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Information Loss-Guided Multi-Resolution
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Abstract— Spatial downscaling is an ill-posed, inverse problem,
and information loss (IL) inevitably exists in the predictions
produced by any downscaling technique. The recently popular-
ized area-to-point kriging (ATPK)-based downscaling approach
can account for the size of support and the point spread
function (PSF) of the sensor, and moreover, it has the appealing
advantage of the perfect coherence property. In this article,
based on the advantages of ATPK and the conceptualization of
IL, an IL-guided image fusion (ILGIF) approach is proposed.
ILGIF uses the fine spatial resolution images acquired in other
wavelengths to predict the IL in ATPK predictions based on
the geographically weighted regression (GWR) model, which
accounts for the spatial variation in land cover. ILGIF inherits all
the advantages of ATPK, and its prediction has perfect coherence
with the original coarse spatial resolution data which can be
demonstrated mathematically. ILGIF was validated using two
data sets and was shown in each case to predict downscaled
images more accurately than the compared benchmark methods.

Index Terms— Downscaling, geographically weighted regres-
sion (GWR), geostatistics, image fusion, information loss (IL).

I. INTRODUCTION

DOWNSCALING is a process to increase the spatial
resolutions of observations [1]. For remote sensing

images, such a process involves the change-of-support problem
(COSP), where the support is a geostatistical term meaning the
space on which an observation or measurement is defined. The
geostatistics-based area-to-point kriging (ATPK) technique is
an effective solution to the COSP, which can predict support
that is smaller than that of the original data [2], [3]. ATPK was
originally developed for census data (e.g., disease or health
data) involving irregular geographical units (e.g., county) with
different sizes and shapes [4]. Recently, the technique was
popularized and extended to the remote sensing case which
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Fig. 1. Definition of IG and IL in image downscaling.

involves regular supports (pixels with the same size and
shape) [5]. ATPK accounts for the size of support, spatial
correlation, and the point spread function (PSF) of the sensor
and has the appealing characteristic of perfect coherence with
the original coarse spatial resolution data, and thus, it is an
accurate method for downscaling [2].

A. Information Loss in Downscaling

Downscaling is essentially an ill-posed, inverse problem,
in which multiple plausible solutions can lead to an equally
coherent recreation of the original coarse image. As a result,
some of the required fine spatial resolution information cannot
be recovered in the process, particularly for heterogeneous
landscapes and boundaries between land cover types. That
is, there is unavoidable information loss (IL) in downscaling
solutions, where the terminology IL is defined as the gap
between the ideal fine spatial resolution image (i.e., reference
image) and actual downscaling solutions (e.g., those based
on spatial prediction, e.g., using ATPK), as shown in Fig. 1.
IL is defined in contrast to information gain (IG) which refers
to the gain of the downscaling solution over the original
coarse image. The relation between the input coarse image
and the ideal downscaling solution can be summarized in (1).
Although the objective of downscaling is to minimize the IL,
such loss always exists and is never zero. If the IL can be
predicted, it can compensate the ATPK-based predictions to
achieve more accurate downscaling predictions

Ideal solution = Coarse image + IG� �� �
Downscaling solution

+IL. (1)

B. Potential Solutions to IL Prediction

1) Learning-Based Solution: For downscaling in real appli-
cations, the reference (i.e., the ideal solution) is always
unavailable (otherwise there is no need for downscaling).
Thus, the IL for the study area at the required fine spatial
resolution cannot be predicted straightforwardly. A plausible
solution to predict IL for a downscaling prediction is to find
the relation between the downscaling prediction (or original
coarse image, as input) and the IL (as output) based on the
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training data and apply the fitting model to the downscaling
prediction of the study area. The training images need to be at
the same spatial resolution as the target fine spatial resolution
for downscaling and, more importantly, need to have a similar
spatial pattern as the study area [6]. In most cases, there
may not be easy access to such demanding training data.
Alternatively, the fitting model could be predicted based on
a self-example scheme [7]: the coarse image of the study area
is upscaled to a coarser spatial resolution, and the original
coarse image is treated as the ideal solution to calculate the IL.
In this scheme, however, the IL is predicted at the original
coarse spatial resolution. For remote sensing data, the spatial
content can be different when the spatial resolution varies. For
example, the roads and buildings are visible in a 5-m spatial
resolution image but may “disappear” at a coarser (e.g., 20-m)
spatial resolution.

2) Multi-Resolution Image Fusion-Based Solution: With
the development of satellite sensors such as WorldView,
QuickBird, IKONOS, SPOT, Landsat ETM+, and, more
recently, Sentinel-2 Multispectral Imager (MSI) [8], the earth’s
surface can be observed at different spatial resolutions in dif-
ferent wavebands. The finer spatial resolution images in some
wavebands [e.g., 15-m panchromatic (PAN) band in Landsat
ETM+ or 10-m bands in Sentinel-2 MSI] have been used to
guide the downscaling process for coarser spatial resolution
images in other wavebands (e.g., 30-m multispectral bands
in Landsat ETM+ or 20-m bands in Sentinel-2 MSI). This
process is commonly known as multi-resolution image fusion
in remote sensing, which has received increasing attention in
recent years especially in relation to reliable monitoring.

