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Coordinating Tire Forces to Avoid Obstacles Using
Nonlinear Model Predictive Control

Matthew Brown and J. Christian Gerdes

Abstract—In order to safely navigate highly dynamic scenarios,
automated vehicles must be able to react quickly to changes in the
environment and be able to understand trade-offs between lateral
and longitudinal forces when limited by tire-road friction. We
present a design and experimental validation of a nonlinear model
predictive controller that is capable of handling these complex sit-
uations. By carefully selecting the vehicle model and mathematical
encodings of the vehicle and obstacles, we enable the controller to
quickly compute inputs while maintaining an accurate model of
the vehicle’s motion and its proximity to obstacles. Experimental
results of a test vehicle performing an emergency double lane
change to avoid two “pop-up” obstacles demonstrate the ability
of the controller to coordinate lateral and longitudinal tire forces
even in emergency situations when the tires are at their friction
limits.

Index Terms—Automated vehicles, vehicle dynamics, obstacle
avoidance, nonlinear model predictive control.

I. INTRODUCTION

A S AUTOMATED vehicles become more developed, they
will need to handle a wide range of real-world situations.

There are many challenging problems to overcome in order to
keep the vehicle and other nearby stakeholders safe in complex
urban environments, even when assuming low speeds and ac-
celerations. Beyond these, automated vehicles must also handle
dynamic situations at higher speeds and accelerations. In par-
ticular, it may be necessary to take sudden and extreme actions
to avoid collision with another vehicle or object. In emergency
situations, we want to fully utilize the vehicle’s capability in
order to avoid collisions.

Model predictive control (MPC) has become a popular tech-
nique that combines the predictive power of motion planning
with the speed and robustness of real-time control. It enables
the vehicle to act quickly to changes in the environment while
ensuring that actions taken now will not put the vehicle in
a dangerous state in the future. At each time step, a model
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predictive controller solves an optimization problem to compute
a trajectory of states and inputs. It applies the first input (or some
initial input sequence), and repeats at the next time step. Often
MPC controllers are formulated as tracking controllers, where
the objective is to follow a desired state trajectory (computed by a
higher level motion planner or decision maker) while respecting
constraints like input saturation and collision avoidance. Each
of these controllers represents a collection of design decisions
about the dynamics model, obstacle representation, and numer-
ical approximations that make appropriate tradeoffs between
model fidelity, optimality, and computation time.

Linear, or linear time varying, MPC has proven to be very
effective at controlling a vehicle in situations where fast solve
times are especially important. By solving a convex optimization
problem with a linear dynamics model, a controller can very
quickly find the global optimal of an approximate problem. Fal-
cone et al. [1] demonstrated the effectiveness of linear MPC as a
path tracker on icy roads at high speeds and ensured yaw stability
of the vehicle with an additional constraint [2]. Similarly, Brown
et al. [3] and Funke et al. [4] enforced yaw stability of the vehicle
on a dry asphalt road by constraining velocity states to remain
within a known safe region of the state space, defined by Beal
and Gerdes [5]. The predictive power of the model is crucial for
these tasks, ensuring that inputs applied now will stabilize the
vehicle without compromising future performance. Using linear
models enables the fast performance needed for stabilization,
but also limits the controller’s capabilities. In particular, lateral
and longitudinal dynamics are coupled in a nonlinear way,
making it challenging for a linear MPC controller to plan both
lateral and longitudinal inputs. This is especially true when the
tires are pushed to their friction limits and the system becomes
more nonlinear and difficult to approximate with a linear model.

An alternative approach is to use a nonlinear vehicle model
and solve a nonlinear optimization problem. This trades the
global optimality and convergence guarantees of convex op-
timization for additional modeling power. Falcone et al. [1]
used nonlinear MPC (NMPC) to compute steer angles to track
a path during a double lane change and analyzed how incor-
porating braking forces affected the problem complexity [6].
They presented a controller that modeled the total forces on
each tire but noted that the model complexity limited real-time
implementations. Liu et al. [7] and Febbo et al. [8] investigated
obstacle avoidance tasks, planning steering angle and a reference
speed profile every 0.5 s. While these algorithms were able
to maneuver through complex environments using nonlinear
models, the long solve times limit fast reactions to changes in
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the environment. Despite these challenges, nonlinear models are
attractive because of their ability to capture the coupling between
lateral and longitudinal forces on a tire.

Others have investigated methods for mitigating the long solve
times of NMPC; Gao et al. [9] compared directly solving for
steering and braking commands to a hierarchical approach that
first found an obstacle-free path using a lower fidelity model
before solving for steering and brake commands. In particular,
they noted the challenges of combining obstacle avoidance and
vehicle control in a single planner/controller that can run in real
time. Frasch et al. approached the computation time problem of
NMPC with real-time iteration and presented simulation results
of a vehicle avoiding obstacles on a low friction surface in a
structured environment [10]. We chose to focus on a single-
level controller that fully converges before inputs are used, and
to mitigate the long solve times of NMPC with our choice of
integrator, variables, and replanning strategy.

