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A 3D Probabilistic Deep Learning System for
Detection and Diagnosis of Lung Cancer

Using Low-Dose CT Scans
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Abstract— We introduce a new computer aided detec-
tion and diagnosis system for lung cancer screening with
low-dose CT scans that produces meaningful probability
assessments. Our system is based entirely on 3D convo-
lutional neural networks and achieves state-of-the-art per-
formance for both lung nodule detection and malignancy
classification tasks on the publicly available LUNA16 and
Kaggle Data Science Bowl challenges. While nodule detec-
tion systems are typically designed and optimized on their
own, we find that it is important to consider the coupling
between detection and diagnosis components. Exploiting
this coupling allows us to develop an end-to-end system
that has higher and more robust performance and eliminates
the need for a nodule detection false positive reduction
stage. Furthermore, we characterize model uncertainty in
our deep learning systems, a first for lung CT analysis,
and show that we can use this to provide well-calibrated
classification probabilities for both nodule detection and
patient malignancy diagnosis. These calibrated probabili-
ties informed by model uncertainty can be used for sub-
sequent risk-based decision making towards diagnostic
interventions or disease treatments, as we demonstrate
using a probability-based patient referral strategy to further
improve our results.

Index Terms— Machine learning, artificial neural net-
works, medical diagnostic imaging, image segmentation,
image classification.

I. INTRODUCTION

LUNG cancer is both one of the most common cancers
and the leading cause of cancer death, accounting for

approximately a quarter of all cancer related deaths in the
US [1]. The high mortality rate associated with lung can-
cer is in part because its symptoms become apparent only
after the cancer is already at an advanced stage. Low-dose
Computerized Tomography (CT) has been proposed as a
safe and effective tool for preventative screening of high-risk
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populations. Annual CT screening could reduce lung cancer
mortality by at least 20% after 7 years relative to annual chest
radiography [2].

While lung CT screening has the potential to dramatically
reduce the number of lung cancer related deaths, the bur-
den on radiologists to make screening accurate and efficient
for large volumes of CT scans is high. Automated algo-
rithmic solutions may help reduce this burden, but inter-
facing between algorithmic solutions and doctors is also a
challenge when these algorithms cannot reliably communi-
cate their uncertainty. To address these needs, we intro-
duce an end-to-end probabilistic diagnostic system for lung
cancer built on deep 3D convolutional neural networks
(CNNs). Our system directly analyzes CT scans and provides
calibrated probabilistic scores that accurately characterize
uncertainty.

Our system has two main components: 1) a Computer-Aided
Detection (CADe) module that detects and segments sus-
picious lung nodules, and 2) a Computer-Aided Diag-
nosis (CADx) module that performs both nodule-level
assessment and patient-level malignancy classification by ana-
lyzing suspicious lesions from CADe. Both our CADe and
CADx modules achieve comparable to or better performance
than the best published CADe and CADx systems on the
LUNA16 [3] and Kaggle Data Science Bowl 2017 [4] bench-
marks, even though our system is only trained on the lim-
ited data and labels provided by these datasets, in contrast
to [5], [6], which utilizes additional training data.

We further demonstrate that the results from our sys-
tem have meaningful probabilistic interpretations because our
approach integrates model uncertainty in all classification eval-
uations. To the best of our knowledge, model uncertainty has
not been considered in the context of lung CT analysis before.
Since model uncertainty allows us to quantify the uncertainty
in model predictions emanating from lack of training data [7],
by quantifying and including model uncertainty, our system
can more reliably assess out-of-cohort data without making
overly-confident predictions, making it more trustworthy for
real-world usage. We show that the incorporation of model
uncertainty makes the outputs of both CADe and CADx
systems well-calibrated to the original data distribution and
thus the probabilities output by our systems are directly
interpretable as real probabilities. Based on these probabilities,
we further propose patient referral strategies for both CADe
and CADx.
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An important aspect of any CADe/CADx system is the
coupling between different processing and decision making
components and how the performance of each component
affects the overall performance. Malignant nodules may be
missed by a CADe system tuned for high precision, while
excess false positive candidates from a CADe system with high
recall may overburden any CADx system that has not been
developed to be resilient to those types of false positive candi-
dates. The recall-precision trade-off of the CADe systems used
both for generating training and evaluation nodule candidates
directly impacts the performance of the CADx system. Due to
this inherent coupling, we develop and study both components
together.

The notion of jointly-developed CADe/CADx challenges
common practice in the lung screening industry, where CADe
and CADx are considered as independent products. Much
of the previously published research focuses on optimizing
either CADe alone [8]–[11] or CADx alone [12]–[17], without
careful consideration of how they are affected by each other.
Patient-level end-to-end diagnosis using machine learning with
diagnosis-confirmed labels has been largely unaddressed until
the release of the Kaggle Data Science Bowl [4] dataset, which
encourages the development of joint CADe/CADx systems
that achieve the best end-to-end performance.