C. Brief Review of Multi-Resolution Image Fusion

Over the past decades, various multi-resolution image fusion
methods have been developed. Two popular families are
component substitution (CS) and multi-resolution analysis
(MRA) [9]. The CS approach includes principal component
analysis [10], band-dependent spatial-detail (BDSD) algo-
rithm [11], Gram–Schmidt (GS) transformation [12], adap-
tive GS (GSA) [13], context-adaptive GSA (GSA-CA) [14],
and partial replacement adaptive component substitution
(PRACS) [15]. Common MRA examples are high-pass fil-
tering [16], smoothing filter-based intensity modulation [17],
a trous wavelet transform (ATWT) [18], additive wavelet
luminance proportional (AWLP) [19], the generalized Lapla-
cian pyramid with modulation transfer function-matched fil-
ter (MTF-GLP) [20], MTF-GLP with context-based decision
(MTF-GLP-CBD) [21], and MTF-GLP with multiplicative
injection model (MTF-GLP-HPM) [22]. Recently, sparse rep-
resentation [23] and deep learning-based [24] methods have
also been developed for multi-resolution image fusion. It is
beyond the scope of this article to review the existing image
fusion approaches explicitly, and several useful review articles
exist [9], [25].

Multi-resolution image fusion methods were originally
developed for the case of fusing a single PAN band
(also termed pan-sharpening in remote sensing). Recently,
Selva et al. [26] investigated the extension of the methods to
the more general case of fusing more than one fine spatial

resolution band, which is also termed “hypersharpening.”
Specifically, two schemes (i.e., the selected band and synthe-
sized band schemes) are summarized for using multiple fine
spatial resolution bands.

D. Proposed IL-Guided Image Fusion Approach

With the availability of fine spatial resolution data in some
wavebands, the IL in downscaling for these bands can be quan-
tified by downscaling the coarse data (simulated by upscaling
the known fine-resolution data) and comparing the predictions
with the known fine spatial resolution image. The fine spatial
resolution bands can be treated as training data, and the IL
in these bands can be used to predict the IL in downscaling
coarse images in other wavebands. On this basis, a new
IL-guided image fusion (ILGIF) approach is proposed for
fusing multi-resolution images. Based on the ATPK solution
to the COSP, the ILGIF prediction is the combination of the
ATPK prediction for the coarse image and the corresponding
prediction for the IL.

According to one of the protocols in [27], any fused syn-
thetic images, once degraded to its original spatial resolution,
should be as identical as possible to the original coarse image.
This has been a great challenge for the existing image fusion
methods. As a new multi-resolution image fusion method
based on a new conceptualization, ILGIF has the appealing
merits of preserving perfectly the spectral property of the orig-
inal coarse images (can be demonstrated mathematically) and,
thus, satisfies the aforementioned protocol. Moreover, ILGIF
accounts for the PSF of the sensor and is easy to implement.
ILGIF is suitable for the fusion of PAN and multispectral
images (i.e., the standard pan-sharpening problem) and fusion
of multispectral and multi/hyperspectral images (i.e., where
two groups of images are in different wavelength ranges).

The remainder of this article is organized into four
sections. Section II introduces briefly the principles of ILGIF.
Section III provides the experimental results of two groups of
data sets for the validation of ILGIF. Further issues related to
ILGIF and opening future research are discussed in Section IV.
Finally, Section V concludes this article.

II. METHODS

A. Problem Formulation
Let Zl

C(xi ) be the measurements of pixel C centered at xi

(i = 1, . . . , M , where M is the number of pixels) in coarse
band l (l = 1, . . . , L, where L is the number of coarse bands),
and Zk

F(x j ) be the measurements of pixel F centered at x j

[ j = 1, . . . , MG2, where G is the spatial resolution (zoom)
ratio] in fine band k (k = 1, . . . , K , where K is the number of
fine bands). Note that F and C represent the fine and coarse
pixels, respectively. The objective of downscaling is to predict
variables Zl

F(x) for all fine pixels in all L coarse bands. In the
proposed ILGIF method, the process consists of ATPK-based
downscaling and IL estimation. Denote the predictions of
ATPK and IL as Ẑ l

F A(x) and Ẑ l
F I (x), the ILGIF prediction is

Ẑ l
F(x) = Ẑ l

F A(x) + Ẑ l
F I (x). (2)

The calculation of ATPK and IL predictions is detailed
in Sections II-B–II-D.
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Fig. 2. Flowchart of the proposed ILGIF method, where red and blue lines represent the ATPK and IL prediction processes, respectively. A coarse band l
is used as an example, and the process is implemented for each coarse band in turn.

