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Abstract—Fuzzing has become the de facto standard technique
for finding software vulnerabilities. However, even state-of-the-
art fuzzers are not very efficient at finding hard-to-trigger
software bugs. Most popular fuzzers use evolutionary guidance
to generate inputs that can trigger different bugs. Such
evolutionary algorithms, while fast and simple to implement,
often get stuck in fruitless sequences of random mutations.
Gradient-guided optimization presents a promising alternative
to evolutionary guidance. Gradient-guided techniques have been
shown to significantly outperform evolutionary algorithms at
solving high-dimensional structured optimization problems in
domains like machine learning by efficiently utilizing gradients
or higher-order derivatives of the underlying function.

However, gradient-guided approaches are not directly
applicable to fuzzing as real-world program behaviors contain
many discontinuities, plateaus, and ridges where the gradient-
based methods often get stuck. We observe that this problem
can be addressed by creating a smooth surrogate function
approximating the target program’s discrete branching behavior.
In this paper, we propose a novel program smoothing technique
using surrogate neural network models that can incrementally
learn smooth approximations of a complex, real-world program’s
branching behaviors. We further demonstrate that such neural
network models can be used together with gradient-guided
input generation schemes to significantly increase the efficiency
of the fuzzing process.

Our extensive evaluations demonstrate that NEUZZ
significantly outperforms 10 state-of-the-art graybox fuzzers on
10 popular real-world programs both at finding new bugs and
achieving higher edge coverage. NEUZZ found 31 previously
unknown bugs (including two CVEs) that other fuzzers failed
to find in 10 real-world programs and achieved 3X more edge
coverage than all of the tested graybox fuzzers over 24 hour
runs. Furthermore, NEUZZ also outperformed existing fuzzers
on both LAVA-M and DARPA CGC bug datasets.

I. INTRODUCTION

Fuzzing has become the de facto standard technique for
finding software vulnerabilities [88], [25]. The fuzzing process
involves generating random test inputs and executing the target
program with these inputs to trigger potential security vulner-
abilities [59]. Due to its simplicity and low performance over-
head, fuzzing has been very successful at finding different types
of security vulnerabilities in many real-world programs [3], [1],
[30], [70], [11], [78]. Despite their tremendous promise, popular
fuzzers, especially for large programs, often tend to get stuck
trying redundant test inputs and struggle to find security vul-
nerabilities hidden deep within program logic [82], [36], [68].

Conceptually, fuzzing is an optimization problem whose
goal is to find program inputs that maximize the number
of vulnerabilities found within a given amount of testing
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time [60]. However, as security vulnerabilities tend to be
sparse and erratically distributed across a program, most
fuzzers aim to test as much program code as they can by
maximizing some form of code coverage (e.g., edge coverage)
to increase their chances of finding security vulnerabilities.
Most popular fuzzers use evolutionary algorithms to solve the
underlying optimization problem—generating new inputs that
maximize code coverage [88], [11], [78], [45]. Evolutionary
optimization starts from a set of seed inputs, applies random
mutations to the seeds to generate new test inputs, executes the
target program for these inputs, and only keeps the promising
new inputs (e.g., those that achieve new code coverage) as part
of a corpus for further mutation. However, as the input corpus
gets larger, the evolutionary process becomes increasingly less
efficient at reaching new code locations.

One of the main limitations of evolutionary optimization
algorithms is that they cannot leverage the structure (i.e.,
gradients or other higher-order derivatives) of the underlying
optimization problem. Gradient-guided optimization (e.g.,
gradient descent) is a promising alternative approach that has
been shown to significantly outperform evolutionary algorithms
at solving high-dimensional structured optimization problems
in diverse domains including aerodynamic computations and
machine learning [89], [46], [38].

However, gradient-guided optimization algorithms cannot
be directly applied to fuzzing real-world programs as they
often contain significant amounts of discontinuous behaviors
(cases where the gradients cannot be computed accurately)
due to widely different behaviors along different program
branches [67], [21], [43], [20], [22]. We observe that this
problem can be overcome by creating a smooth (i.e., differen-
tiable) surrogate function approximating the target program’s
branching behavior with respect to program inputs. Unfortu-
nately, existing program smoothing techniques [21], [20] incur
prohibitive performance overheads as they depend heavily on
symbolic analysis that does not scale to large programs due to
several fundamental limitations like path explosion, incomplete
environment modeling, and large overheads of symbolic
memory modeling [50], [77], [14], [16], [15], [35], [49].

In this paper, we introduce a novel, efficient, and scalable
program smoothing technique using feed-forward Neural
Networks (NNs) that can incrementally learn smooth
approximations of complex, real-world program branching
behaviors, i.e., predicting the control flow edges of the target
program exercised by a particular given input. We further
propose a gradient-guided search strategy that computes and
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leverages the gradient of the smooth approximation (i.e., an NN
model) to identify target mutation locations that can maximize
the number of detected bugs in the target program. We
demonstrate how the NN model can be refined by incrementally
retraining the model on mispredicted program behaviors. We
find that feed-forward NNs are a natural fit for our task because
of (i) their demonstrated ability to approximate complex
non-linear functions, as implied by the universal approximation
theorem [33], and (ii) their support for efficient and accurate
computation of gradients/higher-order derivatives [38].

