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Abstract—Domain blacklists are widely-used in security re-
search. However, given their proprietary nature, there is little
insight into how they operate and how effective they are. In this
paper, we analyze a unique combination of DNS traffic measure-
ments with domain registration and blacklisting data. We focus
in particular on large-scale malicious campaigns that register
thousands of domain names used in orchestrated attacks. This
allows us to gain insights into how blacklists and cybercriminals
interact with each other. Furthermore, it enables us to pinpoint
scenarios where blacklist operators struggle to detect campaign
registrations.

I. INTRODUCTION

DNS continues to serve as a crucial tool for internet-based

crime. From phishing and spam to botnet communication

and malware distribution: most cyber attacks require domain

names to be operational. While some malicious actors com-

promise existing domain names, many register new ones to

provision their attacks. The amount of domain names that are

newly registered for malicious purposes is substantial [4], [16].

In our previous study, we extensively analyzed the ecosys-

tem of malicious registrations within .eu [16]. We found

that the vast majority of blacklisted registrations could be

attributed to a small set of malicious actors, reusing regis-

trant details across registrations. These actors continuously set

up lage-scale registration campaigns1, each bringing forward

thousands of domain names that will be deployed in cyber

attacks.

An important finding of that work is that a considerable

amount of campaign registrations, while clearly affiliated to

cybercrime, never ends up on a blacklist. One possible expla-

nation is that some campaign registrations are never actively

used in attacks. Alternatively, blacklist operators might simply

fail to detect some malicious behavior. At this time, there is

no clear understanding of this discrepancy, in part because

blacklist methods are somewhat opaque, as they typically

combine multiple tactics to achieve detection. Irregardless of

the unclear blacklist incompleteness, the security community

heavily depends on these lists and often even treats them as

oracles. For instance, many detection and prevention systems

are modelled using blacklists as their ground truth for mali-

ciousness (e.g. [1], [2], [4]). Furthermore, the understanding

of cybercriminal ecosystems relies on analyses using blacklists

1We define a campaign as the entire set of domain name registrations using
the same registrant details.

as a main indicator of malice (e.g. [5], [13], [16]). A lack of

understanding and transparency limits these initiatives.

In this paper, we set out to further understand how malicious

campaigns operate and interact with blacklisting. We combine

DNS traffic with registration information and blacklisting data

to analyze the different strategies of both malicious campaigns

as well as blacklist curators. This enables us to observe this

ongoing tug of war and their attempts to outmaneuver each

other. Additionally, by looking at the incoming DNS requests

for malicious domains, we can infer a domain’s involvement

in large-scale campaign orchestrated attack operations.

We combine DNS request data, blacklist information and

domain registrant details to make the following main contri-

butions:

• We increase the understanding of large-scale campaigns

in terms of the registration and deployment strategies.

• We are able to distinguish between active and dormant

campaign domains, allowing us to correlate this informa-

tion to their occurrence on blacklists. Thereby, we further

develop insights into different blacklisting methods and

their effectiveness.

• Through DNS traffic data, we show that domains within

a single campaign are weaponized together in highly-

orchestrated activity.

II. DATASET AND CAMPAIGN IDENTIFICATION

In this section, we first describe the data used in this paper.

Afterwards, we establish the starting point of our research

by identifying the five most active campaigns present in our

dataset.

A. Dataset

Registration data We analyze the data of 144 days of new

incoming registrations within .eu, starting from January 1,

2018. Overall, this is encompasses 304K registrations. This

data includes the registered name, the time of registration,

along with the contact information given by the registrant.

This lists the (company) name, email address, phone, as well

as postal address information.

Blacklist data For each of these new registrations, we

want to assess if and when they are placed on a blacklist.

To that extent, we query a set of public blacklists twice

per day. Each new domain is continuously monitored for at
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Fig. 1. The cumulative amount of blacklisted registrations that are made by
the top malicious registrants.

least three months once it has been registered. We consult

the following widely-used blacklists: Spamhaus DBL [15],

SURBL [14] and Google’s Safe Browsing list [3]. Overall,

we detect blacklisting events for 15K domains, or 5% of the

total amount of registrations in the examined period.

DNS request data We process the passively-logged DNS

requests of two .eu TLD name servers. One of the servers

is located in the UK, the other one in Slovenia. Both name

servers receive DNS requests for all .eu domains, although

they each only see a part of the traffic (requests are distributed

among 7 redundant TLD name server). As they are not the

final authoritative name server for the second-level domains,

they normally only see the initial and cache-expired DNS

requests from resolvers. A resolver does not query the TLD

nameservers for follow-up requests for that domain.