We for the first time systematically study the CADe/CADx
coupling and show that an individually-optimized CADe sys-
tem (e.g., for the LUNA16 challenge) can be highly sub-
optimal for automated CADx, i.e., cancer diagnosis. While
much effort is typically put into reducing the false positives
from CADe, our CADx component is not only robust to
our maximum CADe false-positive rate (FPR) of approxi-
mately 8 candidates per patient (the largest of the proposed
LUNA16 evaluation points) but actually performs much better
when trained on this data compared to a cleaner sample.
This demonstrates that CADe approaches optimized for per-
formance on the LUNA16 CADe benchmark may not perform
as well when used as part of a full CADe/CADx system.

The rest of the paper is organized as follows. In Section II,
we review the relevant literature on deep learning based
CADe/CADx approaches to address lung cancer diagnosis and
briefly compare the most relevant ones to our system. Our
overall system model is explained in Section III. Section IV
describes the datasets we employ to train and evaluate our
models. The details of the developed CADe and CADx models
are provided in Sections V and VI, respectively. We present
our CADe/CADx results and coupling analysis in Section VII
and provide a discussion on calibration and referral strategies
in Section VIII. Finally, concluding remarks are presented in
Section IX.

II. RELATED WORK

While traditional CAD methods have relied on
hand-engineered features and conventional image processing
methods [18], recent advances in deep learning for computer
vision have resulted in a major shift towards deep learning
based solutions [19]. Multiple independent studies have
shown that deep learning outperforms traditional approaches

in lung CT analysis and results in more robust solutions,
thanks to its ability to automatically learn useful feature
representations from data [12], [20]. Therefore, while the
literature on lung CT analysis is vast, we focus only on
related work based on deep learning in this section.

Although earlier deep learning CADe approaches used
2D image slices [20], 3D volumetric images provide
more informative features leading to improved perfor-
mance [8]–[11], [21], [22]. The majority of proposed CADe
approaches consist of two steps [8]–[11]: 1) a nodule candidate
extraction step that uses a segmentation network, e.g., [23],
or a region proposal network, e.g., [24]; and 2) a false positive
reduction step that uses a 3D CNN model for nodule-level
detection. Most recently, the authors in [22] proposed a
single-step CADe model that is based on a 3D dense CNN to
perform nodule detection in one step. Their model achieved a
LUNA16 score of 0.897, outperforming previously proposed
CADe models. In contrast, our combined CADe/CADx system
does not require a second false positive reduction step since
our CADx model is relatively insensitive to false positives.
However, we did train a CADe scoring network in order
to produce a comparable LUNA16 benchmark score and
achieved a LUNA16 score of 0.921, which, to the best of
our knowledge, is the best published result on this dataset.

The majority of deep learning based lung CADx approaches
use the LIDC-IDRI [25] dataset, which is labeled with nodule
annotations and malignancy risk scores from four different
radiologists [12]–[17], [21]. Although this dataset is useful
for developing nodule detection and nodule-level malignancy
prediction models, the associated malignancy labels represent
subjective opinions of the annotator radiologists, which have
not been confirmed by pathology diagnosis. There is also
significant inter-observer variability among radiologists [14],
which complicates the verification of obtained CADx results.
Further, the vast majority of published research work addresses
either CADe or CADx alone, whereas in real life the perfor-
mance of the overall CADx system is directly impacted by
the performance of the preceding CADe model. In addition to
the LIDC-IDRI dataset, which has nodule-level annotations,
a second dataset that was released by the National Cancer
Institute for the 2017 Data Science Bowl on Kaggle has
patient-level binary malignancy labels. The Kaggle dataset
does not have nodule-level annotations, but its patient-level
labels have been confirmed by pathology diagnosis. This is
more representative of a real world test scenario where a
CAD system gets access to raw CT scans and has to provide
end-to-end malignancy decisions based only on those scans
without relying on external nodule annotation information.

There are two research papers that propose an end-to-end
CADe/CADx system and use the Kaggle dataset similar to
ours [5], [6]. The first one, [5], uses a 3D region-based
convolutional neural network (R-CNN) for nodule detec-
tion followed by multiple instance learning using a leaky
noisy-OR combination approach for malignancy classification.
The authors of [5] examined each CT scan in the Kaggle
training data and hand-annotated suspicious nodules to curate
new training data. They then used those annotations along
with the LIDC-IDRI dataset to train their nodule detection,
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Fig. 1. Our overall CAD system diagram. Since CADx performance
is so reliant on the quality of the nodule candidates generated by the
CADe, both were developed simultaneously to achieve the best overall
performance.

i.e., CADe, model. Their final system achieves a CADx per-
formance of 0.87 Area Under the ROC (AUROC) curve on the
Kaggle test set, which, to the best of our knowledge, is the best
published CADx performance. In contrast, our models were
not trained with any additional annotations besides what have
been provided by the LIDC-IDRI and Kaggle datasets, and
still achieve an equally good CADx performance. The second
CADe/CADx paper that uses the Kaggle dataset [6] uses
models trained on the NLST dataset [2], which is a superset
of the Kaggle dataset and includes almost twice as much
training data as the Kaggle training data, and achieves a CADx
performance of 0.84 AUROC on the Kaggle test set.