Fig. 2 shows the flowchart of the proposed ILGIF method,
where a coarse band l is used as an example for illustration.
The implementation of ILGIF is summarized by the following
steps.

1) For a coarse band l, it is downscaled to the fine
spatial resolution using ATPK. This step is detailed in
Section II-B.

2) The ILs for the K fine bands in other wavebands are
calculated, see (8), (9), and (11). This step is detailed in
Section II-C.

3) The K weights transforming the ILs for the K fine
bands to that for the coarse band are calculated using
geographically weighted regression (GWR). This step is
detailed in Section II-D.

4) The IL for the coarse band is calculated [see (13)] and
added to the ATPK prediction in step 1 [see (2)].

5) Steps 1–4 are performed for all L coarse bands.

B. Area-to-Point Kriging

For a fine pixel centered at x0 in band l, the ATPK-based
downscaling prediction can be simply described as a linear

combination of the neighboring coarse pixels

Ẑ l
F A(x0) =

N�
i=1

λi Z l
C(xi ), s.t.

N�
i=1

λi = 1 (3)

where λi is the weight for the i th coarse neighboring pixel
centered at xi and N is the number of coarse neighbors. The
N weights are calculated according to the kriging matrix as
follows:⎡
⎢⎢⎢⎣

γ l
CC(x1, x1) . . . γ l

CC(x1, xN ) 1
...

. . .
...

...

γ l
CC(xN , x1) . . . γ l

CC(xN , xN ) 1
1 . . . 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ1
...

λN

θ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

γ l
FC(x0, x1)

...

γ l
FC(x0, xN )

1

⎤
⎥⎥⎥⎦. (4)

In (4), γ l
CC(xi , x j ) is the coarse-to-coarse semivariogram

between coarse pixels centered at xi and x j in band l,
γ l

FC(x0, x j ) is the fine-to-coarse semivariogram between fine
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(to be predicted) and coarse pixels centered at x0 and x j in
band l, and θ is the Lagrange multiplier. Let s be the Euclidean
distance between the centroids of any two pixels, γ l

FF(s) be the
fine-to-fine semivariogram between two fine pixels, and hl

C(s)
be the PSF for band l. γ l

CC(s) and γ l
FC(s) in (4) are calculated

by convoluting γ l
FF(s) with the PSF hl

C(s) as follows:

γ l
FC(s) = γ l

FF(s) ∗ hl
C(s) (5)

γ l
CC(s) = γ l

FF(s) ∗ hl
C(s) ∗ hl

C(−s) (6)

where ∗ is the convolution operator. The key issue becomes
the estimation of the fine-to-fine semivariogram γ l

FF(s). If any
prior spatial structure information at target fine spatial res-
olution for the band is available, it can be used readily for
estimation. However, such information is not always available
in reality. In this case, its estimation is achieved based on the
deconvolution, where the original coarse data are treated as
real data. The optimal solution to the fine-to-fine semivari-
ogram is identified as the one that when convolved with the
PSF according to (6), is the same as the areal semivariogram.
Details of the several approaches for deconvolution can be
found in the literature [4], [6].

An appealing advantage of ATPK is that the prediction
has perfect coherence with the input coarse image. That
is, once the ATPK prediction is upscaled to the original
coarse resolution, it is exactly the same as the original coarse
data [2], [3]

Ẑ l
F A(x) ∗ hl

C(x) = Zl
C(x). (7)

C. Information Loss

As downscaling is an ill-posed, inverse problem, there exists
unavoidable IL in ATPK prediction when compared with the
ideal prediction (reference). The IL may not be an important
problem for homogeneous landscapes, but it is crucial for
the restoration of heterogeneous landscapes with great spatial
variation. For more reliable downscaling, it is important to
predict the IL in ATPK predictions. In this article, it is
achieved using the K available fine spatial resolution images
Z1

F, Z2
F, . . . , ZK

F in other wavebands. The process is detailed
below.

1) Upscaling the K Fine Bands to Simulated Coarse Bands:
Each fine spatial resolution image is upscaled to match the
spatial resolution of the coarse image Zl

C

Zk
C(x) = Zk

F(x) ∗ hl
C(x). (8)

2) ATPK-Based Downscaling for the Simulated K Coarse
Bands: ATPK is performed on the simulated coarse image Zk

C
for band k to downscale it back to the fine spatial resolution.
Similar to (3), the prediction for a fine pixel centered at x0 in
band k is

Ẑ k
F A(x0) =

N�
i=1

βi Zk
C(xi ), s.t.

