
Targeted Adversarial Examples
for Black Box Audio Systems

Rohan Taori, Amog Kamsetty, Brenton Chu and Nikita Vemuri
Machine Learning at Berkeley

UC Berkeley

Email: {rohantaori, amogkamsetty, brentonlongchu, nikitavemuri}@berkeley.edu

Abstract—The application of deep recurrent networks to audio
transcription has led to impressive gains in automatic speech
recognition (ASR) systems. Many have demonstrated that small
adversarial perturbations can fool deep neural networks into
incorrectly predicting a specified target with high confidence.
Current work on fooling ASR systems have focused on white-
box attacks, in which the model architecture and parameters
are known. In this paper, we adopt a black-box approach to
adversarial generation, combining the approaches of both genetic
algorithms and gradient estimation to solve the task. We achieve
a 89.25% targeted attack similarity, with 35% targeted attack
success rate, after 3000 generations while maintaining 94.6%
audio file similarity.

Index Terms—adversarial attack, black-box, speech-to-text

I. INTRODUCTION

Although neural networks have incredible expressive capac-

ity, which allow them to be well suited for a variety of machine

learning tasks, they have been shown to be vulnerable to adver-

sarial attacks over multiple network architectures and datasets

[1]. These attacks can be done by adding small perturbations

to the original input so that the network misclassifies the input

but a human does not notice the difference.

So far, there has been much more work done in generating

adversarial examples for image inputs than for other domains,

such as audio. Voice control systems are widely used in many

products from personal assistants, like Amazon Alexa and

Apple Siri, to voice command technologies in cars. One main

challenge for such systems is determining exactly what the

user is saying and correctly interpreting the statement. As deep

learning helps these systems better understand the user, one

potential issue is targeted adversarial attacks on the system,

which perturb the waveform of what the user says to the

system to cause the system to behave in a predetermined

inappropriate way. For example, a seemingly benign TV

advertisement could be adversely perturbed to cause Alexa

to interpret the audio as “Alexa, buy 100 headphones.” If the

original user went back to listen to the audio clip that prompted

the order, the noise would be almost undetectable to the human

ear.

There are multiple different methods of performing adver-

sarial attacks depending on what information the attacker has

about the network. If given access to the parameters of a

network, white box attacks are most successful, such as the

Fast Gradient Sign Method [1] or DeepFool [2]. However,

assuming an attacker has access to all the parameters of a

network is unrealistic in practice. In a black box setting,

when an attacker only has access to the logits or outputs of

a network, it is much harder to consistently create successful

adversarial attacks.

In certain special black box settings, white box attack

methods can be reused if an attacker creates a model that ap-

proximates the original targeted model. However, even though

attacks can transfer across networks for some domains, this

requires more knowledge of how to solve the task that the

original model is solving than an attacker may have [3], [4].

Instead, we propose a novel combination of genetic algorithms

and gradient estimation to solve this task. The first phase

of the attack is carried out by genetic algorithms, which

are a gradient-free method of optimization that iterate over

populations of candidates until a suitable sample is produced.

In order to limit excess mutations and thus excess noise, we

improve the standard genetic algorithm with a new momentum

mutation update. The second phase of the attack utilizes

gradient estimation, where the gradients of individual audio

points are estimated, thus allowing for more careful noise

placement when the adversarial example is nearing its target.

The combination of these two approaches provides a 35%

average targeted attack success rate with a 94.6% audio file

similarity after 3000 generations1. While the attack success

rate seems low when compared to images, this is to be

expected. Unlike on images, with only a few tens or hundreds

of output classes, there are millions of possible outputs for

speech-to-text, making targeted attacks for the latter case

much more difficult. As a result, it is also beneficial to look

at the targeted attack similarity rate, of which we achieved

89.25%. The similarity rate calculates the distance between

the output and the target, and high similarity can still be

considered a successful attack due to humans and automatic

speech recognition (ASR) systems having tolerance for typos.

Further discussion of our metrics and evaluation method are

described in Section III.