III. CAD SYSTEM MODEL

Here we introduce our CADe/CADx system and provide an
overview of the key components. The details pertinent to each
individual component are provided in Sections V and VI. The
overall system diagram is shown in Figure 1. Our system takes
a raw 3D CT scan of the lung as input and provides as outputs
a per-patient malignancy classification probability, per-nodule
malignancy scores, and segmented lung nodule candidates.
The system can refer patients or nodules whose results have
a high degree of uncertainty to a radiologist for confirmation.

As a first step, we preprocess each full 3D scan to a
consistent format, described in further detail in Section IV.
The preprocessed 3D scan is then fed into the CADe module,
which performs 3D segmentation. The goal of our CADe
module is to identify and localize lung nodules with the
highest possible recall. The output of CADe module is a list
of identified lung nodules which are then fed into our CADx
module. CADx module uses two cascaded 3D deep learning
models. The first model ranks the candidates based on their
malignancy risk. The second model then uses that ranking

to select the top-k candidates and perform multiple-instance
classification to make a patient diagnosis.

The full system is developed and tuned simultaneously,
since CADx performance is dependent on CADe performance.
This is different than current state-of-the-practice where CADe
and CADx components are treated as independent compo-
nents and optimized separately. As we show quantitatively in
Section VII, CADe approaches optimized for performance on
the LUNA16 benchmark may not perform as well when used
as part of a full CADe/CADx system. In particular, when the
CADx system is trained with candidates with a high FPR,
it becomes much more robust to false positive candidates,
resulting in improved performance regardless of the underlying
CADe system’s FPR (see Section VII-C.)

IV. DATA

A. Lung CT Datasets

Our lung cancer system is based on two publicly-available
low-dose CT scan datasets. The first is the LIDC-IDRI [25]
dataset, which contains lesion annotations from four experi-
enced thoracic radiologists. This dataset is used for both our
CADe and CADx components. We use the curated version
of this dataset provided as part of the LUNA16 challenge [3],
which includes 888 patients and consensus labels based on the
agreement of 3/4 radiologist annotators, resulting in a total
of 1186 annotated nodules. We further associate the malig-
nancy scores given by each of the annotating radiologists to
these consensus nodule labels. Unfortunately, the LIDC-IDRI
annotations do not include very large nodules or masses, which
are important for full patient diagnosis. This is an important
limitation of this dataset for use in a standalone CADe system.

The second dataset we use is the one provided by the
National Cancer Institute for the 2017 Data Science Bowl
on Kaggle [4]. It has two separate sets of CT scans,
namely Stage-1 and Stage-2, which were used as training
and test sets for the Kaggle challenge. Stage-1 data consists
of 1595 patients, out of whom 419 (∼26%) were diag-
nosed with lung cancer within one year after the CT scans
were acquired. Stage-2 includes 506 patients, out of whom
153 (∼30%) were diagnosed with lung cancer. Stage-2 data
is generally more recent and higher quality (thinner slice
thickness) which helps test the ability of CADx systems to
generalize beyond their training data. Kaggle data was used
for the training (Stage-1) and testing (Stage-2) of the CADx
component of our system.

B. Data Preprocessing and Augmentation

Here we provide details on the data preprocessing and
augmentation steps performed prior to CADe/CADx model
training. CT scan preprocessing involved only clipping the
scan image range to between -1000 and 400 Hounsfield units
in order to remove most of the variation due to bone and
resampling the images such that voxels measured 1 mm in
each dimension. Images were normalized to have a mean voxel
value of 0 and variance of 1 before being input to the neural
networks, as is standard.
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Fig. 2. Randomly sampled augmentations of a single nodule demon-
strating our extensive augmentation transforms used during model
training.

We used extensive data augmentation (shown in Figure 2) to
reduce overfitting and maximize the transfer learning across
images taken with different setups. Data augmentation was
used during training of all of our models, but not used at
test time. Our affine transform augmentation was made up
of uniformly sampled 3D rotations and reflections, as well
as smaller random scaling from N (0, 0.06)% and transla-
tions from N (0, 1) mm, independently in all three dimen-
sions. Additional image transforms included random gamma
transformations sampled from U(0.7, 1.3), Gaussian blur or
unsharp masking with σ sampled from U(0, 1.5), and additive
Gaussian noise with σ sampled from N (0, 0.03). To ensure
the highest possible CADe recall for large nodules, addi-
tional aggressive scaling augmentation (3× scaling distribution
above, for upsampling) was used in the training of that
component. This allowed our CADe system to find nodule
candidates significantly larger than any actually annotated in
the LIDC-IDRI dataset.

V. CADE

Our CADe system was developed to have as high of a
sensitivity/recall as possible for identifying and localizing
pulmonary nodules while still keeping the number of false
positives low enough to be manageable for our CADx system.
It is able to analyze any size CT scan and uses only local visual
information to make its decisions. Our CADe system is made
up of 1) a 3D segmentation network, which labels every voxel
of the CT scan with a nodule probability, and 2) a 3D scoring
network, which computes refined nodule probability estimates
for full nodule candidates generated from the segmentation
and allows for both greater interpretability and false positive
reduction. The following subsections explain these networks
in detail.