N�
i=1

βi = 1 (9)

in which βi is the weight for the i th coarse neighbor. The
weights are calculated in the same way as in (5). Based
on the perfect coherence property of ATPK, the simulated

coarse image Zk
C can be reproduced exactly when the ATPK

prediction Ẑ k
F A(x) is upscaled to the coarse spatial resolution

Ẑ k
F A(x) ∗ hl

C(x) = Zk
C(x). (10)

3) Calculating the ILs for the K Fine Bands: Since the
reference for Ẑ k

F A(x0) is known, the IL in the ATPK prediction
for the fine pixel at x0 in band k is quantified as follows:

Ẑ k
F I (x0) = Zk

F(x0) − Ẑ k
F A(x0). (11)

From (8) and (10), we can conclude an important property
of the quantified IL: once it is upscaled to the coarse spatial
resolution, it is zero

Ẑ k
F I (x) ∗ hl

C(x) = [Zk
F(x) − Ẑ k

F A(x)] ∗ hl
C(x)

= Zk
F(x) ∗ hl

C(x) − Ẑ k
F A(x) ∗ hl

C(x)

= Zk
C(x) − Zk

C(x)

= 0. (12)

4) Calculating the ILs for the L Coarse Bands: The ILs
of the K fine bands are used to predict the ILs in the L
coarse bands. Specifically, the IL in ATPK prediction for a
pixel centered at x in coarse band l [i.e., Ẑ l

F I (x) in (2)] is
assumed to be a linear combination of all K ILs in the K
available fine bands

Ẑ l
F I (x) =

K�
k=1

αk(x)Ẑ k
F I (x) (13)

where αk(x) is the weight for the kth fine band. The weights
are determined according to the relation between the coarse
band l and K fine bands. That is, a larger weight will be
assigned to band k if the relation between images Zl

C and Zk
C

is larger, and vice versa.
As acknowledged widely, the spatial structure of land cover

always varies spatially [28], [29]. For images composed of
pixels, the relation between the coarse and fine bands is
not fixed and it is a function of the pixel. This requires
a nonstationary spatially adaptive model to characterize the
relation (e.g., a fitting model in a local window). Moreover,
in the local window, pixels can exert different effects on the
center, as their spatial distances to the center are not the same.
Thus, it would be more reasonable to quantify their influence
according to spatial distance. On this basis, the GWR model
[30] is proposed to predict the weights in (13).

D. Geographically Weighted Regression-Based
Weight Estimation

GWR has been used widely in the spatial analysis [31] and
data assimilation [32], [33]. The model can relate data from
different sources or platforms. For example, GWR was used to
relate field data (e.g., PM2.5) to satellite sensor data [32] and
normalized difference vegetation index (NDVI) to rainfall [33].
GWR can also relate data acquired from the same platform,
such as filling the missing data [due to could or scan line
corrector (SLC)-off] in remote sensing images [34] using
temporally close, complete data.

In this article, GWR is applied for the estimation of αk(x)
in (13) by relating remote sensing data acquired in different
wavebands. GWR is a local model that accounts explicitly
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for the spatial nonstationarity between the dependent and
independent variables. Moreover, it allows the contributions
from neighbors to vary according to their distances to the
center pixel [33]. With the coarse band l and K fine bands,
the GWR model is constructed as follows:

Zl
C(x) = α0(x) +

K�
k=1

αk(x)Zk
C(x). (14)

In (14), α0(x) is the intercept. Let P(x) be an N0 × (K + 1)
matrix composed of the coarse pixel values of all K bands Z1

C,
Z2

C, . . . , ZK
C [produced according to (8)] in the local window

(including N0 pixels for each band) centered at x, with the
last column being an N ×1 vector of ones; Q(x) be an N0 ×1
vector composed of the coarse pixel values of the local window
centered at x in coarse band l; and W(x) be an N0 × N0
spatial weighting diagonal matrix. The K weights for the pixel,
included in a (K + 1) × 1 vector, are predicted by

α(x) = [P(x)T W(x)P(x)]−1P(x)T W(x)Q(x). (15)

As seen from (15), the matrices of P(x) and Q(x) con-
structed from a local window result in weights varying on
a pixel basis, which can cope with spatial nonstationarity.
Furthermore, the diagonal elements in W(x) ensure that pixels
near to the location x have more influence on the prediction
than the further pixels [33]. They can be determined based on
a bisquare function

wi =
�

1 − (di/H )2
�2

, if di < H

0, otherwise
(16)

in which di is the distance between the i th neighboring pixel
and the center pixel at x, and H is the bandwidth for the
kernel.

