) for |z| < 1. Fi-
nally, we get the bound C*"/n? from the convergence of the
series in (39) and h = L/n.

Let us focus on aliasing. As opposed to g; for which we have
access to an explicit expression in (7)—(8), the samples 0(dq)
in (30) have to be approximated by the DFT coefficients of a
p-times zero-padded version of the sampled signal v € CV,
denoted v, € CNP*, and defined by, Yk € [52 +1; 22]°,

vik] =wv = ;23
Vp[k]_{ k] = v(hk), ke[ +1;2

) (40)
0, otherwise.

We then replace 9(dq) in (30) by h3v,,

1
(np)? 2

qell "P "T—' 3

[q] and obtain that

vy lgle?a’x.

(90 v)(x) = wq gt (6Q)

(41)
This approximation introduces an error term £ that is due to
aliasing. More precisely, we have that

a & ~ o e
|‘€ 1| S (271_)3 Z wq |gt (5q)| ‘U((Sq) - hgvp[qH
q<[= np7n2p 3
6° o q+1
S (271,)3 Z Wq |gt (5Q)| Ch (42)
qe[[ 2p7m7]]3
§3Chat
< W(np) 119t o0
. _ C|| G| oc L1 2
= Clgelloch®™ = % (43)

where (42) comes from Lemma A.2.

To complete the proof, it remains to recognize an inverse
DFT within (41). Let {q,}5_; denotes the eight corners of the
cube [=22; “2]3, Then, because g; is radially symmetric (see (7)

2 072
and (8)), and by periodicity of v, we have that
9: (6as) Vplail = g (Oan) Vilaul, Vi € {2,....8}.  (44)
Hence we can factorize the corresponding terms in (41) as
1. o~ ~ —
> SaGa)Vlal = G Ga) Vola).  @5)

ac{ai}f_;
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Finally, using the same arguments for points within the faces

and edges of the cube [—32; %2]®, and sampling (41) at points
hk, k € [5* + 1; 2]°, we obtain that
1 P 207 (T
GV =—= >  &ldvlder?* @6
(np)® e~
ae[—2+1; 5 ])°
where g; = (9¢(6Q))qep=nz 4 1;npys- We recognize an inverse

DFT, which completes the proof.
APPENDIX C

PROOF OF PROPOSITION 3.2

First, let us introduce the notation €2,, = [[’7"
we have that, forall k € Q,,,

(F*1(§c ©vy)) [K]

+1; % 3. Then,

2jm T
- NE E : gilalvy[a e;”q .
AEQnyp
—2jm ~T 2jm T
_ aq,5yak
= o 3 &ld Y wlale A
AcQnyp AEQnp
~ 2jm k—a)T
_ a)'aq
= G 2 Veldl D &lale™
EQz QGan
2jm T
_ 5P k—q q-s
“om L wldl Y &l et Ga
qeQay, sE[[O;gflﬂ3
qeQap

ey —2jm
F (& [L —s])[k—q]ems kD7s

>

se[0;5-1]3

8
o DV
qeQay,
47)

where we have used the fact that supp(v,) = supp(v) C Q,, C
9, Hence, we have shown that (F~1(g; ® {,;))‘Q can be
obtained as the valid part of the discrete convolution between
vo, defined as v padded with p = 2, and a modified truncated
Green function given by, Yk € Qo,,,

e[k =I% 3

p
SE[[O;§—1]]3

im T

s])[k] e

F g[8 - @)

which completes the proof.
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