We design and implement our technique as part of NEUZZ,
a new learning-enabled fuzzer. We compare NEUZZ with 10
state-of-the art fuzzers on 10 real-world programs covering
6 different file formats, (e.g., ELE, PDF, XML, ZIP, TTF, and
JPEG) with an average of 47,546 lines of code, the LAVA-M
bug dataset [28], and the CGC dataset [26]. Our results show
that NEUZZ consistently outperforms all the other fuzzers by a
wide margin both in terms of detected bugs and achieved edge
coverage. NEUZZ found 31 previously unknown bugs (including
CVE-2018-19931 and CVE-2018-19932) in the tested programs
that other fuzzers failed to find. Our tests on the DARPA
CGC dataset also confirmed that NEUZZ can outperform state-
of-the-art fuzzers like Driller [82] at finding different bugs.

Our primary contributions in this paper are as follows:

e We are the first to identify the significance of program
smoothing for adopting efficient gradient-guided
techniques for fuzzing.

e We introduce the first efficient and scalable program
smoothing technique using surrogate neural networks
to effectively model the target program’s branching
behaviors. We further propose an incremental learning
technique to iteratively refine the surrogate model as
more training data becomes available.

« We demonstrate that the gradients of the surrogate
neural network model can be used to efficiently generate
program inputs that maximize the number of bugs found
in the target program.

« We design, implement, and evaluate our techniques as
part of NEUZZ and demonstrate that it significantly
outperforms 10 state-of-the-art fuzzers on a wide range
of real-world programs as well as curated bug datasets.

The rest of the paper is organized as follows. Section II
summarizes the necessary background information on
optimization and gradient-guided techniques. Section III
provides an overview of our technique along with a motivating
example. Section IV and Section V describe our methodology
and implementation in detail. We present our experimental
results in Section VI and describe some sample bugs found by
NEUZzz in Section VII. Section VIII summarizes the related
work and Section IX concludes the paper.

II. OPTIMIZATION BASICS

In this section, we first describe the basics of optimization
and the benefits of gradient-guided optimization over evolu-
tionary guidance for smooth functions. Finally, we demonstrate
how fuzzing can be cast as an optimization problem.

An optimization problem usually consists of three different
components: a vector of parameters =, an objective function
F(z) to be minimized or maximized, and a set of constraint
functions C;(x) each involving either inequality or equality
that must be satisfied. The goal of the optimization process
is to find a concrete value of the parameter vector x that
maximizes/minimizes F'(x) while satisfying all constraint
functions C;(z) as shown below.

ey

max/min F(zx) subject to

C/[(I) >0,ie N
TER™

CZ(I) =0,i€eQ

Here R, N, and () denote the sets of real numbers, the
indices for inequality constraints, and the indices for equality
constraints, respectively.

Function smoothness & optimization. Optimization
algorithms usually operate in a loop beginning with an initial
guess of the parameter vector x and gradually iterating to
find better solutions. The key component of any optimization
algorithm is the strategy it uses to move from one value of z
to the next. Most strategies leverage the values of the objective
function F', the constraint functions C;, and, if available, the
gradient/higher-order derivatives.

The ability and efficiency of different optimization
algorithms to converge to the optimal solution heavily depend
on the nature of the objective and constraint functions F' and
C;. In general, smoother functions (i.e., those with well-defined
and computable derivatives) can be more efficiently optimized
than functions with many discontinuities (e.g., ridges or
plateaus). Intuitively, the smoother the objective/constraint
functions are, the easier it is for the optimization algorithms to
accurately compute gradients or higher-order derivatives and
use them to systematically search the entire parameter space.

For the rest of this paper, we specifically focus on
unconstrained optimization problems that do not have any
constraint functions, i.e., C' = ¢, as they closely mimic fuzzing,
our target domain. For unconstrained smooth optimization
problems, gradient-guided approaches can significantly
outperform evolutionary strategies at solving high-dimensional
structured optimization problems [89], [46], [38]. This
is because gradient-guided techniques effectively leverage
gradients/higher-order derivatives to efficiently converge to
the optimal solution as shown in Figure 1.

Convexity & gradient-guided optimization. For a common
class of functions called convex functions, gradient-guided
techniques are highly efficient and can always converge to
the globally optimal solution [86]. Intuitively, a function is
convex if a straight line connecting any two points on the
graph of the function lies entirely above or on the graph.
More formally, a function f is called convex if the following
property is satisfied by all pairs of points = and y in its
domain: f(tx + (1 —t)y) <tf(x)+ (1 —1t)f(y),vt €0, 1].

However, in non-convex functions, gradient-guided approach
may get stuck at locally optimal solutions where the objective
function is greater (assuming that the goal is to maximize)
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(a) gradient descent

(b) evolutionary algorithm

Fig. 1: Gradient-guided optimization algorithms like gradient
descent can be significantly more efficient than evolutionary
algorithms that do not use any gradient information

than all nearby feasible points but there are other larger values
present elsewhere in the entire range of feasible parameter
values. However, even for such cases, simple heuristics like
restarting the gradient-guided methods from new randomly
chosen starting points have been shown to be highly effective
in practice [38], [86].

Fuzzing as unconstrained optimization. Fuzzing can be
represented as an unconstrained optimization problem where
the objective is to maximize the number of bugs/vulnerabilities
found in the test program for a fixed number of test inputs.
Therefore, the objective function can be thought of as Fj,(x),
which returns 1 if input x triggers a bug/vulnerability when
the target program p is executed with input x. However, such a
function is too ill-behaved (i.e., mostly containing flat plateaus
and a few very sharp transitions) to be optimized efficiently.

Therefore, most graybox fuzzers instead try to maximize
the amount of tested code (e.g., maximize edge coverage) as
a stand-in proxy metric [88], [11], [73], [55], [22]. Such an
objective function can be represented as F () where £ returns
the number of new control flow edges covered by the input x
for program P. Note that F” is relatively easier to optimize than
the original function £’ as the number of all possible program
inputs exercising new control flow edges tend to be significantly
higher than the inputs that trigger bugs/security vulnerabilities.