E. Coherence Property of ILGIF

As mentioned in (2), the final ILGIF prediction Ẑ l
F(x) is

a combination of the ATPK prediction Ẑ l
F A(x) in (3) and

IL prediction Ẑ l
F I (x) in (13). Combining (7), (12), and (13),

we can derive the following important property of the ILGIF
prediction:

Ẑ l
F(x) ∗ hl

C(x) = �
Ẑ l

F A(x) + Ẑ l
F I (x)

� ∗ hl
C(x)

= Ẑ l
F A(x) ∗ hl

C(x) + Ẑ l
F I (x) ∗ hl

C(x)

= Zl
C(x) +

K�
k=1

αk(x)Ẑ k
F I (x) ∗ hl

C(x)

= Zl
C(x) +

K�
k=1

αk(x) × 0

= Zl
C(x). (17)

It means that once the ILGIF prediction is upscaled to the
coarse spatial resolution, it is exactly the same as the original
coarse input Zl

C, that is, it has the perfect coherence property.
It should be noted that such a property is not affected by the
specific value of weights αk(x) and the specific form of PSF
(as long as a consistent PSF is used in the whole process
of ILGIF).

III. EXPERIMENTS

A. Data and Experimental Setup

Two data sets were used for experimental validation of the
proposed ILGIF method, including a WorldView-2 data set
and a Sentinel-2 data set. The WorldView-2 data set contains
eight multispectral bands with a spatial resolution of 2-m and a
PAN band with a spatial resolution of 0.5-m. The spatial sizes
of the multispectral and PAN images are 400×400 pixels and
1600 × 1600 pixels, respectively. The data were acquired in
April 2011 and cover an urban area in Shenzhen, China.

The used Sentinel-2 data set contains four 10-m bands and
six 20-m bands. It was acquired on August 18, 2015. The
study area is located in Verona, Italy, and is covered mainly
by a mix of vegetation and urban fabric. The data set has a
spatial extent of 8-km × 8-km (400 × 400 pixels for 20-m
bands and 800 × 800 pixels for 10-m bands).

For objective evaluation where fine spatial resolution data
are required for examination, synthetic data sets were used
(i.e., the reduced resolution case as termed in [9]). Specifically,
for the WorldView-2 data set, the eight 2-m multispectral
bands and 0.5-m PAN band were upscaled to 8 and 2-m by
convolving them with a PSF, as shown in Fig. 3(a) and (b).
Similarly, for the Sentinel-2 data set, the six 20-m and
four 10-m bands were upscaled to 40 and 20-m. In all exper-
iments, a Gaussian PSF was used and the standard devi-
ation (size of the PSF width) was set to half of the
coarse pixel size. The task of downscaling is to restore the
eight 2-m WorldView-2 multispectral bands and six 20-m
Sentinel-2 bands, by fusing them with the synthesized 2-m
WorldView-2 PAN band and four 20-m Sentinel-2 bands,
respectively. The predictions were compared to the original
2-m WorldView-2 bands and 20-m Sentinel-2 bands for objec-
tive evaluation. This scheme has been used commonly to
evaluate downscaling approaches [35]. For clarity, we termed
the experiments for the two data sets as pan-sharpening and
multispectral sharpening.

Four CS methods (i.e., PRACS [15], GSA [13], GSA-
CA [14], and BDSD [11]) and six MRA methods, i.e.,
ATWT [18], AWLP [19], MTF-GLP [20], MTF-GLP-
CBD [21], MTF-GLP-HPM [22], and the recently developed
morphological half gradient (MF-HG) [36], were considered
as benchmark methods. The CS and MRA approaches use a
single fine band (e.g., PAN band) for the coarse bands. Thus,
a single band needs to be extracted from the set of fine bands
to adapt them for multispectral sharpening. Two schemes
summarized in [26] (i.e., the selected band and synthesized
band schemes) were considered in the experiments. With
respect to the selected band scheme, for each coarse band,
the fine band with the greatest correlation [quantified by
correlation coefficient (CC)] with it was selected. Regarding
the synthesized band scheme, for each coarse band, a single
fine band was synthesized as a linear combination of the
available fine bands. The weights were determined using the
multiple regression model built between the coarse band and
all fine bands.

For quantitative evaluation, we used the CC, univer-
sal image quality index (UIQI), Q2n index [37], relative
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Fig. 3. Results for the WorldView-2 data set (bands 4, 3, and 2 as RGB). (a) 8-m coarse multispectral image. (b) 2-m fine PAN image. (c) 2-m polynomial
interpolation result. (d) 2-m ATPK result. (e) IL in downscaling 8-m PAN to 2-m. (f) 2-m ILGIF result. (g) 2-m reference.

global-dimensional synthesis error (ERGAS), and spectral
angle mapper (SAM). CC and UIQI were first calculated for
each band, and the values for all bands were finally averaged.
For Q2n and SAM, they were calculated for each pixel first
and then averaged. Moreover, to measure the ability to honor
the original coarse data, coherence (quantified by the CC)
was used. More precisely, the fused image was upscaled to
the original coarse spatial resolution and evaluated with the
original coarse image based on CC.