A key design decision for an obstacle avoidance task is the
representation of the vehicle and obstacles. Simple bounds on
lateral position are amenable to fast solve times but are lim-
ited in modeling vehicle rotation and are often coupled with
longitudinal position [3], [10]. More complex representations
that explicitly consider distance to obstacles do not suffer these
drawbacks, but take longer to solve. A common approach is to
represent both the vehicle (or robot) and obstacles with sets of
polytopes and to incorporate distance between these sets into the
objective or constraints [9], [11], [12]. While the distance func-
tion is typically not differentiable, there are reasonable heuristics
to address this. Gerdts et al. [13] took a different approach by
modeling the robot and obstacles as unions of convex polyhedra
and invoking Farkas’ lemma to transform the constraint that the
robot and obstacle do not overlap into something tractable for
numerical optimization. Zhang et al. [14] extended this idea to
include the notion of signed distance, to enable computation of
minimum-penetration trajectories. This method allows robots
and obstacles to be modeled as polytopes and avoids an often
non-differentiable signed distance function, but it does introduce
additional variables and constraints to the problem. Because
these additions must be added to each stage, they can cause
a meaningful increase in solve times. We represent the vehicle
with a set of circles, similar to Zieglar et al. [12], and extend
this idea by representing obstacles with another set of circles.
This representation enables fast computation of the value and
gradient of the signed distance function between the vehicle and
an obstacle, and by using multiple circles can still capture the
important effect of vehicle rotation.

In emergency situations, a controller needs to act quickly, have
a sufficient understanding of the trade-offs necessary between
lateral and longitudinal forces at the tires, and use a vehicle and
obstacle representation that is valid for large vehicle rotations.
The design decisions necessary to achieve this, especially on an
experimental vehicle, represent a contribution to the literature.
We propose a NMPC controller to compute the inputs of steer
angle and front and rear longitudinal forces. The vehicle is
modeled by a single track dynamics model with a brush tire
model, accounting for steady state longitudinal weight transfer
and derating lateral force due to longitudinal force. Obstacle
avoidance is handled by a novel representation of the vehicle

Fig. 1. The single track model positioned within a curvilinear coordinate
system defined by a reference line.

and any obstacles using sets of circles and penalizing the signed
distance between all vehicle and obstacle circle pairs. The choice
of total longitudinal force and brake bias as optimization vari-
ables reduces the problem size while still enabling the controller
to arbitrarily direct braking force between the front and rear
axles. This careful problem formulation enables a controller
that is fast enough to run in real time, replanning every 50 ms,
and sophisticated enough to operate at the vehicle’s limits,
coordinating lateral and longitudinal forces with one or more
tires fully saturated. Section II describes the chosen vehicle
model, Section III explains the representation of the vehicle
and obstacles, and Section IV describes the formulation of
the optimization problem. Section V compares solve times for
controllers using different vehicle and obstacle representations
and demonstrates the efficacy of the controller on a full-size
vehicle, performing a sufficiently extreme maneuver to justify
the chosen model complexity. In the presented experimental
results, two obstacles “pop up” in front of the vehicle, forcing
it to perform an emergency double lane change. The controller
coordinates braking and turning forces of each axle individually
while successfully avoiding the obstacles. Video of this experi-
ment is available at https://purl.stanford.edu/kw432sz0082.

II. VEHICLE MODEL

The vehicle motion can be predicted with a planar single-track
model with tire forces coming from a single-friction-coefficient
brush tire model.

A. Curvilinear Coordinate System

The position of the vehicle is measured relative to a reference
line. This line is assumed to have continuous curvature κ,
which can be integrated to compute heading and position of the
reference line. While this line can define an arbitrary coordinate
system, in this paper we assume that the line corresponds to
the center of the road. The vehicle’s position is parameterized
by relative heading Δψ, longitudinal position s, and lateral
position e.

B. Equations of Motion

A schematic of the single track model, or bicycle model, is
shown in Fig. 1. The velocity variables of the vehicle are the
yaw rate r and the lateral and longitudinal velocity at the center
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of mass (CoM) uy and ux, respectively. We are interested in
explicitly modeling the lateral and longitudinal forces on each
axle; the equations of motion in terms of these front and rear
lateral forces Fyf , Fyr, front and rear longitudinal forces Fxf ,
Fxr, and steering angle δ are:

ṙ =
1

Izz
(aFyf cos δ + aFxf sin δ − bFyr)

u̇y =
1

m
(Fyf cos δ + Fxf sin δ + Fyr)− rux

u̇x =
1

m
(−Fyf sin δ + Fxf cos δ + Fxr − Fxdrag) + ruy

Δψ̇ = r − κṡ

ṡ =
ux cosΔψ − uy sinΔψ

1− κe

ė = ux sinΔψ + uy cosΔψ (1)

A simple drag model appropriate for operation below highway
speeds is used: Fxdrag = Cd0 + Cd1ux, but a quadratic term for
aerodynamic effects at higher speeds could be included without
changing the structure of the problem.