Most  existing graybox fuzzers use evolutionary
techniques [88], [11], [73], [55], [22] along with other
domain-specific heuristics as their main optimization
strategy. The key reason behind picking such algorithms
over gradient-guided optimization is that most real-world
programs contain many discontinuities due to significantly
different behaviors along different program paths [19]. Such
discontinuities may cause the gradient-guided optimization to
get stuck at non-optimal solutions. In this paper, we propose
a new technique using a neural network for smoothing the
target programs to make them suitable for gradient-guided
optimization and demonstrate how fuzzers might exploit such
strategies to significantly boost their effectiveness.

III. OVERVIEW OF OUR APPROACH

Figure 2 presents a high level overview of our approach.
We describe the key components in detail below.

Neural
smoothing

Gradient-guided
optimization

Initial seeds

Smooth
NN model

Target
program

Fig. 2: An overview of our approach

Refine with
incremental
learning

Test
inputs

Bugs/vulnerabilities

Neural program smoothing. Approximating a program’s
discontinuous branching behavior smoothly is essential for
accurately computing gradients or higher-order derivatives
that are necessary for gradient-guided optimization. Without
such smoothing, the gradient-guided optimization process may
get stuck at different discontinuities/plateaus. The goal of the
smoothing process is to create a smooth function that can mimic
a program’s branching behavior without introducing large errors
(i.e., it deviates minimally from the original program behavior).
We use a feed-forward neural network (NN) for this purpose.
As implied by the universal approximation theorem [33], an NN
is a great fit for approximating arbitrarily complex (potentially
non-linear and non-convex) program behaviors. Moreover,
NN, by design, also support efficient gradient computation
that is crucial for our purposes. We train the NN by either
using existing test inputs or with the test input corpus generated
by existing evolutionary fuzzers as shown in Figure 2.

Gradient-guided optimization. The smooth NN model,
once trained, can be used to efficiently compute gradients
and higher-order derivatives that can then be leveraged
for faster convergence to the optimal solution. Different
variants of gradient-guided algorithms like gradient descent,
Newton’s method, or quasi-Newton methods like the L-BFGS
algorithm use gradients or higher-order derivatives for faster
convergence [10], [13], [65]. Smooth NNs enable the fuzzing
input generation process to potentially use all of these
techniques. In this paper, we design, implement and evaluate
a simple gradient-guided input generation scheme tailored for
coverage-based fuzzing as described in detail in Section IV-C.

Incremental learning. Any types of existing test inputs (as
long as they expose diverse behaviors in the target program)
can be potentially used to train the NN model and bootstrap the
fuzzing input generation process. In this paper, we train the NN
by collecting a set of test inputs and the corresponding edge
coverage information by running evolutionary fuzzers like AFL.

However, as the initial training data used for training the
NN model may only cover a small part of the program space,
we further refine the model through incremental training as
new program behaviors are observed during fuzzing. The key
challenge in incremental training is that if an NN is only
trained on new data, it might completely forget the rules
it learned from old data [57]. We avoid this problem by
designing a new coverage-based filtration scheme that creates
a condensed summary of both old and new data, allowing the
NN to be trained efficiently on them.
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Ret val
Ret val

a a

(a) Original

(b) NN smoothing

Z

1 pow (3, atb);
2 if

(z < 1){
return 1;

Ret val

4}

5 else 1if(z < 2){

6 //vulnerability
7 return 2;

s}

9 else 1if(z < 4){

10 return 4;

1}

(c) NN smoothing + refining

Fig. 3: Simple code snippet demonstrating the benefits of neural smoothing for fuzzing

A Motivating Example. We show a simple motivating
example in Figure 3 to demonstrate the key insight behind
our approach. The simple C code snippet shown in Figure 3
demonstrates a general switch-like code pattern commonly
found in many real-world programs. In particular, the example
code computes a non-linear exponential function of the input
(i.e., pow (3, a+b)). It returns different values based on the
output range of the computed function. Let us also assume
that a buggy code block (marked in red) is exercised if the
function output range is in (1,2).

Consider the case where evolutionary fuzzers like AFL
have managed to explore the branches in lines 2 and 9 but
fail to explore branch in line 5. The key challenge here is to
find values of a and b that will trigger the branch at line 5.
Evolutionary fuzzers often struggle with such code as the odds
of finding a solution through random mutation are very low.
For example, Figure 3a shows the original function that the
code snippet represents. There is a sharp jump in the function
surface from a+b = 0to a+b—e = 0 (¢ — 40). To maximize
the edge coverage during fuzzing, an evolutionary fuzzer can
only resort to random mutations to the input as such techniques
do not consider the shape of function surface. By contrast, our
NN smoothing and gradient-guided mutations are designed to
exploit the function surface shape as measured by the gradients.

We train an NN model on the program behaviors from the
other two branches. The NN model smoothly approximates
the program behaviors as shown in Figure 3b and 3c. We then
use the NN model to perform more effective gradient-guided
optimization to find the desired values of a and b and
incrementally refine the model until the desired branch is
found that exercises the target bug.

IV. METHODOLOGY

We describe the different components of our scheme in
detail below.

A. Program smoothing

Program smoothing is an essential step to make gradient-
guided optimization techniques suitable for fuzzing real-world
programs with discrete behavior. Without smoothing, gradient-
guided optimization techniques are not very effective for
optimizing non-smooth functions as they tend to get stuck
at different discontinuities [67]. The smoothing process

minimizes such irregularities and therefore makes the
gradient-guided optimization significantly more effective on
discontinuous functions.