Previous work concludes that the vast majority of malicious

behavior and domain blacklisting, occurs within 30 days after

registration [5], [16]. Following this insight, we process DNS

requests up to 35 days after registration for each domain in

our dataset. We extract the name and record type (e.g. A or

TXT) of each request. Furthermore, we make note of the origin

country of the client that sent us the request (i.e. the DNS

resolver or forwarder) using data from MaxMindDB [8].

B. Campaign identification

We use the insights of the previous ecosystem study [16]

to identify campaigns in our current dataset. Specifically, we

find the largest malicious campaigns in our dataset based

on the distinct use of registrant contact details within our

blacklisted set. As can be seen in Figure 1, the top five most

active malicious registrants are responsible for 11,486 out

of all 14,589 blacklisted registrations (a 79% share). These

five registrants will serve as the starting point for our further

campaign-centric analysis. The five campaigns are shown in

Table I.

III. OBSERVING ATTACKS THROUGH DNS REQUESTS

In this section, we demonstrate how we can observe

campaign-orchestrated attacks by looking at the DNS requests

for domains.

An incoming DNS request implies that some client on the

Internet wants to request information for that domain. Many

TABLE I
THE FIVE LARGEST CAMPAIGNS IN .EU (JANUARY - JUNE 2018)

Campaign Registrations Blacklisted Non-blacklisted Distinct registration days

A 3,661 3,634 27 22
B 4,351 3,337 1,014 4
C 2,045 1,962 83 24
D 2,086 1,558 528 105
E 1,730 995 735 1

malicious operations trigger requests to attacker-controlled

domains. For instance, sending out spam emails typically

triggers the receiving entity to query SPF, DMARC and DKIM

records to validate the sender’s domain. Similarly, when an

email cannot be delivered, the MX record of the sender’s

domain will be requested in order to respond with a bounce

message. Other malicious activity, such as phishing websites

and C&C servers, will trigger DNS requests from their victims

as well. Given this characteristic, we can use incoming DNS

requests as an indicator of domain owner-induced activity.

By looking at this activity indicator, we are able to map

out coordinated attacks across multiple domains within the

same campaign. For instance, Figure 2 shows the incoming

A record requests over time of four blacklisted domains.

All four domains were registered around the same time (Jan

6-8) However, according to our registrant-based campaign

identification, the first three domains are part of campaign B,

while the last one is associated with campaign A.

We can see from the figure that the different campaigns

are clearly reflected in the measured DNS activity as well.

Domains B.1 and B.2 are undoubtedly operating in a co-

ordinated fashion: they both exhibit a very similar burst of

activity at the exact same time, 20 days after their registration.

Domain B.3 exhibits similar activity in the first week after

registration: several short burst of requests. We hypothesize

that these requests are artifacts of an attack preparation stage.

However, B.3 does not exhibit the same timed burst as B.2 and

B.3. A possible cause is the early –and potentially proactive–

blacklisting of B.3 (Jan 13), while B.1 and B.2 were only

blacklisted at the time they exhibit the burst behavior (Jan

27).

Domain A.1, another blacklisted domain that was registered

around the same time, exhibits an entirely different activity

pattern. The activity burst is much stronger and takes place

soon after registration. This behavioral difference further illus-

trates how each campaign is managed by a single entity that

orchestrates distinct attacks across its domains. Domain A.1

was blacklisted several months after its initial activity burst,

when a whole large batch of this campaign’s registrations was

flagged on a single day (further discussed in Section V-D).

IV. QUANTIFYING EFFECTIVENESS OF BLACKLISTS

Previous work has found that (1) there is a substantial

amount of domain names registered as part of cybercriminal

campaigns that never ends up on a blacklist [16], and that

(2) in some cases, blacklists flag domains before they exhibit

200

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 18:19:16 UTC from IEEE Xplore.  Restrictions apply. 



D
om

ain B
.1

D
om

ain B
.2

D
om

ain B
.3

D
om

ain A
.1

Jan 08 Jan 15 Jan 22 Jan 29 Feb 05

0

100

200

0

100

200

0

100

200

0

100

200

N
um

be
r 

of
 D

N
S

 r
eq

ue
st

s 
(A

 r
ec

or
ds

)

Fig. 2. The amount of DNS A record requests received in 2-hour windows
after registration for three different domains in Campaign B and one domain
of campaign A. The day the domain was blacklisted is indicated by a yellow
bar. Domain A.1 was blacklisted beyond the scope of the graph, on April 6.

malicious behavior [5]. In other words, researchers have re-

ported that blacklists both flag and miss registrations that are

linked to other malicious domains. In this section, we want

to quantitatively assess the effectiveness of blacklisting by

taking into account the domain’s behavior. We consider four

distinct cases in which we can place the malicious campaign

registrations:

1) Blocked. The campaign domain was active and placed

on a blacklist.