C. Tire Model

The lateral forces on the front and rear tires are approximated
with a single-friction brush tire model. This model predicts lat-
eral force as a function of the slip angle α, the angle between the
tire’s orientation and its velocity vector. This can be computed
as:

αf = tan−1

(
uy + ar

ux

)
− δ (2)

αr = tan−1

(
uy − br

ux

)
(3)

While there is a pleasant symmetry in using a combined slip
model to capture the interaction between longitudinal and lateral
forces, the fast wheel speed dynamics can make working with
longitudinal slip difficult. For this reason, we approximate the
combined slip brush tire model by derating the maximum lateral
force Fy,MAX with the given longitudinal force according to
the friction circle, as presented by Hindiyeh [15], derived from
Pacejka [16]. Lateral force is therefore a function of the lateral
slip angle α, the longitudinal force Fx (assumed as an input),
the normal load Fz , and the parameters cornering stiffness Cα

and friction μ.

Fy,max =

√
(μFz)

2−Fx
2 (4)

Fy =

⎧⎪⎪⎨
⎪⎪⎩
−Cα tanα+ C2

α

3Fy,max
| tanα| tanα . . .

− C3
α

27(Fy,max)2
tan3 α, |α| < tan−1

(
3Fy,max

Cα

)
−Fy,max sgn α, otherwise

(5)

Tire model parameters were selected by performing a ramp
steer maneuver, in which the vehicle traveled at a constant ux
and δ was increased at a slow, constant rate. The resulting model

Fig. 2. Modeled lateral tire forces and estimates from a ramp steer calibration
procedure.

and measurements from this procedure are shown in Fig. 2.
Experimental slip angles were computed with (2) and (3) using
measured r, ux, and uy . Experimental forces were estimated
with the equations of motion (1) using measured r, ux, and uy,
and a steady state assumption. This forms a system of linear
equations which can be solved for Fyf and Fyr. The resulting
model, shown in Fig. 2, represents the lumped effect of the right
and left tires and is a good fit for the experimental data.

D. Weight Transfer

The normal forces on the front and rear tires are modeled by
assuming a static weight distribution and by adding the effect
of steady-state longitudinal weight transfer under small steering
angles:

Fzf =
1

L
(mbg − hcm(Fxf + Fxr)) (6)

Fzr =
1

L
(mag + hcm(Fxf + Fxr)) (7)

where hcm is the height of the center of mass above the ground.
This model for longitudinal weight transfer is equivalent to
assuming a stiff suspension. While a real vehicle will have
a compliant suspension, this weight transfer model does not
introduce any additional states and is accurate in steady-state.
Critically, it captures the effect of increased Fzf when braking,
which increases the capability for both lateral and longitudinal
force on the front axle. Additionally, braking unloads the rear
axle, decreasing Fzr and the lateral and longitudinal force ca-
pability on the rear axle. Lateral weight transfer is not explicitly
modeled, but its steady-state effect is lumped into the tire model
in the single-track approximation.

The resulting vehicle model provides a complete map-
ping from states x = [r, uy, ux,Δψ, s, e] and inputs u =
[δ, Fxf , Fxr] to state derivatives:

ẋ = fcont(x, u) (8)
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Fig. 3. Representation of the vehicle with two circles (blue) and an obstacle
with one circle (red). Collision and distance to an obstacle can be approximated
using the signed distance between each vehicle-obstacle circle pair.

III. OBSTACLES

A fundamental task of this controller is obstacle avoidance, so
a good representation of the vehicle and obstacles is very impor-
tant. In the planning literature, it is common to treat the vehicle or
robot as a point and plan in the configuration space [17]. With this
approach, obstacles are enlarged and lifted in higher dimensions
to account for rotation of the robot, multiple joints, etc. This
works well for sampling based methods where obstacle collision
can be treated like a black box and queried. However, the lack
of an analytical expression for distance or signed distance to
obstacles makes planning in the configuration space challenging
for a numerical optimization scheme.

Another approach is to treat the vehicle as a point in position
space and to enlarge the obstacles to account for the vehicle’s
size. To account for the rotation of the vehicle, obstacles can
be enlarged further [8] or can be modified according to a lin-
earization of the configuration space obstacle [18]. While these
approximations are more conducive to numerical optimization,
they tend to overly enlarge the obstacle to remain conservative.