In general, the smoothing of a discontinuous function f
can be thought of as a convolution operation between f and
a smooth mask function g to produce a new smooth output
function as shown below. Some examples of popular smoothing
masks include different Gaussian and Sigmoid functions.

rw- | :O

However, for many practical problems, the discontinuous
function f may not have a closed-form representation and
thus analytically computing the above-mentioned integral
is not possible. In such cases, the discrete version f'(z) =
> o f(@)g(z —a) is used and the convolution is computed nu-
merically. For example, in image smoothing, often fixed-sized
2-D convolution kernels are used to perform such computation.
However, in our setting, f is a computer program and therefore
the corresponding convolution cannot be computed analytically.

Program smoothing techniques can be classified into two
broad categories: blackbox and whitebox smoothing. The black-
box approach picks discrete samples from the input space of f
and computes the convolution numerically using these samples.
By contrast, the whitebox approach looks into the program
statements/instructions and try to summarize their effects using
symbolic analysis and abstract interpretation [21], [20]. The
blackbox approaches may introduce large approximation errors
while whitebox approaches incur prohibitive performance over-
head, which makes them infeasible for real-world programs.

To avoid such problems, we use NNs to learn a smooth
approximation of program behaviors in a graybox manner
(e.g., by collecting edge coverage data) as described below.

fla)g(z — a)da @

B. Neural program smoothing

In this paper, we propose a novel approach to program
smoothing by using surrogate NN models to learn and
iteratively refine smooth approximations of the target program
based on the observed program behaviors. The surrogate
neural networks can smoothly generalize to the observed
program behaviors while also accurately modeling potentially
non-linear and non-convex behaviors. The neural networks,
once trained, can be used for efficiently computing gradients
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and higher-level derivatives to guide the fuzzing input
generation process as shown in Figure 3.

Why NNs? As implied by the universal approximation the-
orem [33], an NN is a great fit for approximating complex
(potentially non-linear and non-convex) program behaviors.
The advantages of using NNs for learning smooth program
approximations are as follows: (i) NNs can accurately model
complex non-linear program behaviors and can be trained
efficiently. Prior works on model-based optimization have used
simple linear and quadratic models [24], [23], [71], [52]. How-
ever, such models are not a good fit for modeling real-world
software with highly non-linear and non-convex behaviors; (ii)
NN support efficient computation of their gradients and higher-
order derivatives. Therefore, the gradient-guided algorithms
can compute and use such information during fuzzing without
any extra overhead; and (iii) NNs can generalize and learn to
predict a program’s behaviors for unseen inputs based on its
behaviors on similar inputs. Therefore, NNs can potentially
learn a smooth approximation of the entire program based on
its behaviors for a small number of input samples.

NN Training. While NNs can be used to model different
aspects of a program’s behavior, in this paper we use them
specifically for modeling the target program’s branching
behavior (i.e., predicting control flow edges exercised by a given
program input). One of the challenges in using neural nets to
model branching behavior is the need to accept variably-sized
input. Feedforward NNs, unlike real-world programs, typically
accept fixed size input. Therefore, we set a maximum input
size threshold and pad any smaller-sized inputs with null bytes
during training. Note that supporting larger inputs is not a major
concern as modern NNs can easily scale to millions of param-
eters. Therefore, for larger programs, we can simply increase
the threshold size, if needed. However, we empirically find that
relatively modest threshold values yield the best results and
larger inputs do not increase modeling accuracy significantly.

Formally, let f : {0x00,0x01,...,0x££}" — {0,1}"
denote the NN that takes program inputs as byte sequences
with size m and outputs an edge bitmap with size n. Let 6
denote the trainable weight parameters of f. Given a set of
training samples (X, Y"), where X is a set of input bytes and Y’
represents the corresponding edge coverage bitmap, the training
task of the parametric function f(x,6) = y is to obtain the pa-

rameter 6 such that § = argmin, 5.  L(y, f(x,0)) where
rzeX,yeY
L(y, f(x,0)) defines the loss function between the output of

the NN and the ground truth label ¥ € Y in the training set. The
training task is to find the weight parameters 6 of the NN f to
minimize the loss, which is defined using a distance metric. In
particular, we use binary cross-entropy to compute the distance
between the predicted bitmap and the true coverage bitmap. In
particular, let y; and f;(z,0) denote the i-th bit in the output
bitmap of ground truth and f’s prediction, respectively. Then,
the binary cross-entropy between these two is defined as:

*% Z[yi log(fi(z,0) + (1 —y;) - log(1 — f;(z,0)]

In this paper, we use feed-forward fully connected NNs
to model the target program’s branching behavior. The
feed-forward architecture allows highly efficient computation
of gradients and fast training [53].

Our smoothing technique is agnostic to the source of the
training data and therefore the NN can be trained on any edge
coverage data gathered from an existing input corpus. For our
prototype implementation, we use input corpora generated by
existing evolutionary fuzzers like AFL to train our initial model.

Training data preprocessing. Edge coverage exercised by the
training data often tends to be biased, as it only contains labels
for a small section of all edges in a program. For example,
some edges might always be exercised together by all inputs
in the training data. This type of correlation between a set
of labels is known in machine learning as multicollinearity,
which often prevents the model from converging to a small
loss value [34]. To avoid such cases, we follow the common
machine learning practice of dimensionality reduction by
merging the edges that always appear together in the training
data into one edge. Furthermore, we only consider the edges
that have been activated at least once in the training data. These
steps significantly reduce the number of labels to around 4, 000
from around 65,536 on average. Note that we rerun the data
preprocessing step at every iteration of incremental learning
and thus some merged labels may get split as their correlation
may decrease as new edge data is discovered during fuzzing.