2) Missed. The campaign domain was active, but blacklists

failed to detect it.

3) Proactive. The campaign domain was not active, but

was proactively blacklisted. Presumably through other

signs of maliciousness (e.g. linked to an existing mali-

cious campaign)

4) Unused. The campaign domain was not active and was

not placed on a blacklist. Even though our data indicates

that this registration was made by a malicious actor.

In order to place the campaign registrations in these cate-

gories, we have to determine which ones actively took part in

an attack. To that extent, we design a activity measure based

on DNS traffic that concentrates on representing burst activity

and uncommon DNS requests.

A. Designing an activity measure

To enable meaningful comparisons between behavioral pat-

terns, we make use of Dynamic Time Warping (DTW) [12],

a similarity measure between time series that allows non-

linear stretching and compressing to map two series together

before calculating the distance. Intuitively, it allows us to find

similarities between time series even if they are time-shifted.

Thus enabling the behavioral measure to align anomalous

activity patterns, such as the bursts shown in Figure 2.

In terms of preprocessing, we shift the timestamps of a

domain’s requests to a time relative to its registration time.

We establish differently weighted and standardized time series

for each distinct DNS record type and country the request

originated from. We perform this standardization to ensure that

record types or countries with large amounts of requests do

not nullify the impact of more specific record types or origin

countries. The intuition here is to put an emphasis on unique

behavior that deviates from the norm.

After this preprocessing phase, the DTW distance between

different domains can be used to assess behavioral similarity.

For the purpose of determining an activity level for each

domain, we compare the preprocessed time series with a

dummy time series with no activity, i.e. zero DNS requests.

Using this measure for intra- and inter-campaign compar-

isons is left for future work.

1) Determining a threshold for dormant domains: To de-

termine a threshold to differentiate between dormant and

active domains, we take the 13,873 campaign registrations

from our dataset and include another 13,873 randomly sampled

benign registrations. Next, we calculate the activity level as

described above. To find an appropriate threshold, we inspect

the distribution of the activity level across the blacklisted

domains in each campaign, as shown in Figure 3. To give

a visual impression, the inactive domain B.3 that was shown

earlier in Figure 2, falls into the first curve of campaign B. In

comparison, the clearly active B.1 and B.2 domains lie in the

second curve. This suggests that an appropriate threshold falls

in between B’s two curves. We further manually verify several

samples and confirm that, for instance, domains in campaign

E are dormant. Interestingly, campaign D has domains across

a large part of the activity level spectrum. In this case, manual

inspection across the activity spectrum simply reveals gradual

increasing activity with no clear threshold between B’s two

curves. To prevent drawing inaccurate conclusions from the

threshold, we make conservative decisions by establishing a

broad margin from 0.0020 to 0.0250 (as shown in Figure 3).

We consider any domain below this margin as dormant, and

any domain above as active. The 15% of campaign domains

present in the margin are excluded from the results.

B. Results

We show the resulting distribution of the domains amongst

the four different categories in Table II. A small major-

ity of domains that were registered as part of a campaign

are blocked, i.e. they exhibited malicious activity and were

blacklisted. Successful proactive blacklisting happens in the
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Fig. 3. The cumulative distribution of the activity level across all blacklisted
campaign registration and the benign sample set. The left shaded area marks
the dormant zone, the right marks the active zone.

TABLE II
DISTRIBUTION OF CAMPAIGN REGISTRATIONS IN DIFFERENT CATEGORIES

BASED ON THEIR OCCURRENCE ON A BLACKLIST AND ACTIVITY LEVEL.
EXCLUDES 15% OF REGISTRATIONS IN AN UNKNOWN ACTIVITY STATE.

Active Dormant

Blacklisted Blocked Proactive
54.8% 2.9%

Non-blacklisted Missed Unused
14.1% 14.0%

wild, but is found to still be rather rare (2.9% of campaign

registrations). A substantial portion of campaign domains are

missed by blacklists. While reactive blacklisting is a well-

adopted practice, we still witness 14.1% of campaign domains

flying under the radar even though they exhibited active

behavior. Another 14.0% of unused campaign registrations

could arguably be flagged on top of this by linking them to

their malicious campaign proactively.