A. Segmentation for Candidate Extraction

Our primary nodule segmentation network is a 3D
fully-convolutional neural network based on the V-Net archi-
tecture, which has been demonstrated to be effective for 3D
medical image segmentation [23]. Our architecture1 uses three
encoder-decoder block pairs, with corresponding skip connec-
tions, in addition to the input and output blocks. Our encoder

1We began with the V-Net architecture as described in the paper [23] and
tuned the number of layers, number of features, non-linearity functions, and
normalization layers based on performance on the LUNA16 dataset.

blocks are made up of a 2× downsampling convolution, two
layers of kernel size 3 convolutions, and residual connection
to the output. Decoder blocks are the same, but with a 2×
upsampling deconvolution. The innermost encoder-decoder
block pair include channel-wise dropout between the sampling
convolution and the two main convolutional layers. All blocks
use instance normalization [26] instead of batch normalization
as well as ReLU nonlinearities.

For training, we use the LUNA16 pulmonary nodule annota-
tions, which provide nodule centers and diameters, to annotate
individual voxels of CT scans with spherical masks. Since the
number of voxels corresponding to the nodule annotations is
very small compared to the total number of voxels, and each
CT scan is too large to realistically use to train our network,
we sample 643-shaped blocks from the original images. For
each patient, we sample blocks near known nodules with a
probability of 1 − 0.7N and sample randomly from the image
the with a probability of 0.7N , where N is the number of
nodules for that patient. We employed this random sampling
strategy in order to ensure that the network is exposed to true
nodules a sufficient number of times as well as a diverse
selection of background. We train the network with a cross
entropy loss function that weights voxels within a nodule
twice as much as background voxels. Each patient scan is seen
once per epoch, regardless of how many nodules are contained
within. Our network is trained with 16 block samples per batch
using the Adam optimizer [27] with learning rate of 10−3 for
2500 epochs.

As full preprocessed CT scan images are too large to fit
into GPU memory2 while being passed through the trained
nodule segmentation model at test time, we split images into
eight 2563-shaped overlapping blocks and stitch the output
segmentations together, weighting voxels in the overlapping
edge regions by how much of their field-of-view was contained
within the borders of their respective input blocks. This results
in a full image segmentation that is as good as if the entire
image were evaluated by the network in one pass on a CPU,
but requires an order of magnitude less time.

CADe candidates are generated from the full segmented
image by thresholding the output voxel scores, applying
a nearest-neighbors binary opening filter, and labeling all
separate regions based on a voxel connectivity of one. The
center of each nodule candidate is taken to be the center
of mass of the voxel scores of each constituent voxel after
thresholding. Sample segmentations of generated candidates
on LUNA16 test data are shown in Figure 3 alongside the
original spherical annotation.

B. False Positive Reduction for LUNA16 Evaluation

All generated candidates are supplied to the CADx system.
However, for the purposes of evaluating our CADe system
on the LUNA16 benchmark, we developed a scoring net-
work that operates on 323-shaped blocks around the can-
didate center. The architecture of this network is shown in
Figure 4. The network was trained with the SGD optimizer

2We used an NVIDIA Quadro GP100 or equivalent for all model training
and evaluation described in this paper.
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Fig. 3. Sample nodule segmentations from our CADe segmentation
model, sliced through the center of each nodule candidate. First row:
Input CT scan images from LIDC-IDRI test data. Second row: Our cor-
responding segmentation probabilities. Third row: (Spherical) voxelwise
labels extracted from the LUNA16 annotations.

Fig. 4. Base neural network architecture used for nodule candidate scor-
ing, malignancy ranking, and multiple-instance malignancy classification.
The architecture hyperparameters were found through experimentation
on the two CADx tasks, namely malignancy ranking and classification.

(learning rate 0.01, momentum 0.9, and 0.8× learning rate
decay every 100 epochs) with batches of 16 candidates for
2500 epochs, with true nodule candidates weighted twice as
heavily as false positive candidates in the cross-entropy loss.
As we show in Section VII, our scoring network can be used
to dramatically reduce the number of false positives found by
the segmentation network.

Our candidate scoring network outputs include model uncer-
tainty as quantified by Monte Carlo (MC) dropout [7], [28].
We show in Section VIII that the addition of this model uncer-
tainty makes these scores well-calibrated to the LUNA16 data
distribution and thus the probabilities output by the network
for each candidate are directly interpretable as real probabili-
ties of being a nodule.

VI. CADX

Our CADx system classifies each CT scan as malignant or
benign while associating malignancy scores to each individual
candidate (i.e., suspicious lung nodule) that it processes. The
CADx system is composed of two consecutive 3D convo-
lutional neural networks. The first network is a regression
network that we use to rank candidates for each CT scan
based on their malignancy risks. As each CT scan may have a
large number of candidates, the ranking step enables us to
reduce noise and focus on candidates that are more likely
to be malignant. The second network performs classification

by processing the top-k nodule candidates ranked by the first
network using a multiple instance learning approach. We refer
to the first and the second networks as malignancy ranking
and malignancy classification networks, respectively.