Encoding both the vehicle and the obstacle as full-
dimensional is more difficult, but enables more precise handling
of rotation. Perhaps the most straightforward approach is to
numerically linearize the signed distance between the robot and
obstacle, which may require special consideration when the true
signed distance is not differentiable [11], [12]. Another approach
is to assume polytopic or elliptic representations of the robot and
invoke Farkas’ lemma to replace the obstacle avoidance con-
straint with its dual equivalent [13], [14], [19]. This constraint
is smooth and amenable to numerical optimization at the cost of
additional variables and constraints, which can greatly increase
problem size and solve times.

The representation of the vehicle and obstacles needs to pre-
cisely account for large rotations of the vehicle while remaining
simple enough for real-time control. To accomplish this, we
represent the vehicle with a set ofNv circles. Each vehicle circle
Vi (for i = 1 . . . Nv) is parameterized by its radius and center,
which depend on the vehicle’s position and heading. Similarly,
we can represent any obstacles with a set of No circles, Oj

for j = 1 . . . No. Fig. 3 shows a vehicle represented with two
circles and an obstacle represented with one. This representation
enables fast computation of the signed distance d between any

Fig. 4. Signed distance between two circles in a Cartesian frame parameterized
by their curvilinear coordinates.

vehicle circle Vi and obstacle circle Oj . If all of the signed
distances between all vehicle-obstacle circle pairs are positive,
then the vehicle and obstacle representations do not intersect
and there is no modeled collision.

For two arbitrary circles C1 and C2, each parameterized by
their position in curvilinear coordinates and radius (s1, e1, r1)
and (s2, e2, r2), respectively, the signed distance in the curvilin-
ear coordinate system is:

d1(C1, C2) =
√

(s2 − s1)2 + (e2 − e1)2 − r2 − r1 (9)

When this distance is positive, it represents the distance sepa-
rating C1 and C2. When it is negative, it represents the distance
of penetration, or amount of overlap, between C1 and C2.

The signed distance between two circles is easy to compute
in the curvilinear space, but distances are not the same as in a
Cartesian space. To analyze the approximation error of (9) due
to curvature, we compare it to the signed distance in a Cartesian
space, as shown in Fig. 4. Under the assumption that the two
circles are sufficiently close that the curvature of the reference
line κ is approximately constant between them, the angle θ is
κ(s2 − s1). The distance between the center of the circlesL can
be found using the law of cosines:

L2 = R2
1 +R2

2 − 2R1R2 cos θ

=
(
2R2 − 2Re1 − 2Re2

)
(1− cos θ)

+ e21 + e22 − 2e1e2 cos θ (10)

The assumption that θ = κ(s2 − s1) is small, which is true for
typical road curvatures and when circles are relatively close,
enables the approximation cos θ ≈ 1− θ2/2:

L2 =
(
2R2 − 2Re1 − 2Re2

)(κ2(s2 − s1)
2

2

)

+ e21 + e22 − 2e1e2

(
1− κ2(s2 − s1)

2

2

)

= (1− e1κ)(1− e2κ)(s2 − s1)
2 + (e2 − e1)

2 (11)
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The signed distance in a Cartesian frame, under the above
assumptions, is therefore:

d2=
√

(1− e1κ)(1− e2κ)(s2 − s1)2 + (e2 − e1)2 − r2 − r1
(12)

This is identical to the intuitive distance d1 when either the
curvature is zero or the two circles lie on the reference line,
and varies smoothly as those parameters change. While d1 can
be used to represent the signed distance, it will differ from
the Cartesian distance d2 by the above (1− e1κ)(1− e2κ)
factor, overestimating the distance when e1κ > 0 and e2κ > 0.
Although the curvature of roads is typically very small relative
to the width of the road, d2 more accurately models distance,
especially on high curvature roads.

IV. PROBLEM FORMULATION

The controller repeatedly solves an optimal control problem
to compute an input trajectory of δ, Fxf , and Fxr to safely guide
the vehicle through the scenario. It does not attempt to solve
the combinatorial problem of deciding which side each obstacle
should be passed and in what order or if the vehicle should
come to a stop before certain obstacles. Instead, the controller
assumes that a higher level planner has selected a driving cor-
ridor, indicated by desired trajectories for lateral position and
speed. We stress, however, that these desired trajectories can
be very crude and are used to indicate to the controller which
general homotopic class of solutions it should explore. It is
the responsibility of the controller to take this rough decision
and compute a full state trajectory that is safe and dynamically
feasible.

A. Discretization

The optimal control problem is transformed to a nonlin-
ear program by a simultaneous transcription method. This
method considers the values of the states and inputs at discrete
points in time and transforms the differential equation of the
model in (8) to a difference equation using a numerical inte-
gration scheme, assuming piece-wise constant inputs between
stages.