B. Experiment on Pan-Sharpening

ATPK-based downscaling for the input 8-m coarse image
[Fig. 3(a)] is an important first step of ILGIF. To illustrate the
advantage of ATPK-based downscaling, it was compared to
the classical polynomial interpolation (with 23 coefficients).
Fig. 3(c) shows the polynomial interpolation result for
Fig. 3(a). Compared with the ATPK result in Fig. 3(d), the
polynomial interpolation result is more blurred and the gaps
between the buildings cannot be restored satisfactorily. Table I
lists the accuracies for the two methods, where the advantage
of ATPK is obvious from the quantitative comparison. More
precisely, ATPK increases the Q2n and UIQI by around
0.10 and 0.07, respectively. The more satisfactory performance
of ATPK mainly lies in the ability to account for the size of
support and PSF and, more importantly, the preservation of
the original data [i.e., coherence property, see (10)].

ATPK was performed on the 8-m upscaled PAN image, and
the 2-m IL [in units of digital number (DN)] produced by
comparing to the 2-m reference PAN in Fig. 3(b) is shown

TABLE I

COMPARISON BETWEEN POLYNOMIAL INTERPOLATION AND ATPK FOR

THE WORLDVIEW-2 DATA SET (THE BOLD VALUES MEAN THE

MOST ACCURATE RESULTS IN EACH TERM)

in Fig. 3(e). It is seen that for the boundaries of the small-
sized buildings, there exists relatively large uncertainty in
downscaling. Based on GWR, the IL in Fig. 3(e) was then
used for the estimation of the IL in ATPK-based restoration of
the 2-m multispectral bands [i.e., the prediction in Fig. 3(d)].
By adding the IL to the ATPK prediction, the final ILGIF
prediction was produced, as shown in Fig. 3(f). It is clear
that by adding IL, the smoothing effect in ATPK result
was obviously reduced and much more spatial detail was
reproduced. As a result, the ILGIF result is much more similar
to the reference in Fig. 3(g).

The ten benchmark methods were implemented. For a
clearer comparison with the results, all fused images were
compared with the reference in Fig. 3(g) and produced the
error maps in Fig. 4. It is visually clear that the proposed
ILGIF method has the smallest error among all methods, espe-
cially for the restoration of building boundaries (heterogeneous
features).

Table II lists the quantitative assessment results for all
11 methods. Comparing to the results in Table I, it is seen that
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Fig. 4. Error maps for different methods for the WorldView-2 data set (bands 4, 3, and 2 as RGB). (a) PRACS. (b) GSA. (c) GSA-CA. (d) BDSD.
(e) ATWT. (f) AWLP. (g) MTF-GLP. (h) MTF-GLP-CBD. (i) MTF-GLP-HPM. (j) MF-HG. (k) ILGIF.

TABLE II

QUANTITATIVE ASSESSMENT FOR DIFFERENT METHODS FOR THE

WORLDVIEW-2 DATA SET (THE BOLD VALUES MEAN THE
MOST ACCURATE RESULTS IN EACH TERM)

the accuracies of the image fusion methods are greater than
that for the method using only the input coarse image. For
example, both CC and UIQI are increased by about 0.12 from

ATPK to ILGIF. Focusing on the result in Table II, GSA and
GSA-CA have very similar performance and the ERGASs are
smaller than 1.6. Both are more accurate than the other two CS
methods (i.e., PRACS and BDSD). Among the MRA methods,
MTF-GLP, MTF-GLP-CBD, and MTF-GLP-HPM tend to be
more accurate. However, the accuracies of both the CS and
MRA methods are smaller than the proposed ILGIF method.
ILGIF produced the largest CC, UIQI, and Q2n and smallest
ERGAS and SAM. Regarding coherence, ILGIF produced a
value very close to the ideal value of 1, suggesting its perfect
coherence property.

All 11 methods were also implemented for the full reso-
lution case, that is, the fusion of the eight 2-m multispectral
bands and the 0.5-m PAN band to create an eight-band, 0.5-m
multispectral image. The quality with no reference (QNR)
index [38] was used to evaluate the methods quantitatively.
As claimed by Alparone et al. [38], consistency can also give
a reliable assessment of the relative performance of image
fusion methods at full resolution, and it tends to be superior
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Fig. 5. Results for the Sentinel-2 data set [bands 4, 3, and 2 as RGB for (b) and bands 12, 8a, and 5 as RGB for (a) and (c)–(f)]. (a) 40-m coarse image.
(b) 20-m fine image. (c) 20-m reference. (d) 20-m polynomial interpolation result. (e) 20-m ATPK result. (f) 20-m ILGIF result.