A. Malignancy Ranking Network

Our malignancy ranking network architecture has the
same basic structure as the CADe candidate scoring net-
work, described in Figure 4. To train our ranking network,
we regress a label derived from the malignancy scores from
the LIDC-IDRI dataset [25] provided by four different radiolo-
gists. In these annotations, each radiologist assigned an integer
malignancy score between 1 and 5 for each significant nodule
they were able to identify (1 and 5 indicating the least and the
most malignant scores, respectively). As a result, each nodule
has between one and four scores. These scores are subjective
in that they were not confirmed by follow-up biopsies nor
were they consistent between different radiologists. Therefore,
they merely provide noisy labels which we use to train
our malignancy ranking network for the purpose of ranking
candidates detected in each CT scan. To reduce noise in the
training data, we selected nodules that were scored by at least
three radiologists and averaged their scores to come up with
final nodule malignancy scores for training. We assigned a
score of 1 for candidates that were either scored by fewer than
three radiologists, were too small to be scored at all, or were
false positive detections.

Eight subsets of the LUNA16 dataset were selected for
training the malignancy ranking and two subsets were selected
for development. During initial training, we randomly select
nodules with at least three radiologist scores for the first
50 epochs. After that, we randomly select those nodules 90%
of the time and sample randomly from the remaining set,
which only has nodules of score 1, 10% of the time. This
can be seen as a curriculum learning strategy to prevent the
network from biasing towards benign nodule scores since most
of the detected candidates are benign. We train the network
using the Adam optimizer [27] with a learning rate of 10−4

with mean absolute error as the loss function for 750 epochs
with a batch size of 32 candidates. The ranking network
training and hyperparameter tuning was performed using a
library of LUNA16 nodule candidates created by our earlier
work on standalone CADe [29].

The malignancy ranking network generates a list of ranked
candidates for each CT scan based on their malignancy risks.
These ranked candidates are then used to train or be evaluated
by the malignancy classification network.

B. Malignancy Classification Network

Patient-wide malignancy classification is the final step in our
CADe/CADx pipeline. Our malignancy classification network
processes a predefined number of ranked nodule candidates
and outputs a probabilistic malignancy score for each CT scan.
It also assigns a non-probabilistic malignancy risk score for
each candidate that it processes.

We use an attention-based multiple instance learning (MIL)
framework to train our malignancy classification network [30].
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The MIL framework is based on a convolutional neural
network shared by all selected candidates followed by a
combination layer that combines features of each candidate
using an attention mechanism. As our shared network, we use
the same basic architecture described in Figure 4 with the last
fully connected layer removed. The shared network generates
a feature vector hi ∈ R

1024×1 for each candidate i . These
feature vectors are then combined via the following attention
model:

xi = tanh(W1hi ) (1)

y = softmax(wT
2 X) (2)

p = sigmoid(wT
3 Hy) (3)

where W1 ∈ R
128×1024, w2 ∈ R

128×1, and w3 ∈ R
1024×1

denote the learned weights of the attention-based combination
model; and X = [x1, . . . , xk] and H = [h1, . . . , hk ] denote
the concatenated feature vectors from the k candidates. Note
that we have omitted the bias terms above to keep the notation
simple, though they exist in the actual implementation.

The attention mechanism allows the model to learn
permutation-invariant weights as a function of the feature
vectors, denoted by y in (2), where yi ∈ [0, 1] and

∑
i yi = 1.

These weights are then used to compute a weighted average
of the feature vectors themselves, which is fed into a fully
connected layer followed by a sigmoid nonlinearity to compute
a probabilistic malignancy score for each patient, as shown
in (3). We explored other combination methods such as
Noisy-OR (NOR) [31], Leaky NOR (L-NOR) [5], and log-sum
exponentiation (LSE) [32]. We found that they did not work as
well as the attention-based model for our dataset and they were
harder to optimize as L-NOR and LSE introduced additional
hyperparameters.

For training the malignancy classification network, we com-
bined the Kaggle Stage-1 dataset with a subset of the
LUNA16 dataset as our training and development data, and
set aside Kaggle Stage-2 dataset as our test data. Specifically,
we selected the LUNA16 patients having a nodule with at least
three radiologist scores and an average score ≥ 4 as positive
(malignant), and patients having no radiologist annotations or
patients with all their nodules having an average score ≤ 2
as negative (benign). This procedure added 556 patients to
our training data, out of whom 169 (∼30%) were labeled
malignant. As a result, we ended up with a total of 2101
patients (556 from LUNA16 and 1595 from Kaggle Stage-1)
for training.