C. Gradient-guided optimization

Different gradient-guided optimization techniques like
gradient descent, Newton’s method, or quasi-Newton methods
like L-BFGS can use gradient or higher-order derivatives for
faster convergence [10], [13], [65]. Smooth NNs enable the
fuzzing input generation process to potentially use any of these
techniques by supporting efficient computation of gradient
and higher-order derivatives. In this paper, we specifically
design a simple gradient-guided search scheme that is robust
to minor prediction errors to demonstrate the effectiveness of
our approach. We leave the exploration of more sophisticated
techniques as future work.

Before describing our mutation strategy, which is based
on the NN’s gradient, we first provide a formal definition of
the gradient that indicates how much each input byte should
be changed to affect the output of a final layer neuron in the
NN (indicating changed edge coverage in the program) f [80].
Here each output neuron corresponds to a particular edge and
computes a value between 0 and 1 summarizing the effect
of the given input byte on a particular edge. The gradients
of the output neurons of the NN f w.r.t. the inputs have been
extensively used for adversarial input generation [39], [66] and
visualizing/understanding DNNs [87], [80], [56]. Intuitively,
in our setting, the goal of gradient-based guidance is to find
inputs that will change the output of the final layer neurons
corresponding to different edges from 0 to 1.

Given a parametric NN y = f(0,z) as defined in
Section IV-B, let y; denote the output of i-th neuron in the
final layer of f, which can also be written as f;(#,z). The
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gradient G of f;(6, ) with respect to input  can be defined
as G =V, fi(0,x) = 0y;/Ox. Note that f’s gradient w.r.t to
0 can be easily computed as the NN training process requires
iteratively computing this value to update #. Therefore, G' can
also be easily calculated by simply replacing the computation
of the gradient of € to that of x. Note that the dimension of
the gradient G is identical to that of the input x, which is
a byte sequence in our case.

Algorithm 1 Gradient-guided mutation

seed <« initial seed

iter <— number of iterations

k <— parameter for picking top-k critical bytes
for mutation

g < computed gradient of seed

1: for i =1 to iter do

2 locations < top(g, k;)

3 for m =1 to 255 do

4 for loc € locations do

5: v < seed[loc] +m * sign(g[loc])
6

7

8

9

Input:

v < clip(v, 0, 255)
gen_mutate(seed, loc, v)
for loc € locations do
: v < seed[loc] —m * sign(g[loc])
10: v < clip(v, 0, 255)
11: gen_mutate(seed, loc, v)

Gradient-guided optimization. Algorithm 1 shows the
outline of our gradient-guided input generation process. The
key idea is to identify the input bytes with highest gradient
values and mutate them, as they indicate higher importance
to the NN and thus have higher chances of causing major
changes in the program behavior (e.g., flipping branches).

Starting from a seed, we iteratively generate new test inputs.

As shown in Algorithm 1, at each iteration, we first leverage
the absolute value of the gradient to identify the input bytes
that will cause the maximum change in the output neurons
corresponding to the untaken edges. Next, we check the sign
of the gradient for each of these bytes to decide the direction
of the mutation (e.g., increment or decrement their values)
to maximize/minimize the objective function. Conceptually,
our usage of gradient sign is similar to the adversarial input
generation methods introduced in [39]. We also bound the
mutation of each byte in its legal range (0-255). Lines 6 and 10

denote the use of clip function to implement such bounding.

We start the input generation process with a small mutation
target (k in Algorithm 1) and exponentially grow the number of

target bytes to mutate to effectively cover the large input space.

D. Refinement with incremental learning

The efficiency of the gradient-guided input generation
process depends heavily on how accurately the surrogate NN
can model the target program’s branching behavior. To achieve
higher accuracy, we incrementally refine the NN model when
divergent program behaviors are observed during the fuzzing

process (i.e., when the target program’s behavior does not
match the predicted behavior). We use incremental learning
techniques to keep the NN model updated by learning from
new data when new edges are triggered.

The main challenge behind NN refinement is preventing the
NN model from abruptly forgetting the information it previously
learned from old data while training on new data. Such forget-
ting is a well-known phenomenon in deep learning literature
and has been thought to be a result of the stability-plasticity
dilemma [58], [8]. To avoid such forgetting issues, an NN must
change the weights enough to learn new tasks but not too much
as to cause it to forget previously learned representations.

The simplest way to refine an NN is to add the new training
data (i.e., program branching behaviors) together with the
old data and train the model from scratch again. However,
as the number of data points grows, such retraining becomes
harder to scale. Prior research has tried to solve this problem
using mainly two broad approaches [44], [51], [31], [75], [29],
[40], [76]. The first one tries to keep separate representations
for the new and old models to minimize forgetting using
distributed models, regularization, or creating an ensemble
out of multiple models. The second approach maintains a
summary of the old data and retrains the model on new data
along with the summarized old data and therefore is more
efficient than complete retraining. We refer the interested
readers to the survey by Kemker et al. [48] for more details.

In this paper, we used edge-coverage-based filtering to only
keep the old data that triggered new branches for retraining.
As new training data becomes available, we identify the ones
achieving new edge coverage, put them together with the
filtered old training data, and retrain the NN. Such a method
effectively prevents the number of training data samples from
drastically increasing over the number of retraining iterations.
We find that our filtration scheme can easily support up to
50 iterations of retraining while still keeping the training time
under several minutes.