A. Problem statement

Adversarial attacks can be created given a variety of infor-

mation about the neural network, such as the loss function

or the output probabilities. However in a natural setting,

usually the neural network behind such a voice control system

1Code and samples available at https://github.com/rtaori/Black-Box-Audio

15

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Rohan Taori. Under license to IEEE.
DOI 10.1109/SPW.2019.00016

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example of targeted adversarial attack on speech to text systems in
practice

will not be publicly released so an adversary will only have

access to an API which provides the text the system interprets

given a continuous waveform. Given this constraint, we use

the open sourced Mozilla DeepSpeech implementation as a

black box system, without using any information on how the

transcription is done.

We perform our black box targeted attack on a model M
given a benign input x and a target t by perturbing x to form

the adversarial input x′ = x + δ, such that M(x′) = t. To

minimize the audible noise added to the input, so a human

cannot notice the target, we maximize the cross correlation

between x and x′. A sufficient value of δ is determined using

our novel black box approach, so we do not need access to

the gradients of M to perform the attack.

B. Prior work

Compared to images, audio presents a much more signifi-

cant challenge for models to deal with. While convolutional

networks can operate directly on the pixel values of images,

ASR systems typically require heavy pre-processing of the

input audio. Most commonly, the Mel-Frequency Cepstrum

(MFC) transform, essentially a fourier transform of the sam-

pled audio file, is used to convert the input audio into a

spectrogram which shows frequencies over time. Models such

as DeepSpeech [Fig. 2] use this spectogram as the initial input.

In a foundational study for adversarial attacks, [5] developed

a general attack framework to work across a wide variety

of models including images and audio. When applying their

method to audio samples, they ran into the roadblock of

backpropagating through the MFC conversion layer. Thus,

they were able to produce adversarial spectograms but not

adversarial raw audio.

Carlini & Wagner [6] overcame this challenge by developing

a method of passing gradients through the MFC layer, a task

which was previously proved to be difficult [5]. They applied

their method to the Mozilla DeepSpeech model, which is a

complex, recurrent, character-level network that can decode

translations at up to 50 characters per second. With a gradient

connection all the way to the raw input, they were able to

achieve impressive results, including generating samples over

99.9% similar with a targeted attack accuracy of 100%. While

the success of this attack opens new doors for white box

attacks, adversaries in a real-life setting commonly do not have

knowledge of model architectures or parameters.

In [7], Carlini et al. proposed a black-box method for

generating audio adversarial examples that are interpreted as

a predetermined target by ASR systems, but are unintelligible

to a human listener. However, this approach is limited in

effectiveness since a human listener can still identify that

extraneous audio is being played. Instead, a more powerful

attack is to start from a benign audio input and perturb it such

that the ASR model interprets it as the target, but the human

cannot distinguish between the benign and perturbed inputs.

This way the human listener cannot suspect any malicious

activity.

Alzantot, Balaji & Srivastava [8] demonstrated that such

black-box approaches for targeted attacks on ASR systems

are possible. Using a genetic algorithm approach, they were

able to iteratively apply noise to audio samples, pruning away

poor performers at each generation, and ultimately end up

with a perturbed version of the input that successfully fooled

a classification system, yet was still similar to the original

audio. This attack was conducted on the Speech Commands

classification model [8], which is a lightweight convolutional

model for classifying up to 50 different single-word phrases.

Extending the research done by [8], we propose a genetic

algorithm and gradient estimation approach to create targeted

adversarial audio, but on the more complex DeepSpeech

system. The difficulty of this task comes in attempting to apply

black-box optimization to a deeply-layered, highly nonlinear

decoder model that has the ability to decode phrases of

arbitrary length. Nevertheless, the combination of two differing

approaches as well as the momentum mutation update bring

new success to this task.

C. Background

a) Dataset: For the attack, we follow [6] and take the

first 100 audio samples from the CommonVoice test set. For

each, we randomly generate a 2-word target phrase and apply

our black-box approach to construct an adversarial example.

More details on evaluation can be found in Section III.