One limitation of the LUNA16 dataset is that the radiologist
annotators were specifically instructed to ignore nodules that
were larger than 30 mm. As a result, machine learning based
CADe systems trained with the LUNA16 dataset could learn
to ignore large nodules even when aggressive data augmen-
tation (specifically zooming) techniques are employed during
training. Nodule size, however, is an important indicator for
malignancy, with larger nodules having a much higher likeli-
hood of being malignant. To alleviate this problem, we use
two sets of candidates from the CADe system. The first
set has candidates from the original isotropically sampled
(1 mm)3/voxel scans. To be able to detect large nodules,

we created a second candidate set by downsampling each scan
to (2 mm)3/voxel and passing them through our trained CADe
system. These candidates are then similarly passed through our
trained malignancy ranking network to create a ranked list of
downsampled candidates.

To train the malignancy classification network, we select the
top-k candidates from each ranked candidate list (the original
and downsampled) where we treat k as a hyperparameter to
optimize. For patients with less than k candidates, we use
the existing number of candidates, which does not affect our
training procedure. We set aside 300 patients for development
and used the remaining set for training. Our network was
trained using the SGD optimizer with momentum 0.9 and an
initial learning rate of 0.01, which was decreased by a factor
of 2 every 50 epochs. We used binary cross entropy as the
loss function and trained the network with a batch size of 32
scans for 750 epochs. Our best performing CADx model (as
shown by Figure 8) uses a total of 4 candidates, i.e., top-2
from each of the original and downsampled candidate lists.

We obtained model uncertainty estimates using a com-
bination of the MC dropout [7] and the deep ensembles
method [33] by training five different models with different
train and development dataset splits. We show in the next
section that this method provides calibrated malignancy proba-
bilities which can be interpreted as true probabilities and used
as a reliable risk-utility metric for subsequent decision making
in clinical settings.

For visualization, we show nodule candidates from a few
example patients in Figure 5. The corresponding attention
weights shown on top of each row represent how much each
candidate contributes to the overall malignancy prediction
probability for a given patient. One can interpret these weights
as relative malignancy scores for patients with high estimated
malignancy probabilities.

VII. RESULTS

We evaluate our CADe system on the LUNA16 benchmark
and our CADx system on the Kaggle Stage-2 test set. Since
CADx directly relies on CADe, the success of the CADx
system acts as additional validation of the CADe system and
its ability to generalize to an independent dataset. Likewise,
the CADx system is trained and validated on the Kaggle Stage-
1 dataset but tested on the Kaggle Stage-2 dataset, which is
more recent and has different image quality.

A. CADe Results

To evaluate our CADe system on the LUNA16 benchmark,
we use 10-fold cross validation with the prescribed splits and
provided lung volume masks. For each test split, another split
was used as a validation set to select both the corresponding
segmentation model and scoring model checkpoints, while
the other eight were used to train both models. Candidate
selection from the segmented test scans using a segmentation
threshold of 0.2 achieved a sensitivity (or recall) of 96.5% with
19.7 average false positives per scan without any false positive
reduction step. This false positive average is dominated by
candidates from a small number of patients with large regions
of uncertain segmentation.
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TABLE I
CADE AND CADX RESULTS BY CADE THRESHOLD FALSE POSITIVE RATE

Fig. 5. Example nodule candidates with CADx malignancy probabilities
along with corresponding candidate attention weights. Each row rep-
resents candidates from a specific patient. The scores on top of each
candidate are the corresponding CADx network attention weights, which
sum up to 1 and represent how much each candidate contributes rela-
tively to the final CADx score. Estimated patient-level CADx malignancy
probability is given in the bottom of each row.

Our CADe scoring network allows a dramatic reduction
in the number of false positives, while keeping the nodule
sensitivity extremely high. Our CADe sensitivity as a function
of false positive rate per scan is shown in Figure 6 and
the results on the LUNA16 metric are shown in Table I.
Our average LUNA16 metric of 0.921 is comparable to or
better than state-of-the-art published results [22], even though
our CADe is not optimized for the high-precision limit. The
breakdown by nodule diameter in Figure 7 shows that our
CADe performance is strongest on pulmonary nodules with
a diameter greater than 5 mm. This is primarily because our
false positives are dominated by small candidates which are
difficult to distinguish from true positive small nodules.

Fig. 6. The free response operating characteristic (FROC) for our CADe
candidate generation and scoring system on the LUNA16 dataset, with
patient-bootstrapped 95% confidence interval, and the same results with
our comparison model architecture (3D U-Net.)

Fig. 7. CADe FROC on LUNA16 data, breaking down the sensitivity
by nodule diameter. CADe sensitivity for the smallest group of nodules
(between 3 mm and 5 mm diameter) is significantly worse than the
sensitivity for larger nodules (between 5 mm and 30 mm diameter)
at lower thresholds that correspond to reduced false positives.

In addition to the results using our primary V-Net based seg-
mentation architecture, we generate comparison results from
our full training and evaluation pipeline using the standard 3D
U-Net architecture [34], with the number of features per block
tuned for validation performance on the LUNA16 dataset.
As seen in Figure 6 and Table I, the CADe and CADx results
using this comparison architecture are similar to our primary
results, indicating that the success of our CADe system is
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Fig. 8. The receiver operating characteristic (ROC) curve for our CADx
system on the Kaggle Stage-2 test set, trained on both LUNA16 and
Kaggle Stage-1 data, with patient-bootstrapped 95% confidence interval.

based more on the sampling and data-augmentation techniques
used in the training pipeline than the architectural details of
the neural network.