Figure 4 gives the breakdown of the different cases in each

campaign. Campaign A and C have the most straightforward

results. Nearly all of their registrations were active and picked

up by a blacklist.

Interestingly, campaign E is fully dormant and thus, from

our data’s perspective, flagged in an entirely proactive fashion.

However, proactive blacklisting requires historical knowledge

of malicious domains, suggesting that the campaign was al-

ready active earlier on. To further investigate this situation, we

search earlier .eu registration data from 2017 and find 6,090

additional domains registered by the registrant of campaign E

on 38 different days. As a matter of fact, the single batch of

registrations made by campaign E in our current dataset, was

the last time the campaign was active. Presumably, the tainted

registrant credentials were abandoned once those registrations

were being aggressively and proactively blacklisted.

We note a similar scenario in the case of Campaign B.

Although there are many active domains, there is also a

substantial amount of dormant domains, both blacklisted and
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Fig. 4. The distribution of active and dormant domains amongst the black-
listed and missed campaign registrations.

missed. Notably, 75% of those dormant domains were all

registered on the last day this campaign was active. Once

more suggesting that registrant credentials were abandoned

once they were being proactively blacklisted.

The results of campaign D are not straightforward, as was to

be expected from the activity level distribution. Unfortunately,

at this point, we cannot draw clear conclusions for this

campaign.

One important caveat for all these results is that blacklisting

may influence the activity level of a domain name. For

instance, once blacklisted, clients might be blocked from con-

necting to the domain. Contrarily, threat intelligence services

and researchers might start requesting information for that

domain name. As such, the activity level is just an indicator

for potential malicious behavior.

V. CAMPAIGN STRATEGIES AND LIFE CYCLES

In this section, we explore the life cycles of malicious

campaigns and how they interact with blacklisting operators.

A. Data analysis

We analyze the cumulative amount of domains that have

been registered and blacklisted for every campaign over time2,

as shown in Figure 5. Additionally, we keep track of the

amount of domains that have been potentially deployed in an

attack by using their most active day as a proxy. Specifically,

for each domain, we note the day the TLD nameservers

received the most DNS requests for it. The sequences of

these events allows us to witness the different registration and

blacklisting strategies.

B. Campaign registration strategies

The campaign registration data, as shown by the thick lines

in Figure 5, confirms the existence of two distinct strategies.

Campaigns B and E are typical examples of bulk registration.

They are active on a limited number of days on which they

register a very large amount of domain names in bulk. The

2We only take into account the blacklisted campaign registrations here. The
non-blacklisted ones are excluded from this analysis.
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Fig. 5. For each campaign, the cumulative amount of domains that are registered (thick line), blacklisted (dotted line) and deployed (thin line) over time.

other strategy, continuous registration, is seen in campaigns

A, C and D. In these cases, the malicious actors continuously

register smaller batches of domains.

C. Campaign deployment strategies

The continuous registration strategy (as exhibited by A, C

and D) is clearly related to a specific deployment strategy.

These campaigns deploy (thin lines) their domain names in
tandem with their batches of registrations over time. For

instance, in campaign A, we can clearly see how a new batch

of registrations is made as soon as the domains in the previous

batch have been actively deployed. This further validates the

hit-and-run hypothesis, which suggests that new registrations

are made as soon as previous domains are tainted by their own

malicious behavior.

Campaign B, one of the bulk-registering campaigns, does

not adhere to this tandem situation. While the registration of

domains happens in bulk, here, they are gradually deployed
over time. This suggests that some attackers proactively stock

up on domain names some time before the actual attacks is

executed.

We will not discuss the deployment of campaign E, as it

was shown in Section IV-B that this campaign was in fact

completely dormant.

D. Campaign blacklist timing

When comparing the time of deployment and time of

blacklisting on Figure 5 (dotted lines), we are able to observe

the reactive mechanism. There, the domain is blacklisted

after it was active (i.e. the cumulative blacklisted line runs

behind the cumulative deployment line). This scenario is

clearly illustrated by campaign C, where we note a very tight

repetitive process of registering, subsequently deploying and

thereafter becoming blacklisted. A similar situation is again

observed in campaign A, however here blacklisting generally

happens much later than the deployment step. This suggests

that this campaign is more effective at avoiding detection by

blacklists and potentially was able to sustain his attack for a

longer period of time for each deployed domain.