V. IMPLEMENTATION

In this section, we discuss our implementation and

how we fine-tune NEUZZ to achieve optimal performance.
We have released our implementation through GitHub at
http://github.com/dongdongshe/neuzz. All our measurements
are performed on a system running Arch Linux 4.9.48 with
an Nvidia GTX 1080 Ti GPU.
NN architecture. Our NN model is implemented in Keras-
2.1.3 [5] with Tensorflow-1.4.1 [6] as a backend. The NN
model consists of three fully-connected layers. The hidden
layer uses ReL.U as its activation function. We use sigmoid as
the activation function for the output layer to predict whether a
control flow edge is covered or not. The NN model is trained
for 50 epochs (i.e., 50 complete passes of the entire dataset)
to achieve high test accuracy (around 95% on average). Since
we use a simple feed-forward network, the training time
for all 10 programs is less than 2 minutes. Even with pure
CPU computation on an Intel i7-7700 running at 3.6GHz, the
training time is under 20 minutes.
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TABLE I: NEUZZ Parameter Tuning

(a) Edge coverage achieved by mutations generated in
different iterations (Algorithm 1 line 1). The numbers
in bold indicate the highest values for each program.

Iteration %

Programs

7 10 11
readelf -a 1,678 1,800 1,529
libjpeg 107 89 93
libxml 161 256 174
mupdf 294 266 266

Training Data Collection. For each program tested, we run
AFL-2.5.2 [88] on a single core machine for an hour to collect
training data for the NN models. The average number of train-
ing inputs collected for 10 programs is around 2K. The result-
ing corpus is further split into training and testing data with a
5:1 ratio, where the testing data is used to ensure that the models
are not overfitting. We use 1 0KB as the threshold file size for se-
lecting our training data from the AFL input corpus (on average
90% of the files generated by AFL were under the threshold).
Mutation and Retraining. As shown in Figure 2, NEUZZ
runs iteratively to generate 1M mutations and incrementally
retrain the NN model. We first use the mutation algorithm
described in Algorithm 1 to generate 1M mutations. We set the
parameter i to 10, which generates 5,120 mutated inputs for
a seed input. Next, we randomly choose 100 output neurons
representing 100 unexplored edges in the target program and
generate 10,240 mutated inputs from two seeds. Finally, we
execute the target program with 1M mutated inputs using
AFL’s fork server technique [54] and use any inputs covering
new edges for incremental retraining.

Model Parameter Selection. The success of NEUZZ depends
on the choices of different parameters in training the models
and generating mutations. Here, we empirically explore the
optimal parameters that ensure maximum edge coverage on
four programs: readelf, libjpeg, libxml, and mupdf.
The results are summarized in Table I.

First, we evaluate how many critical bytes need to be mutated
per initial seed (parameter k; in line 1 of Algorithm 1). We
choose k = 2 as described in Section IV-C and show the cov-
erage achieved by three iterations (¢ = 7, 10, 11 in Algorithm 1
line 1) with 1M mutations per iteration. For all four programs,
smaller mutations (with fewer bytes changed per mutation) may
lead to higher code coverage, as shown in Table [a. The largest
value of 7 = 11 achieves the least code coverage for all four
programs. This result is potentially due to lines 4 and 8 in Algo-
rithm 1—wasting too many mutations (out of the 1M mutation
budget) on a single seed, without trying other seeds. However,
the optimal number of mutation bytes varies across the four
programs. For readelf and 1ibxml, the optimal value of % is
10, while it is 7 for 1ibjpeg and mupdf. Since the difference
in achieved code coverage between ¢ = 7 and ¢ = 10 is not
large, we choose ¢« = 10 for the remainder of the experiments.

Next, we evaluate the choice of hyper-parameters in the

(b) Edge coverage comparison of 1M mutations
generated by NEUZZ on different NN models. n
denotes the number of neurons in every hidden layer.

1 hidden layer | 3 hidden layers

Programs

n=4096  n=8192 | n=4096  n=8192
readelf -a 1,800 1,658 1,714 1,584
libjpeg 89 57 80 79
libxml 256 172 140 99
mupdf 260 94 82 88

NN model by varying the number of layers and the number
of neurons in each hidden layer. In particular, we compare
NN architectures with 1 and 3 hidden layers and 4096 and
8192 neurons per layer, respectively. For every target program,
we use the same training data to train four different NN
models and generate 1M mutations to test the achieved edge
coverage. For all four programs, we find that the model with
1 hidden layer performs better than the one with 3 hidden
layers. We think this is because the 1 hidden layer model is
sufficiently complex to model the branching behavior of the
target program, whereas the larger model (i.e., with 3 hidden
layers) is relatively harder to train and also tends to overfit.

VI. EVALUATION

In this section, we evaluate NEUZZ’s bug finding
performance and achieved edge coverage with respect to other
state-of-the-art fuzzers. Specifically, we answer the following
four research questions:

« RQI1. Can NEUZZ find more bugs than existing fuzzers?

e RQ2. Can NEUZZ achieve higher edge coverage than
existing fuzzers?

o RQ3. Can NEUZZ perform better than existing RNN-based
fuzzers?

« RQ4. How do different model choices affect NEUZZ’s
performance?

We start by describing our study subjects and experimental
setting.

A. Study Subjects

We evaluate NEUZZ on three different types of datasets:
(1) 10 real-world programs, as shown in Table IIb, (ii)
LAVA-M [28], and (iii) the DARPA CGC dataset [26]. To
demonstrate the performance of NEUZZ, we compare the
edge coverage and number of bugs detected by NEUZZ to 10
state-of-the-art fuzzers, as shown in Table Ila.