It is important to choose an integrator with enough complexity
to accurately integrate the equations of motion but one that is
also simple enough to run quickly. A very common scheme is
Euler’s method, or forward Euler:

x(t+ h) = x(t) + hf(x(t), u(t)) (13)

Another method is an explicit second order Runge-Kutta
integrator (RK2) sometimes referred to as the midpoint
method:

k1 = hf(x(t), u(t))

k2 = hf

(
x(t) +

k1
2
, u(t)

)

x(t+ h) = x(t) + k2 (14)

A given integrator’s performance depends on both the amount
of time between stages h and the dynamics model. While

Fig. 5. Results from integrating the given vehicle model and a reasonable trace
of inputs with candidate integrators. Runge-Kutta 2 provides a good balance
between simplicity and accuracy.

bounds on error can be computed (the total accumulated error
of Runge-Kutta 4 is famously O(h4)), it is difficult to exploit
prior knowledge of the differential equations to prescribe an
acceptable fixed step size.

Fig. 5 shows the results of integrating a trace of inputs
(δ, Fxf , Fxr) and the given vehicle model (8) with different
integrators for the vehicle states r and e. The input trace comes
from an emergency double lane change and represents an intense
maneuver in that the state derivatives have high magnitude
and the state is in the saturated region of the tire model for a
significant amount of time. Euler’s method with a step size of
h = 0.5 ms is presented as a baseline. Euler’s method with a step
size of h = 50 ms is very inaccurate, whereas for the same step
size, RK2 performs very well. Furthermore, RK2 performs just
as well as RK4 for this application with significantly less compu-
tation. For these reasons, we selected RK2 as the discretization
method.

B. Change of Variables

It may be natural to use Fxf and Fxr as the longitudinal
input variables in the optimization problem, but there may be
a better choice given the application. It is important to minimize
or limit longitudinal jerk, so the problem needs to include Ḟxf

and Ḟxr as variables in addition to Fxf and Fxr, for a total of
four longitudinal variables per stage. Additionally, we want to
constrain Fxf and Fxr to have the same sign to prevent the drive
motor and brakes from competing with each other. A natural
encoding of this constraint is:

FxfFxr ≥ 0 (15)

However, this constraint has a saddle point at (Fxf =
0, Fxr = 0) which is a typical location in the input space. Be-
cause the Hessian of this constraint is not positive definite, it can
contribute to the Hessian of the Lagrangian of the optimization
problem not being positive definite. This undermines the Newton
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step at the core of the solver, which requires a positive definite
Hessian. Including this constraint is detrimental to the solver’s
speed and robustness.

An alternative choice of variables is total longitudinal force
Fx and brake distribution (or bias) λbrake. The brake distribution
represents what fraction of the total longitudinal force should be
applied on the front axle; the remaining force should be applied
on the rear axle. Given Fx, λbrake, and a fixed drive distribution
λdrive, Fxf and Fxr can be computed:

Fxf =

{
λbrakeFx Fx ≤ 0

λdriveFx Fx > 0
(16)

Fxr =

{
(1− λbrake)Fx Fx ≤ 0

(1− λdrive)Fx Fx > 0
(17)

This choice of variables implicitly encodes the constraint that
Fxf andFxr have the same sign. Additionally, the controller can
minimize longitudinal jerk by including Ḟx as an optimization
variable. Because the brake system can direct force between the
front and rear axle much faster than the other dynamics in the
system, we do not need to include λ̇brake. Under this assumption,
the problem needs only three longitudinal variables per stage:
Ḟx, Fx, and λbrake, one less than the formulation with Fxf

and Fxr.

C. Cost Function

The objective of the controller is to roughly track some
sequence of desired lateral positions and longitudinal speeds
while finding a feasible state trajectory that avoids becoming
too close to or colliding with obstacles or road edges. The cost
function is:

J =
N∑

k=1

(
Qe(e

k − ekdes)
2 +Qux(u

k
x − ukx,des)

2

+Qδ(δ̇
k)2 +QFx(Ḟ

k
x )

2 +Qλ(λ
k
brake − λnat)

2

+

Nv∑
i=1

No∑
j=1

pobs(d2(V
k
i , O

k
j ))

+

Nv∑
i=1

pedge(d2(V
k
i , rleft(s

k)))

+ pedge(d2(V
k
i , rright(s

k)))

)
(18)

whereQe andQux are quadratic weights on lateral position error
and longitudinal speed error,Qδ andQFx are quadratic weights
on δ̇ and Ḟx, and Qλ is a small quadratic weight that pushes
λbrake towards a typical value denoted by λnat. The continuous
and differentiable penalty functions pobs and pedge are zero above
a certain distance and quadratic below it.

p� =

{
0, d > dmin,�

Qdist(d− dmin,�)
2, d < dmin,�

(19)

for � = [obs,edge].

This means a trajectory only incurs cost from pobs or pedge if
it causes the vehicle to come within dmin,obs of an obstacle or
within dmin,edge of a road edge, indicated by rleft(s) and rright(s).
Qdist is chosen to dominate the cost function if this occurs; the
controller will accept lateral positions and longitudinal speeds
that differ from the desired values if they allow for a collision
free trajectory.