Each sample in the dataset is a .wav file, which can easily

be deserialized into a numpy array. Our algorithm operates

directly on the numpy arrays, thus bypassing the difficulty of

dealing with the MFC conversion.

b) Victim model: The model we attack is Baidu’s Deep-

Speech model [9], implemented in Tensorflow and open-

sourced by Mozilla.2 Though we have access to the full model,

we treat it as if in a black box setting and only access the

output logits of the model. In line with other speech to text

systems [5], [10], DeepSpeech accepts a spectrogram of the

audio file. After performing the MFC conversion, the model

consists 3 layers of convolutions, followed by a bi-directional

LSTM, followed by a fully connected layer. This layer is

then fed into the decoder RNN, which outputs logits over

the distribution of output characters, up to 50 characters per

second of audio. The model is illustrated in Fig. 2.

2 https://github.com/mozilla/DeepSpeech

16

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Diagram of Baidu’s DeepSpeech model [9]

c) Connectionist temporal classication: While the Deep-

Speech model is designed to allow arbitrary length transla-

tions, there is no given labeled alignment of the output and

input sequences during training time. Thus the connectionist

temporal classication loss (CTC Loss) is introduced, as it

allows computing a loss even when the position of a decoded

word in the original audio is unknown [6].

DeepSpeech outputs a probability distribution over all char-

acters at every frame, for 50 frames per second of audio. In

addition to outputting the normal alphabet a-z and space, it can

output special character ε. Then CTC decoder C(·) decodes

the logits as such: for every frame, take the character with the

max logit. Then first, remove all adjacent duplicate characters,

and then second, remove any special ε characters. Thus aabεεb
will decode to abb [6].

As we can see, multiple outputs can decode to the same

phrase. Following the notation in [6], for any target phrase p,

we call π an alignment of p if C(π) = p. Let us also call the

output distribution of our model y. Now, in order to find the

likelihood of alignment π under y:

Pr(p|y) =
∑

π|C(π)=p

Pr(π|y) =
∑

π|C(π)=p

∏
i

yiπ (1)

as noted by [6]. This is the objective we use when scoring

samples from the populations in each generation of our genetic

algorithm as well as the score used in estimating gradients.

d) Greedy decoding: As in traditional recurrent decoder

systems, DeepSpeech typically uses a beam search of beam

width 500. At each frame of decoding, 500 of the most likely π
will be evaluated, each producing another 500 candidates for a

total of 2500, which are pruned back down to 500 for the next

timestep. Evaluating multiple assignments this way increases

the robustness of the model decoding. However, following

work in [6], we set the model to use greedy decoding. At each

timestep only 1 π is evaluated, leading to a greedy assignment:

decode(x) = C(argmax
π

Pr(y(x)|π)) (2)

Thus, our genetic algorithm will focus on creating perturba-

tions to the most likely sequence (if greedily approximated).

II. BLACK BOX ATTACK ALGORITHM

Our complete algorithm is provided in Algorithm 1, and

is composed of a genetic algorithm step combined with

momentum mutation, and followed by a gradient estimation

step.

Algorithm 1 Black box algorithm for generating adversarial

audio sample

Require: Original benign input x Target phrase t
Ensure: Adversarial Audio Sample x′

population← [x] ∗ populationSize
while iter < maxIters and Decode(best)! = t do

scores← −CTCLoss(population, t)
best← population[Argmax(scores)]

if EditDistance(t,Decode(best)) > 2 then
// phase 1 - do genetic algorithm

while populationSize children have not been made do
Select parent1 from topk(population) according to

softmax(their score)
Select parent2 from topk(population) according to

softmax(their score)
child←Mutate(Crossover(parent1, parent2), p)

end while
newScores ← −CTCLoss(newPopulation, t)
p ←MomentumUpdate(p, newScores, scores)

else
// phase 2 - do gradient estimation

top-element ← top(population)
grad-pop ← n copies of top-element, each mutated

slightly at one index

grad ← (-CTCLoss(grad-pop) - scores) / mutation-

delta

pop ← top-element + grad

end if
end while
return best

A. Genetic algorithm

As mentioned previously, [8] demonstrated the success of a

black-box adversarial attack on speech-to-text systems using a

standard genetic algorithm. The basic premise of our algorithm

is that it takes in the benign audio sample and, through trial

and error, adds noise to the sample such that the perturbed

adversarial audio is similar to the benign input yet is decoded

as the target, as shown in Fig. 3. A genetic algorithm works

well for a problem of this nature because it is completely

independent of the gradients of the model. Reference [8] used

a limited dataset consisting of audio samples with just one

word and a classification with a predefined number of classes.