B. Experimental Setup

Our experimental setup includes the following two steps:
First, we run AFL for an hour to generate the initial seed corpus.
Then, we run each fuzzer for a fixed time budget with the same
initial seed corpus and compare their achieved edge coverage
and the number of bugs found. Specifically, the time budgets for
10 real world programs, LAVA-M datasets and CGC datasets
are 24 hours, 5 hours, and 6 hours respectively. For evolutionary
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TABLE II: Study Subjects

(a) Studied Fuzzers

Fuzzer Technical Description
AFL [88] evolutionary search
AFLFast [11] evolutionary + markov-model-based search

Driller [82]*
VUzzer [73]
KleeFL [32]
AFL-laf-intel [47] evolutionary + transformed compare instruction
RNNfuzzer [72]
Steelix [55]
T-fuzz [69]F
Angora [22]

evolutionary + concolic execution
evolutionary + dynamic-taint-guided search
evolutionary + seeds generated by symbolic execution

evolutionary + RNN-guided mutation filter
evolutionary + instrumented comparison instruction
evolutionary + program transformation

evolutionary + dynamic-taint-guided + coordinate
descent + type inference

T We only compare based on the reported LAVA-M results as they are
either not open-source or do not scale to our test programs.

¥ We only compare based on CGC as Driller only supports CGC binaries.

fuzzers, the seed corpus is used to initialize the fuzzing process.
For learning-based fuzzers (i.e., NEUZZ and RNN-based
fuzzers), the same seed corpus is used to generate the training
dataset. As for KleeFL, a hybrid tool consisting of Klee and
AFL, we run Klee for an extra hour to generate additional seeds,
then add them into the original seed corpus for the following 24
hour fuzzing process. Note that we only report the additional
code covered by the mutated inputs of each fuzzer without
including the coverage information from the initial seed corpus.
In RQ3, we evaluate and compare the performance of
NEUZz with that of the RNN-based fuzzers. The RNN-based
fuzzers could take up to 20x longer training time than NEUZZ.
However, to focus on the efficacy of these two mutation
algorithms, we evaluate the edge coverage for a fixed amount of
mutations to exclude the effect of these disparate training time.
We also perform a standalone evaluation comparing the training
time costs for these two models. In RQ4, we also evaluate the
edge coverage for a fixed number of mutations to exclude the
effect of varying training time cost across different models.

C. Results

RQI. Can NEUZZ find more bugs than existing fuzzers?

To answer this RQ, we evaluate NEUZZ w.r.t. other fuzzers
in three settings: (i) Detecting real-world bugs. (ii) Detecting
injected bugs in LAVA-M dataset [28]. (iii) Detecting CGC
bugs. We describe the results in details.

(i) Detecting real-world bugs. We compare the total number
of bugs and crashes found by NEUZZ and other fuzzers on
24-hour running time given the same seed corpus. There
are five different types of bugs found by NEUZZ and other
fuzzers: out-of-memory, memory leak, assertion crash,
integer overflow, and heap overflow. To detect memory
bugs that would not necessarily lead to a crash, we compile
program binaries with AddressSanitizer [4]. We measure the
unique memory bugs found by comparing the stack traces
reported by AddressSanitizer. For crashes that do not cause

(b) Studied Programs

Programs | # Lines | tl:l;gz(:) | AFL coverage

Class Name | | | 1 hour

readelf -a 21,647] 108 4,490
binutils-2.30 nm -C 53457| 63 3,779
ELF objdump -D | 72,955| 104 5,196
Parser size 52,991 52 2,578

strip 56,330 | 55 5,789
TTF harfbuzz-1.7.6|  9.853| 94 | 8279
JPEG libjpeg-9c | 8857 56 | 3,117
PDF mupdf-1.12.0 | 123,562 62 | = 4,624
XML libxml2-2.9.7 | 73920| 95 | = 6,691
Zip zlib-12.11 | 1893 65 | 1479

AddressSanitizer to generate a bug report, we examine the
execution trace. The integer overflow bugs are found by
manually analyzing the inputs that trigger an infinite loop. We
further verify integer overflow bugs using undefined behavior
sanitizer [7]. The results are summarized in Table III.

NEUZZ finds all 5 types of bugs across 6 programs. AFL,
AFLFast, and AFL-laf-intel find 3 types of bugs—they do not
find any integer overflow bugs. The other fuzzers only uncover
2 types of bugs (i.e., memory leak and assertion crash). AFL
can a heap overflow bug on program size, while NEUZZ can
find the same bug and another heap overflow bug on program
nm. In total, NEUZZ finds 2x more bugs than the second best
fuzzer. Moreover, the integer-overflow bug in strip and the
heap-overflow bug in nm, only found by NEUZZ, have been
assigned with CVE-2018-19932 and CVE-2018-19931, later
fixed by the developers .

TABLE III: Number of real-world bugs found by 6 fuzzers. We
only list the programs where the fuzzers find a bug.