The state of the switch in (19) is not known a priori, but instead
can change mid-optimization as the solver moves the planned
vehicle states nearer to or further from obstacles as needed.
An implicit function of the controller is to determine when the
vehicle must come close to some obstacles to avoid outright
collision with others, so this information is not constrained ahead
of time. Although the penalty function is defined piecewise, it
is continuous and has continuous first derivatives with respect
to the optimization variables, making it amenable to numerical
optimization.

Increasing the amount of circles used (Nv , No) enables de-
signers to more accurately capture the shape of the vehicle or
obstacles, for example, placing smaller circles at the corners to
create a more rectangular representation. However, these more
detailed representations come at a cost. While increasing Nv

and No does not increase the number of optimization variables
or constraints, the computational cost to evaluate (18) increases
asO(NNvNo). The results presented in this paper useNv = 2,
the minimum number to capture vehicle rotation, and No = 2,
one for each obstacle.

D. Nonlinear Program and Solver

Whereas previously we have used u to represent inputs to
the model, we now define ū to represent the highest order
derivatives of u used in the cost function, and we define x̄ to
represent the state x augmented with δ andFx. For this problem,
ū = [δ̇, Ḟx, λbrake] and x̄ = [δ, Fx, r, uy, ux,Δψ, s, e]. In terms
of these variables, the nonlinear problem is:

min J

s.t. x̄1 = x̄meas

λ1
brake = λbrake,meas

x̄k+1 = fdis(x̄
k, ūk) k = 1, . . . , N − 1

ūLB ≤ ūk ≤ ūUB k = 1, . . . , N

δLB ≤ δk ≤ δUB
...

F k
x ≤ Fx,max

|F k
xf | ≤ γμF k

zf

|F k
xr| ≤ γμF k

zr (20)

where fdis is the vehicle model (8) and the first-order relation
between (δ, Fx) and (δ̇, Ḟx) discretized with a Runge-Kutta 2
integrator (14). There are upper and lower bounds on ū and δ
and upper bounds on Fx that enforce actuator limits.

The amount of force available at each tire is not constant but
varies as the normal load changes. The total amount of force
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TABLE I
CONTROLLER PARAMETERS

a tire can produce is μFz: this is the friction circle constraint.
The lateral tire model enforces this constraint to limit the lateral
forces given the longitudinal forces, but the problem must also
constrain the longitudinal forces. Both Fxf and Fxr, computed
using (17), are limited by μFzf and μFzr, computed using (7).

An additional factor of γ controls what fraction of modeled
total force is available for longitudinal force. If γ = 1, Fxf or
Fxr can use all available force, leavingFyf = 0 orFyr = 0. Due
to the limitations in precisely estimating friction, it can be useful
to limit Fxf and Fxr with a slightly lower value of γ, making
the controller optimistic with respect to maximum lateral force.
The experiments presented in this paper were conducted with
γ = 0.95.

The optimization problem is solved in terms of the variables
δ,Fx, and λbrake and converted to δ,Fxf , andFxr using (17). The
latter variables are then commanded to lower level controllers as
targets to track. The cost function weights and other parameters
of the problem are shown in Table I.

The problem is solved with the FORCES NLP interior point
solver [20], using automatic differentiation of the cost function
and constraints from CasADi [21]. The solver approximates the
Hessian of the Lagrangian of (20) using BFGS [22] and exploits
the sparsity of the problem to improve solve times.

E. Replanning

In comparison to quadratic (or other convex) problems, non-
linear problems require more computation time. In highly dy-
namic maneuvers, the vehicle state can change significantly dur-
ing this time, so accounting for computation delays is important.
The strategy the controller uses is shown in Fig. 6. Assuming the
controller already has a plan, or full state and input trajectory, it
does two things simultaneously. First, it executes that plan for
the next 50 ms by applying the sequence of inputs δ, Fxf , and
Fxr to the vehicle. The lower level controllers on the test vehicle
accept new commands every 10 ms, so every 10 ms the current
plan is linearly interpolated to find the correct inputs at that
time. This linear interpolation is consistent with the integrator
assumption that δ̇, Ḟx, and λbrake are constant over a given stage.
Second, it simulates the vehicle model with that sequence of
inputs to obtain an estimate of what the state will be in 50 ms
and begins computing the next plan starting from that simulated
initial state.

Fig. 6. Prediction horizon shown for three consecutive time steps of a hypo-
thetical scenario. Computation delays are compensated for by simulating the
current plan and planning from that predicted initial state while simultaneously
executing the current plan.

A planned trajectory is valid for its initial state. Of course,
the simulated initial state will never exactly match the measured
initial state, but it should be close for an accurate model. This
enables the controller to plan trajectories that are valid when
computation is finished, not ones that were valid when compu-
tation began.