B. CADx Results

Our best performing CADx model was trained and evaluated
with nodule candidates obtained by setting the CADe segmen-
tation threshold to 0.5, which resulted in approximately 8 false
positives per scan on average without any false positive reduc-
tion step. This kept spurious candidates to a reasonable level
while not removing large nodule candidates not annotated in
LUNA16. This corresponds to a CADe segmentation F1 score
(Dice coefficient) for LUNA16 of 0.40, with 0.25 precision
and 0.93 recall.

We trained our CADx model with the top-4 ranked can-
didates per patient as it provided the best performance on
our development set. We evaluated our final CADx system
on the Kaggle Stage-2 data, which was set aside as our
test set. As shown in Figure 8, our CADx system achieved
an average ROC Area Under the Curve (AUC) of 0.87 on
this dataset. This performance is the same as the winning
Kaggle solution [5], but unlike that solution, did not require
us to hand-label the nodules in the Kaggle Stage-1 data nor
ensemble different CADx solutions as was done by other
top-10 Kaggle solutions.

C. CADe-CADx Interaction Studies

We further studied the effect of CADe false positive reduc-
tion by evaluating our CADx system with Kaggle Stage-2
candidates filtered by our CADe false positive reduction model
at the LUNA16 evaluation points, shown in Table I. We again
found that our CADx system is relatively insensitive to false
positive candidates from the CADe system and that false
positive reduction steps add no value.

Additionally, we explored the CADe-CADx coupling in
candidate generation in both training and testing stages, shown
in Table II. In addition to our original CADx results trained
using Kaggle Stage-1 candidates with a CADe threshold

TABLE II
CADX RESULTS BY CADE THRESHOLD FOR TRAINING AND TESTING

equivalent of 8 FP per scan, we fully retrained our CADx
system using candidates filtered at the 1 and 1/8 FP per scan
LUNA16 evaluation points. We found that, not only did the
CADx AUROC degrade significantly, but these CADx systems
were much less robust to false positives. These results show
that the presence of false positive candidates actually benefits
CADx training by improving its internal CADe capabilities,
and thus robustness to false positives.

VIII. CALIBRATION & REFERRAL

In order to generate meaningful probability estimates
from both our CADe and CADx components, we include
Bayesian-motivated model uncertainty and verify that the
consequent estimates are well calibrated on test data.
Well-calibrated probability estimates are useful because they
give us the ability to interpret the nodule candidate and overall
malignancy scores as true probabilities and use them for
subsequent decision making.

Model uncertainty captures the effect of uncertainty in the
neural network parameters (weights and biases) and shrinks
as the model is trained on more, representative data. Model
uncertainty is particularly significant in deep learning, where
models often have millions of free parameters. By quantifying
and including model uncertainty, our system can more reliably
assess out-of-cohort data without making overly-confident
predictions, making it more trustworthy for real-world
usage.

For the nodule candidate scoring network, we trained
10 models using each of the 10 LUNA16 data subsets as
a test set. Model uncertainty was approximated by using
Monte Carlo (MC) dropout [7], [28]. This technique randomly
drops out features during both training and testing, allowing
us to perform approximate Bayesian inference by sampling
over these features. The probabilities produced by the can-
didate scoring networks thus incorporate uncertainty in the
model weights in addition to uncertainty inherent to the data
including label noise. In Figure 9, this is shown to produce
well-calibrated probability estimates on the LUNA16 test data.
When model uncertainty is not incorporated, by generating
estimates without dropout at test time as is typical, the prob-
ability estimates from the network tend to be overconfident
in their predictions, as can be seen in the figure. We expect
this difference would be even more dramatic for evaluation on
data with significant domain shift (for example, due to unusual
hardware, procedures or patients).

As mentioned in Section VI-B, we used a combination of
the MC dropout [7] and deep ensembles [33] methods to assess
model uncertainty of our malignancy classification network.
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Fig. 9. Probability calibration curves for the Bayesian approximation
and non-Bayesian (standard) variants of the CADe candidate scoring
neural networks, with patient-bootstrapped 95% confidence intervals.
The estimated nodule probabilities output by the CADe scoring network
are well-calibrated when model uncertainty is included.

Fig. 10. Probability calibration curves for the Bayesian ensemble and
the best non-Bayesian CADx model, with patient-bootstrapped 95% con-
fidence intervals. The estimated malignancy probabilities output by the
CADx Bayesian ensemble are well-calibrated when model uncertainty is
included.

The model ensembling method simply involves training a
model multiple times, starting with randomly initialized para-
meters, and averaging their results. We trained the malignancy
classification network on five different train and development
splits and used the predictions, obtained by MC dropout, from
these models to assess model uncertainty as well as boost the
performance. Since we only had one test set, it was more
effective to estimate model uncertainty using the ensemble
method combined with MC dropout, which has been shown
in some cases to produce more reliable uncertainties than the
MC dropout alone [33]. The calibration curves are shown
in Figure 10. While the best individual network did not
systematically overestimate uncertainties like was seen for the
CADe candidate scoring network, the ensemble probabilities
appear to be more stably calibrated over the full range of
probabilities.