In order to extend this algorithm to work with phrases and

sentences, as well as with CTC Loss, we make modifications

to the genetic algorithm and introduce our novel momentum

mutation.

17

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Diagram of our genetic algorithm

The genetic algorithm works by improving on each iteration,

or generation, through evolutionary methods such as Crossover

and Mutation [11]. For each iteration, we compute the score

for each sample in the population to determine which samples

are the best. Our scoring function was the CTC-Loss, which

as mentioned previously, is used to determine the similarity

between an input audio sequence and a given phrase. We

then form our elite population by selecting the best scoring

samples from our population. The elite population contains

samples with desirable traits that we want to carry over

into future generations. We then select parents from the elite

population and perform Crossover, which creates a child by

taking around half of the elements from parent1 and the

other half from parent2. The probability that we select a

sample as a parent is a function of the sample’s score. With

some probability, we then add a mutation to our new child.

Finally, we update our mutation probabilities according to

our momentum update, and move to the next iteration. The

population will continue to improve over time as only the best

traits of the previous generations as well as the best mutations

will remain. Eventually, either the algorithm will reach the

max number of iterations, or one of the samples is exactly

decoded as the target, and the best sample is returned.

B. Momentum mutation

Algorithm 2 Mutation

Require: Audio Sample x
Mutation Probability p

Ensure: Mutated Audio Sample x′

for all e in x do
noise ← Sample(N (μ, σ2))
if Sample(Unif(0, 1)) < p then

e′ ← e+ filterhighpass(noise)
end if

end for
return x′

The mutation step is arguably the most crucial component

of the genetic algorithm and is our only source of noise in

the algorithm. In the mutation step, with some probability,

we randomly add noise to our sample. Random mutations are

critical because it may cause a trait to appear that is beneficial

for the population, which can then be proliferated through

crossover. Without mutation, very similar samples will start

to appear across generations; thus, the way out of this local

maximum is to nudge it in a different direction in order to

reach higher scores.

Furthermore, since this noise is perceived as background

noise, we apply a filter to the noise before adding it onto the

audio sample. The audio is sampled at a rate of fs = 16kHz,

which means that the maximum frequency response fmax =
8kHz. As seen by [12], given that the human ear is more

sensitive to lower frequencies than higher ones, we apply a

highpass filter at a cutoff frequency of fcutoff = 7kHz. This

limits the noise to only being in the high-frequency range,

which is less audible and thus less detectable by the human

ear.

While mutation helps the algorithm overcome local maxima,

the effect of mutation is limited by the mutation probability.

Much like the step size in SGD, a low mutation probability

may not provide enough randomness to get past a local

maximum. If mutations are rare, they are very unlikely to

occur in sequence and add on to each other. Therefore, while

a mutation might be beneficial when accumulated with other

mutations, due to the low mutation probability, it is deemed

as not beneficial by the algorithm in the short term, and will

disappear within a few iterations. This parallels the step size

in SGD, because a small step size will eventually converge

back at the local minimum/maximum. However, too large of

a mutation probability, or step size, will add an excess of

variability and prevent the algorithm from finding the global

maximum/minimum. To combat these issues, we propose

Momentum Mutation, which is inspired by the Momentum

Update for Gradient Descent. With this update, our mutation

probability changes in each iteration according to the following

exponentially weighted moving average update:

pnew = α× pold +
β

|currScore− prevScore| (3)

With this update equation, the probability of a mutation

increases as our population fails to adapt meaning the current

score is close to the previous score. The momentum update

adds acceleration to the mutation probability, allowing mu-

tations to accumulate and add onto each other by keeping

the mutation probability high when the algorithm is stuck at

a local maximum. By using a moving average, the mutation

probability becomes a smooth function and is less susceptible

to outliers in the population. While the momentum update may

overshoot the target phrase by adding random noise, overall

it converges faster than a constant mutation probability by

allowing for more acceleration in the right directions.