A related strategy is to maintain a full copy of the last com-
puted plan. Even though only the first 50 ms of the planned inputs
will typically be used, this copy provides some robustness to
computation times. If the solver fails to converge within the time
limit of 50 ms, the controller can continue executing commands
from the last plan while computing the next plan. This occurred
once during the experimental results presented here.

F. Limitations

The objective of the controller is to find a locally optimal
trajectory within a homotopic class of solutions, not to decide
between homotopies. In other words, the controller depends on
a higher level decision maker to select, for instance, whether
to pass an obstacle on the right or left. Furthermore within
such a selected homotopy, the controller solves a non-convex
optimization problem. The interior point method it uses can only
find locally optimal solutions, with none of the mathematical
guarantees of convergence that can be made for convex prob-
lems. Empirically, however, the solver converges in a wide range
of conditions and its solutions have been effective in controlling
the vehicle in both simulation and experiment.

V. RESULTS

A. Simulation Comparison

The representation of the vehicle and obstacles with circles
enables real-time control. To demonstrate this, we compare
the proposed controller to one that one that is identical ex-
cept for a rectangular vehicle and obstacle representation. This
representation is exact, with no approximation, but requires an
additional variable per side of the vehicle and each obstacle. For
three rectangles, these 12 variables per stage are used in two
additional scalar inequality constraints and two scalar equality
constraints per stage to enforce a collision free path, as described
by Zhang [14].

In simulation, the vehicle drove at ux,des = 14 m/s in the right
lane on a straight road. One obstacle blocked the right lane and
a second obstacle 15 m further along the road blocked the left
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TABLE II
SOLVE TIMES

Fig. 7. X1: a versatile test vehicle used in these experiments.

TABLE III
VEHICLE MODEL PARAMETERS

lane. A proportional depiction of the circular and rectangular
representations used in the simulations is shown in Fig. 3. Both
controllers successfully guided the vehicle through a double lane
change to avoid the obstacles. The two controllers produced
similar control inputs with different solve times, which are
shown in Table II.

The rectangular (and more generally, polytopic) representa-
tion allows for very precise handling of the vehicle and obstacles,
but requires too much computation time to run in real time for
this application. The circular representation is an acceptable
approximation that is simple enough for real-time control.

B. Experimental Platform

Experiments were performed using X1, a student-built elec-
tric vehicle. Model parameters for X1 are shown in Table III.
An onboard NovAtel SPAN-SE navigation system fused Global
Navigation Satellite System (GNSS) measurements with inertial
measurements from gyroscopes and accelerometers to provide
accurate position, velocity, and acceleration estimates of the

center of mass, as well as attitude and angular velocity of the
vehicle.

The controller was run on a conventional onboard com-
puter running Ubuntu 16.04 with an i7-6700 CPU running at
4.0 GHz. Commands of steering angle, braking force on each
axle (mapped to pressure), and drive force (mapped to torque)
were passed to a hard real-time computer for lower-level con-
trol. Cost function weights, as shown in Table I, were chosen
such that reasonable values for each term were scaled to unity.
For example, a lateral position error of 50 cm, a steering rate
of 10 deg/s, and being positioned 10 cm inside an obstacle’s
minimum safe distance all contribute a value of 1 to the total
cost.

C. Experiment

In this experiment, the test vehicle drove on a straight road,
staying in the middle of its lane. After the center of mass of
the vehicle passed the s = 180 line (Time 1© in Fig. 8), two
obstacles appeared: one in the vehicle’s lane at s = 200 and one
in the oncoming lane at s = 215. At this point, the vehicle began
an emergency double lane change. Times 1©– 5© are represented
by vertical gray dashed lines in Figs. 9, 10, 11, and 12. Fig. 13
shows a composite top view of the vehicle at approximately
Times 1©– 5© for additional context.

The closed-loop inputs computed by the controller are shown
in Fig. 9. As soon as the obstacles appeared at Time 1©, the
controller began steering left, limited by the slew rate, until it
reached the vehicle’s maximum steering angle of 18◦. Simul-
taneously, the controller immediately reduced Fxr to −4 kN,
a moderate braking force. The effect of this is twofold. First,
braking slowed the vehicle, making the maneuver easier by
allowing more time to accelerate the mass of the vehicle laterally
to avoid the obstacles. Additionally, braking transferred weight
to the front of the vehicle, which increases the lateral force
capability of the front axle. This additional force capability was
utilized by the controller; Figure 10 (top) shows both the lateral
force and its limit increased between Time 1© and Time 2©.