TABLE III

QUANTITATIVE ASSESSMENT FOR DIFFERENT METHODS FOR THE

WORLDVIEW-2 DATA SET AT FULL RESOLUTION (THE

BOLD VALUES MEAN THE MOST ACCURATE
RESULTS IN EACH TERM)

to the commonly used QNR metrics. Thus, the coherence was
also used here. The results for the two indices are shown
in Table III. Comparing the QNR values, the ILGIF can
produce greater accuracy than the benchmark methods except
PRACS. Checking the coherence values, however, ILGIF has
the largest value, suggesting the result is the most accurate.

TABLE IV

COMPARISON BETWEEN POLYNOMIAL INTERPOLATION AND ATPK FOR

THE SENTINEL-2 DATA SET (THE BOLD VALUES MEAN THE

MOST ACCURATE RESULTS IN EACH TERM)

C. Experiment on Multispectral Sharpening

The 20-m downscaling results of polynomial interpolation
and ATPK for the input 40-m coarse Sentinel-2 images
in Fig. 5(a) are shown in Fig. 5(c) and (d), respectively.
Again, ATPK can reproduce more spatial details. For example,
in Fig. 5(d), the linear features of the urban fabric can be
observed more clearly. The advantage is also supported by the
quantitative assessment in Table IV. Furthermore, by adding
ILs derived from the four 20-m bands to the APTK result, the
produced ILGIF result Fig. 5(f) is more accurate and much
closer to the reference in Fig. 5(c).

The error maps for all 11 methods are shown in Fig. 6.
For each benchmark method, the results for both selected
and synthesized band schemes are exhibited. As seen from
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TABLE V

QUANTITATIVE ASSESSMENT FOR DIFFERENT METHODS FOR THE SENTINEL-2 DATA SET
(THE BOLD VALUES MEAN THE MOST ACCURATE RESULTS IN EACH TERM)

TABLE VI

COMPARISON BETWEEN DIFFERENT COMBINATIONS OF INTERPOLATION AND IL ESTIMATION METHODS

(THE BOLD VALUES MEAN THE MOST ACCURATE RESULTS IN EACH TERM)

the results, ILGIF has the smallest error among all cases,
which can be observed clearly by checking the locations
of the rivers. Table V also indicates that ILGIF produces
greater accuracies than the ten benchmark methods, no matter
whether the selected or synthesized band scheme is applied.
More precisely, the CCs and UIQIs of the ten methods are
below 0.99, but ILGIF produced a CC and UIQI of 0.99. The
ERGASs of the ten methods are all above 2.5 (even exceeds
3.4 for PRACS with both schemes), but for ILGIF, it is about 2.
In addition, the coherence value of ILGIF is almost the ideal
value of 1.

D. Analysis of Alternatives for ATPK and GWR in ILGIF

To analyze the advantages of using ATPK and GWR in the
proposed ILGIF method, different combinations of interpola-
tion and IL estimation were performed for the two data sets.
Table VI shows the accuracies of four combinations:

1) polynomial + global linear regression (GLR) (i.e., MTF-
GLP with synthesized band scheme);

2) polynomial + GWR;
3) ATPK + GLR;
4) ATPK + GWR (i.e., the proposed ILGIF method).

By comparing ATPK + GLR (or GWR) to polynomial +
GLR (or GWR), it is seen clearly that the accuracies of the
two ATPK-based methods are greater than the two polynomial-
based methods for both data sets. For example, focusing
on the results for the WorldView-2 data set, the Q2n of
ATPK + GWR is 0.0118 larger than those of polynomial +
GWR, while the Q2n of ATPK + GLR is 0.0260 larger
than those of polynomial + GLR. This means that the use
of ATPK is more advantageous than polynomial interpolation
in the image fusion problem, which is also consistent with
the findings in Tables I and IV. When comparing ATPK
(or polynomial) + GWR to ATPK (or polynomial) + GLR,
it is observed that the two GWR-based methods are more
accurate than the two GLR-based methods, suggesting the
benefits of using the GWR scheme in IL estimation. Overall,
ATPK + GWR produces the most accurate results among all
four combinations.

IV. DISCUSSION

Both ATPK and GWR are popular methods in spatial
statistics. The proposed ILGIF method integrates them into
a single framework for multi-resolution image fusion. ATPK
is employed for initial downscaling, while GWR transforms
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Fig. 6. Error maps for different methods for the Sentinel-2 data set (bands 12, 8a, and 5 as RGB). For (a)–(j), (Left and right) Results for the selected and
synthesized bands, respectively. (a) PRACS. (b) GSA. (c) GSA-CA. (d) BDSD. (e) ATWT. (f) AWLP. (g) MTF-GLP. (h) MTF-GLP-CBD. (i) MTF-GLP-HPM.
(j) MF-HG. (k) ILGIF.
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the ILs from the fine bands covering the same area, but in
other wavelengths, to that for the coarse band. Based on the
important property of the IL (i.e., once upscaled to the coarse
spatial resolution, it is exactly zero), it is concluded from (17)
that the perfect coherence property of ILGIF is not influenced
by the specific value of the weights in (13). This means that
any weight can lead to a prediction with perfect coherence
with the original coarse data. Such a property opens doors to
more powerful alternatives to GWR for weight estimation.