We explored the potential of using these well-calibrated
probabilities to improve the reliability of our CAD systems

Fig. 11. The CADe scoring area under the precision-recall curve as
a function of referral percentage, for the entropy referral strategy and a
random strategy (with 95% confidence interval).

through referral strategies, in which a radiologist could check
the most critical subset of patients and nodules. We found that
referral based on highest entropy,

H (p) = −p ln(p) − (1 − p) ln(1 − p), (4)

was advantageous, particularly for CADe nodule referral.
In Figure 11, the area under the precision-recall curve for
our nodule candidate CADe scoring is plotted as a function
of the percentage of nodules ignored based on this referral
strategy. There is a dramatic improvement in performance,
even at a referral rate below 10%, and the performance
on remaining nodules monotonically approaches 1 as the
referral rate is increased. This further demonstrates that the
nodule candidate scoring probabilities are well calibrated
even extremely close to 0 and 1. The nodule candidate
scoring system combined with a “perfect” radiologist able
to evaluate a subset of candidates could nearly completely
eliminate false positive nodules from the CADe candidate
generation process without missing additional true positive
nodules.

Figure 12 shows the effect of our referral strategy on the
malignancy classification results, where we plot the ROC
AUC on the remaining data after referral against different
rates of patient referral. We are able to boost the perfor-
mance on the remaining data and get a maximum AUC
of 0.885, which shows that model uncertainty combined
with data uncertainty provide a useful measure to detect
patients for which the network is more likely to make an
incorrect classification decision. However, the decrease in
AUC at higher referral rates indicates that there are incor-
rect decisions made even when CADx system is very confi-
dent. As illustrated by the histogram of CADx malignancy
scores in Figure 13, this is a result of patients for whom
the CADe system was unable to find a visibly malignant
nodule, either because one does not exist, it is too large
to be detected by CADe trained on LUNA16 data, or it is
simply missed. This is an unavoidable weakness in probability
estimations from systems that rely on other systems that are
imperfect.
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Fig. 12. The CADx area under the ROC curve as a function of referral
percentage, for entropy referral strategy and a random strategy with 95%
confidence interval. Note that the confidence interval is wider than the
CADe scoring network because the number of patients in the Kaggle test
set is smaller than the number of nodules in the LUNA16 dataset.

Fig. 13. Histogram of CADx malignancy probability estimates for benign
and malignant patients. Note that the mode around 0 for malignant
patients is the reason behind false negatives due to missed nodules
by the CADe model.

IX. CONCLUSIONS

In this paper, we introduced a full CADe/CADx system to
detect and diagnose lung cancer using low-dose CT scans. Our
system uses a cascade of 3D CNNs and achieves state-of-the-
art performance on both lung nodule detection and malignancy
classification problems on the publicly available LUNA16 and
Kaggle datasets. Moreover, we characterized model uncer-
tainty using Monte Carlo dropout and deep ensembles, and
showed that quantification of model uncertainty enables our
system to provide calibrated classification probabilities, which
makes it reliable for subsequent utility/risk-based decision
making towards diagnostic interventions or disease treatments.
We demonstrated that we can further improve the performance
by using these calibrated probabilities to make patient referral
decisions.

Our CADe/CADx system studies demonstrate that CADe
and CADx modules should be developed and studied jointly if
the goal is to use them as an end-to-end automated diagnostic

tool to diagnose lung cancer. This is in contrast to the
current design paradigm where CADe and CADx modules are
optimized independently for different metrics. We believe that
the importance of joint development in radiology is applica-
ble to other systems, where the outputs from radiologists,
doctors, and machine learning models are combined to make
diagnostic decisions. For example, a machine learning model
maximizing the performance on a subset of the dataset that
is hard for humans to analyze would be more useful than
a model providing the best performance across the whole
dataset.

Although our system demonstrates that 3D CNN models can
be effectively used to analyze lung CT scans, the performance
is still bounded by the limitations of the datasets used to
train our models, such as the lack of large nodule annotations
in the LUNA16 dataset. We tried to alleviate these prob-
lems through intense data augmentation and downsampling,
but these solutions are imperfect. An ideal way to train a
CADe/CADx would be to have datasets that cover a wider
range of nodule sizes and varieties, patients, and scanning
equipment. If a malignant lesion is missed by the CADe
model, the subsequent CADx model has no way of classifying
that scan as malignant, resulting in the biggest source of false
negatives in our system. We believe that further investments in
curating more inclusive datasets will enable the development
of even stronger CADe/CADx models.

As potential future work, we would like to incorporate
patient referral (or reject option) as part the training strategy
and learn models that would automatically reject the most
uncertain decisions. We would also like to visually analyze
learned feature representations to assess whether they could
be used as informative biomarkers and help radiologists better
understand and interpret CADe/CADx results.
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