Conversely, the rear lateral force shown in Fig. 10 had a
reduced capacity after Time 1©, both due to weight transferring
off the rear axle and the derated maximum lateral force due to
the applied longitudinal force (4). When the obstacles appeared
at Time 1©, all available force on the front axle was needed for
turning, but the rear axle was free to brake until the vehicle had
rotated enough to require rear lateral force. The controller was
able use all available frictional force on the front axle to turn
the vehicle while still braking the rear axle for the few hundred
milliseconds in which it was otherwise not needed. At Time 2©,
the controller began braking the front axle (Fig. 9 middle) and
easing off the brakes on the rear axle, increasing Fxr to zero
(Fig. 9 bottom). The front axle was saturated by Time 2©, and
the increased front braking force implied reduced front lateral
force, shown in Fig. 10 (top).

By Time 3©, Fxf was close to its minimum value, leaving
a only a small amount of force left for Fyf . By this time, the
vehicle had rotated enough to avoid the immediate danger of the
first obstacle, allowing the controller to allocate time braking on
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Fig. 8. A top-down view of the pop-up double lane change experiment. The trajectory of the vehicle’s CoM is shown in black, rough desired lateral position is
shown with a dashed line, vehicle positions at five particular points in time are shown in blue, vehicle positions throughout the experiment are shown in light gray,
and obstacles are shown in red. At Time 1©, both obstacles appeared. At Time 2©, the rear tires became saturated. At Time 3©, the vehicle reached maximum brake
force on the front tires. At Time 4©, the vehicle reached maximum brake force on the rear tires. At Time 5©, the rear tires began to leave the saturated region.

Fig. 9. Steering angle δ (top), front longitudinal force Fxf (middle), and rear
longitudinal forceFxr (bottom) as commanded by the controller. Modeled force
limits are shown in red.

the front axle instead of steering. Because the rear axle needed
a significant amount of lateral force to stabilize and rotate the
vehicle at approximately Time 3©, the controller was unable to
brake the rear axle. By Time 4©, the situation was reversed: the
vehicle needed to steer to the right and produce large negative
force to avoid going off the road, so it reduced the front braking
force to almost zero. Simultaneously, there was a brief period
of time where the necessary stabilizing rear lateral tire force
transitioned from positive to negative; the controller exploited
this brief time to brake the rear axle.

Fig. 10. Lateral forces (black) and their limits (red) for the front (top) and rear
(bottom) tires, both as modeled by the controller.

At Time 4©, the vehicle was fairly close to the first obstacle.
The minimum distance between every vehicle circle and every
obstacle circle, and between every vehicle circle and the road
edge, is shown in Fig. 11. The controller needed to steer enough
to avoid going off the road or hitting the second obstacle but not
so much as to drive too close to the first obstacle. A similar trade-
off is made just before Time 5©, where the controller reduced
the steering angle (Fig. 9 top), resulting in a negative Fyf that
pushed the vehicle away from the second obstacle, but not so
much so that the vehicle could not stay on the road.

It is clear that the controller made large trade-offs between
lateral and longitudinal forces, slowing the vehicle when pos-
sible and necessary to complete the double lane change. The
longitudinal speed through the maneuver is shown in Fig. 12.
The controller was able to slow the vehicle from around 17.5 m/s
to around 8.5 m/s in a little over 2 s. Despite this large reduction
in speed, both the front and rear axles saturated near Time 5© as
the vehicle passed the second obstacle. The vehicle would not
have been able to complete the maneuver without hitting either
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Fig. 11. Minimum signed distance between every vehicle circle and every ob-
stacle circle, and between every vehicle circle and the road edge. The minimum
distance before cost is incurred, dmin,obs and dmin,edge is shown with dashed
lines.

Fig. 12. Longitudinal speed ux (black) and desired speed (gray) throughout
the maneuver. The controller was able to reduce speed from over 17.5 m/s to
under 8.5 m/s, while avoiding the obstacles. As soon as it was safe to do so, it
began accelerating back to the target speed.

obstacle or going off the road if it was traveling at the initial
speed of 17.5 m/s. Furthermore, because the controller relied so
heavily on distributing braking forces between the front and rear
axles, it would be difficult or potentially impossible for a human
driver using a single brake pedal to complete this maneuver
without a collision.

VI. CONCLUSION

In this paper, we present a nonlinear model predictive con-
troller capable of producing steer angles and front and rear
longitudinal forces to safely guide a vehicle through potentially
dangerous situations. The vehicle model, integrator, and rep-
resentation of the vehicle and obstacles are chosen to enable

Fig. 13. Top view of experiment with vehicle shown at approximately Times
1©– 5©.

fast computation and therefore a fast reaction to changes in the
environment. The representation of the vehicle and obstacles
is sufficiently detailed to capture effects of vehicle rotation for
potential collisions, and enables the controller to reason about
rotation and longitudinal and lateral position. The vehicle and
tire models capture the dynamics of the vehicle and, critically,
inform the controller of the coupling between lateral and longi-
tudinal forces. Experimental results of a test vehicle performing
an emergency double lane change demonstrate the ability of the
controller to balance lateral and longitudinal forces on each axle
to avoid collisions.
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