C. Gradient estimation

Genetic algorithms work well when the target space is

large and a relatively large number of mutation directions

are potentially beneficial; the strength of these algorithms lies

18

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Momentum Mutation Update

Require: Mutation Probability p
Scores for the new population newScores
Scores for the previous population scores

Ensure: Updated mutation probability pnew

currScore = max(newScores)
prevScore = max(scores)
pnew = α× pold +

β
|currScore−prevScore|

return pnew

in being able to search large amounts of space efficiently

[13]. When an adversarial sample nears its target perturbation,

this strength of genetic algorithms turns into a weakness,

however. Close to the end, adversarial audio samples only

need a few perturbations in a few key areas to get the correct

decoding. In this case, gradient estimation techniques tend

to be more effective. Specifically, when edit distance of the

current decoding and the target decoding drops below some

threshold, we switch to phase 2. When approximating the

gradient of a black box system, we can use the technique

proposed by [14]:

FDx(x, δ) =

⎡
⎢⎣
(g(x+ δ1)− g(x))/δ

...

(g(x+ δn)− g(x))/δ

⎤
⎥⎦ (4)

Here, x refers to the vector of inputs representing the audio

file. δi refers to a vector of all zeros, except at the ith position

in which the value is a small δ. g(·) represents the evaluation

function, which in our case is CTCLoss. Essentially, we are

performing a small perturbation at each index and individually

seeing what the difference in CTCLoss would be, allowing us

to compute a gradient estimate with respect to the input x.

However, performing this calculation in full would be

prohibitively expensive, as the audio is sampled at 16kHz
and so a simple 5-second clip would require 80,000 queries

to the model for just one gradient evaluation! Thus, we only

randomly sample 100 indices to perturb each generation when

using this method. When the adversarial example is already

near the goal, gradient estimation makes the tradeoff for more

informed perturbations in exchange for higher compute.

III. EVALUATION

A. Metrics

We tested our algorithm by running it on a 100 sample

subset of the Common Voice dataset. For each audio sample,

we generated a single random target phrase by selecting two

words uniformly without replacement from the set of 1000

most common words in the English language. The algorithm

was then run for each audio sample and target phrase pair for

3000 generations to produce a single adversarial audio sample.

We evaluated the performance of our algorithm in two

primary ways. The first method is determining the accuracy

with which the adversarial audio sample gets decoded to

the desired target phrase. For this, we use the Levenshtein

distance, or the minimum character edit distance, between the

desired target phrase and the decoded phrase as the metric of

choice. We then calculated the percent similarity between the

desired target and the decoded phrase by calculating the ratio

of the Levenshtein distance and the character length of the

original input, ie. 1− Levenshtein(M(x′),t)
len(M(x)) . The second method

is determining the similarity between the original audio sample

and the adversarial audio sample. For this, we use the accepted

metric of the cross correlation coefficient between the two

audio samples.

B. Results

Of the audio samples for which we ran our algorithm on,

we achieved a 89.25% similarity between the final decoded

phrase and the target using Levenshtein distance, with an

average of 94.6% correlation similarity between the final

adversarial sample and the original sample. The average final

Levenshtein distance after 3000 iterations is 2.3, with 35% of

the adversarial samples achieving an exact decoding in less

than 3000 generations, and 22% of the adversarial samples

achieving an exact decoding in less than 1000 generations.

One thing to note is that our algorithm was 35% successful

in getting the decoded phrase to match the target exactly;

however, noting from Fig. 4, the vast majority of failure cases

are only a few edit distances away from the target. This

suggests that running the algorithm for a few more iterations

could produce a higher success rate, although at the cost of

correlation similarity. Indeed, it becomes apparent that there

is a tradeoff between success rate and audio similarity such

that this threshold could be altered for the attacker’s needs.

Fig. 4. Histogram of levenshtein distances of attacks.

A full comparison of white box targeted attacks [6], black

box targeted attacks on single words (classification) [8], and

our method is presented in Table I.

One helpful visualization of the similarity between the orig-

inal audio sample and the adversarial audio sample through

the overlapping of both waveforms is shown in Fig. 5. As

the visualization shows, the audio is largely unchanged, and

the majority of the changes to the audio is in the relatively

19

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON WITH PRIOR WORK

Metric White Box Attacks Our Method Single Word Black Box

Targeted attack success rate 100% 35% 87%
Average similarity score 99.9% 94.6% 89%
Similarity score method cross-correlation cross-correlation human study

Loss used for attack CTC CTC Softmax
Dataset tested on Common Voice Common Voice Speech Commands

Target phrase generation Single sentence Two word phrases Single word

low volume noise applied uniformly around the audio sample.