Interestingly, we find that this granular reactive mechanism

is not the sole blacklisting method. There are cases where

exceptionally large sets of campaign domains are blacklisted

at once. For instance, on January 30, 422 domains of campaign

A were suddenly blacklisted. Similarly, on May 8, campaign

D had 759 of its registrations blacklisted. Both of these

larger takedowns suggests that blacklists operators are not

only flagging reactively on domain-per-domain basis. They are

flagging batches of related domains.

As mentioned in Section IV-B, campaign B was was likely

discontinued due to being affected by proactive blacklisting
at the end of its lifespan. Figure 5 demonstrates this process

clearly. Starting from the last day registrations are made

for campaign B (Jan 16), domains are getting blacklisted

even before they are deployed. Moreover, we determined

that in these cases, those domain names are simply dormant

and actually never really successfully deployed. The similar

situation for Campaign E is also reflected in this graph.

VI. DISCUSSION

A. Limitations

This paper assumes that malicious campaigns can be iden-

tified through exact reuse of registrant contact details, while

malicious actors are not limited to that setup. However, both

this work and previous work [16] finds that the vast majority

of blacklisted registrations can be accurately placed into cam-

paigns using this identification process. This study is limited

to five such campaigns, representing 78% of the blacklisted

registrations in our dataset.

There are certain limitations of using TLD name server DNS

request to analyze behavioral activity. As mentioned earlier,

the effects of caching limit the accuracy of the perceived

domain activity. Furthermore, QNAME minimization prevents

recording second-level domain granularity of incoming re-

quests. However, as of February 2019, its was deployed by

less than 12% of DNS resolvers [6]. Additionally, domain

blacklisting itself might impact the amount of DNS requests

the domain receives, potentially influencing our measured

activity level.

IP address geolocation databases can be inaccurate [11].

However, in this study we only use coarse-grained locations

(country-level) of DNS resolvers to establish location and

record type specific activity.
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Another limitation of this work is the absence of a real-time

feed from blacklist operators. This prevents us from accurately

determining the exact time a domain name was detected.

B. Ethical considerations

As part of the analysis, registrant information of a domain

name, as well as DNS queries, to this domain name have been

studied. Registrant information, as requested by the registry as

part of the domain registration process. Based on data from

external domain blacklists, the analysis has been scoped to the

biggest abusers of the research corpus; as well as a randomly

selected set of non-blacklisted domain names. For the query

analysis, traffic arriving at the TLD name servers (managed by

the TLD registry) has been passively monitored. Hereby, only

the query type, the requested name and the originating country

of the DNS query are used for the analysis. The resolver’s IP

address nor the response of the query are part of the analysis.

This research required us to periodically request information

from blacklists [3], [14], [15]. This entailed public data that

we consulted in compliance with the respective terms of use.

Only aggregated and pseudomized results have been dis-

closed in the context of this research.

VII. RELATED WORK

In this work, we bring forward new insights and understand-

ing into using blacklists for security research using a unique

combination of data sources. Prior to our work, Metcalf et

al. [9] analyzed the blacklisting ecosystem from 2012 to 2014

and found limited overlap between different lists. Following

this finding, the authors advise against using blacklists as

a sole source of ground truth for maliciousness. Similarly,

in 2012, Pitsillidis et al. [10] looked at email spam feeds

specifically. The authors find i.a. incompleteness and presence

of false positives on these feeds. More recently, Kidmose et

al. [7] further stress the difficulties of assessing the value

of using blacklists. They propound that researchers introduce

errors when using highly imperfect blacklists as their main

ground truth source.

Using blacklists as the starting point for security research

is very common. Several noteworthy examples have been

given in Section I ( [1], [4], [5], [13], [16]). A survey of of

Zhauniarovich et al. [17] gives an overview of how DNS data

has been used to detect malicious domains. They specifically

report on domain blacklist as common source of ground truth.

VIII. CONCLUSION

In this study, we combined DNS traffic measurements with

domain registration and blacklisting information to strengthen

our understanding of blacklist effectiveness. We bring forward

important insights in the ambiguity and incompleteness of

blacklists for the security community. Researchers namely

rely on blacklists as a starting point of studies, and as

ground truth for modelling and evaluating detection systems.

Additionally, our analysis allows us to observe the registration

and deployment strategies of large-scale malicious campaigns

and how they interact with blacklisting methods. We also

confirm, in line with earlier findings, that a substantial amount

of campaign registrations are still being missed by blacklist

operators.
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