In the experiments, when comparing the ILGIF predictions
to the reference (ideal downscaling solution), there still exist
gaps, which means IL still remains. The uncertainty in IL
estimation in the ILGIF method may be ascribed to the incon-
sistency in terms of wavelength between the coarse band and
fine bands, as ILGIF treats the fine bands as training data and
makes use of the ILs extracted from the fine bands. It would
be worth developing more powerful models to relate the ILs
from the fine bands to the coarse bands. Another possible
choice for enhancement is to seek training data that fall in
the same wavelength with the coarse band. As mentioned in
the Introduction, such types of data may be challenging to
provide as they need to be at the target fine spatial resolution
and have a similar spatial pattern with the study area [6].
On the other hand, a large volume of such training data may be
required to achieve as accurate a prediction as possible. This
also motivates the development of more intelligent training
schemes, such as that based on deep learning [40].

To reduce the smoothing effect in ATPK prediction and
reproduce the variation at target fine spatial resolution, the con-
ditional simulation was developed in some literature [2], [41].
The idea of compensating ILs for the ATPK prediction in
ILGIF is analogous to conditional simulation. However, they
are substantially different. Specifically, for conditional simu-
lation, an unconditional simulation at fine spatial resolution is
produced first and then upscaled to match the spatial resolution
of the input coarse data. The ATPK prediction for the simu-
lated coarse data is compared to the available unconditional
simulation, and the difference (analogous to the IL defined in
this article) is finally added back to the ATPK prediction of
the input coarse data [41]. Different unconditional simulations
will lead to different predictions. Any prediction of conditional
simulation has perfect coherence with the original coarse data.
Admittedly, the conditional simulation scheme can increase the
spatial variation of downscaling predictions, but this scheme
is highly conditioned by the target spatial variation and the
prediction always contains unstructured features, presenting
as noise. This is because the unconditional simulation is
derived from a random realization of white noise (zero-mean)
without any spatial continuity. In this article, however, IL
is a fixed realization derived from fine bands which contain
spatial continuity information highly related to the coarse
bands (these bands were acquired over the same scene). ILGIF
can, therefore, be viewed as a special case of conditional
simulation, where the “unconditional simulation” is actually
a set of the available fine bands in different wavelengths.

Inheriting the advantages of ATPK, ILGIF accounts for
the PSF and is suitable for any PSF. In the two experi-
ments, we simulated coarse data based on the assumption

of a Gaussian PSF, a filter widely used in remote sens-
ing [42]–[44]. On the one hand, it should be noted that the
sensor PSF in reality may be different from the Gaussian filter.
For example, Tan et al. [45] claimed that the MODIS sensor
has a scanning mirror which ensures that the shape has a
directional component, and the sensor PSF was assumed to
be triangular in the along-scan direction but rectangular in
the along-track direction. The characterization of the real PSF
remains an open problem, and the most appropriate PSF model
varies for different sensors. Specifically, the PSF depends on
the used optics, the detector, the exploited scanning system,
and the electronics. Moreover, it can vary over time due to
the aging process [46]. As mentioned earlier, however, the
implementation of ILGIF is not affected by the specific form
of PSF, and any PSF can be readily used in ILGIF once it is
known or estimated in advance.

It is necessary to use an accurate PSF in the ILGIF method.
For example, for the Sentinel-2 data set where the PSF was
simulated with a Gaussian filter, when ILGIF was performed
using a different square wave filter (i.e., the ideal PSF filter),
the CC and UIQI of the prediction were 0.9361 and 0.9248,
which are 0.054 and 0.065 smaller than those produced by
the correct PSF. On the other hand, it should be stressed that
when fusing images with different spatial resolutions, we are
more interested in the PSF of the scale transformation than
the PSF of the sensor (i.e., original measurement). It would be
interesting to develop new methods to predict the mathematical
formulation and corresponding parameters for the PSF in scale
transformation. This is part of our ongoing research.

V. CONCLUSION

In this article, based on the concept of IL, a new method
called ILGIF is proposed for image fusion. ILGIF compensates
the IL to the initial APTK prediction of the observed coarse
image, where the IL is predicted using the ILs for fine
spatial resolution bands acquired in other wavelengths. GWR
is proposed to relate the two types of ILs and transform the ILs
for the fine bands to the observed coarse band. ILGIF has the
perfect coherence property and is suitable for pan-sharpening
and fusion of multispectral and multi/hyperspectral images.
Experiments on two data sets showed that ILGIF can produce
more accurate results than six benchmark methods.
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