This results in an audio sample that still appears to transcribe

to the original intended phrase when heard by humans, but is

decoded as the target adversarial phrase by the DeepSpeech

model.

Fig. 5. Overlapping of adversarial (blue) and original (orange) audio sample
waveforms with 95% cross-correlation.

That 35% of random attacks were successful in this respect

highlights the fact that black box adversarial attacks are

definitely possible and highly effective at the same time.

IV. CONCLUSION

In combining genetic algorithms and gradient estimation

we are able to achieve a black box adversarial example for

audio that produces better samples than each algorithm would

produce individually. By initially using a genetic algorithm

as a means of exploring more space through encouragement

of random mutations and ending with a more guided search

with gradient estimation, we are not only able to achieve

perfect or near-perfect target transcriptions on most of the

audio samples, but we are able to do so while retaining a

high degree of similarity. While this remains largely as a

proof-of-concept demonstration, this paper shows that targeted

adversarial attacks are achievable on black box models using

straightforward methods.

Furthermore, the inclusion of momentum mutation and

adding noise exclusively to high frequencies improved the ef-

fectiveness of our approach. Momentum mutation exaggerated

the exploration at the beginning of the algorithm and annealed

it at the end, emphasizing the benefits intended by combining

genetic algorithms and gradient estimation. Restricting noise

to the high frequency domain improved upon our similarity

both subjectively by keeping it from interfering with human

voice as well as objectively in our audio sample correlations.

By combining all of these methods, we are able to achieve

our top results.

In conclusion, we introduce a new domain for black box

attacks, specifically on deep, nonlinear ASR systems that

can output arbitrary length translations. Using a combination

of existing and novel methods, we are able to exhibit the

feasibility of our approach and open new doors for future

research.

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” ArXiv e-prints, Dec. 2014.

[2] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple
and accurate method to fool deep neural networks,” ArXiv e-prints, Nov.
2015.

[3] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transferable
Adversarial Examples and Black-box Attacks,” ArXiv e-prints, Nov.
2016.

[4] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against deep learning
systems using adversarial examples,” CoRR, vol. abs/1602.02697, 2016.
[Online]. Available: http://arxiv.org/abs/1602.02697

[5] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling Deep
Structured Prediction Models,” ArXiv e-prints, Jul. 2017.

[6] N. Carlini and D. Wagner, “Audio Adversarial Examples: Targeted
Attacks on Speech-to-Text,” ArXiv e-prints, Jan. 2018.

[7] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr,
C. Shields, D. Wagner, and W. Zhou, “Hidden voice
commands,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp.
513–530. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/carlini

[8] M. Alzantot, B. Balaji, and M. Srivastava, “Did you hear that? Adversar-
ial Examples Against Automatic Speech Recognition,” ArXiv e-prints,
Jan. 2018.

[9] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep
Speech: Scaling up end-to-end speech recognition,” ArXiv e-prints, Dec.
2014.

[10] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li,
J. Chorowski, and M. Bacchiani, “State-of-the-art Speech Recognition
With Sequence-to-Sequence Models,” ArXiv e-prints, Dec. 2017.

[11] J. H. Holland, “Genetic algorithms,” Scientific american, 1992.
[12] T. Reichenbach and A. J. Hudspeth, “Discrimination of Low-Frequency

Tones Employs Temporal Fine Structure,” PLoS ONE, vol. 7, p. e45579,
Sep. 2012.

[13] P. Godefroi and S. Khurshid, “Exploring Very Large State Spaces Using
Genetic Algorithm,” MIT, unkown.

[14] A. Nitin Bhagoji, W. He, B. Li, and D. Song, “Exploring the Space
of Black-box Attacks on Deep Neural Networks,” ArXiv e-prints, Dec.
2017.

20

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 03,2024 at 09:12:35 UTC from IEEE Xplore. Restrictions apply.