Programs AFL AFLFast VUzzer KleeFL AFL-laf-intel NEUZZ
Detected Bugs per Project
readelf 4 5 5 3 4 16
nm 8 7 0 0 6 9
objdump 6 6 0 3 7 8
size 4 4 0 3 2 6
strip 7 5 2 5 7 20
libjpeg 0 0 0 0 0 1
Detected Bugs per Type
out-of-memory 4 4 X v 4 4
memory leak v v v v 4 4
assertion crash X 4 X X 4 4
interger overflow X X X X X 4
heap overflow v X X X X v/
Total 29 27 7 14 26 60

(ii) Detecting injected bugs in LAVA-M dataset. The LAVA
dataset is created to evaluate the efficacy of fuzzers by
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providing a set of real-world programs injected with a large
number of bugs [28]. LAVA-M is a subset of the LAVA
dataset, consisting of 4 GNU coreutil programs base64,
md5sum, uniqg, and who injected with 44, 57, 28, and 2136
bugs, respectively. All the bugs are guarded by four-byte
magic number comparisons. The bugs get triggered only if the
condition is satisfied. We compare NEUZZ’s performance at
finding these bugs to other state-of-the-art fuzzers, as shown
in Table IV. Following conventional practice [22], [28], we
use 5-hour time budget for the fuzzers’ runtime.

Triggering a magic number condition in the LAVA dataset
is a hard task for a coverage-guided fuzzer because the fuzzer
has to generate the exact combination of 4 continuous bytes
out of 256 possible cases. To solve this problem, we used
a customized LLVM pass to instrument the magic byte checks
like Steelix [55]. But unlike Steelix, we leverage the NN’s
gradient to guide the input generation process to find an input
that satisfies the magic check. We run AFL for an hour to
generate the training data and use it to train an NN whose
gradients identify the possible critical bytes triggering the
first byte-comparison of a magic-byte condition. Next, we
perform a locally exhaustive search on each byte adjacent
to the first critical byte to solve each of the remaining three
byte-comparisons with 256 tries. Therefore, we need one NN
gradient computation to find the byte locations that affect the
magic checking and 4 x 256 = 1024 trials to trigger each
bug. For program md5sum, following the latest suggestion of
the LAVA-M’s authors [27], we further reduce the seed into a
single line, which significantly boosts the fuzzing performance.

As shown in Table IV, NEUZZ finds all the bugs in
programs base64, md5sum, and uniqg, and the highest
number of bugs for program who. Note that LAVA-M authors
left some bugs unlisted in all 4 programs, so the total number
of bugs found by NEUZZ is actually higher than the number
of listed bugs, as shown in the result.

NEUZZ has two key advantages over the other fuzzers. First,
NEUZZ breaks the search space into multiple manageable
steps: NEUZZ trains the underlying NN on AFL generated
data, uses the computed gradient to reach the first critical byte,
and performs a local search around the found critical region.
Second, as opposed to VUzzer, which leverages magic numbers
hard-coded in the target binary to construct program inputs,
NEUZZ’s gradient-based searching strategy do not rely on any
hard-coded magic number. Thus, it can find all the bugs in
program md5sum, which performs some computations on the
input bytes before the magic number checking causing VUzzer
to fail. In comparison to Angora, the current state-of-the-art
fuzzer for LAVA-M dataset, NEUZZ finds 3 more bugs in
md5sum. Unlike Angora, NEUZZ uses NN gradients to trigger
the complex magic number conditions more efficiently.

(iii) Detecting CGC bugs. The DARPA CGC dataset [2]
consists of vulnerable programs used in the DARPA Cyber
Grand Challenge. These programs are implemented as network
services performing various tasks and aim to mirror real-world
applications with known vulnerabilities. Every bug in the pro-
gram is guarded by a number of sanity checks on the input. The

TABLE IV: Bugs found by different fuzzers on LAVA-M datasets.

base64 mdSsum uniq who
#Bugs 44 57 28 2,136
FUZZER 7 2 7 0
SES 9 0 0 18
VUzzer 17 1 27 50
Steelix 43 28 24 194
Angora 48 57 29 1,541
AFL-laf-intel 42 49 24 17
T-fuzz 43 49 26 63
NEUZZ 48 60 29 1,582

TABLE V: Bugs found by 3 fuzzers in 50 CGC binaries

Fuzzers | AFL  Driller
Bugs 21 25 31

NEUZZ

dataset comes with a set of inputs as proof of vulnerabilities.

We evaluate NEUZZ, Driller, and AFL on 50 randomly
chosen CGC binaries. As running each test binary for each
fuzzer takes 6 hours to run on CPU/GPU and our limited
GPU resources do not allow us to execute multiple instances
in parallel, we randomly picked 50 programs to keep the total
experiment time within reasonable bounds. Similar to LAVA-M,
here we also run AFL for an hour to generate the training data
and use it to train the NN. We provide the same random seed
to all three fuzzers and let them run for six hours. NEUZZ
uses the same customized LLVM pass used for the LAVA-M
dataset to instrument magic checkings in CGC binaries.

The results (Table V) show that NEUZZ uncovers 31 buggy
binaries out of 50 binaries, while AFL and Driller find 21 and
25, respectively. The buggy binaries found by NEUZZ include
all those found by Driller and AFL. NEUZzZ further found bugs
in 6 new binaries that both AFL and Driller fail to detect.

I int cgc_ReceiveCommand (CommandStructx command,
2 intx more_command) {

4 if (cgc_strncmp (&buffer[l], "VISUALIZE",

5 cgc_strlen ("VISUALIZE")) == 0) {

6 command->command = VISUALIZE;
//vulnerable code

8

Listing  1: function in

CROMU_00027

We analyze an example program CROMU_00027 (shown
in Listing 1). This is an ASCII content server that takes a
query from a client and serves the corresponding ASCII code.
A null-pointer dereferencing bug is triggered after a user
tries to set command as VISUALIZE. AFL failed to detect
this bug within 6-hour time budget due to its inefficiency at
guessing the magic string. Although Driller tries to satisfy
such complex magic string checking by concolic execution,
in this case it fails to find an input that satisfies the check.
By contrast, NEUZZ can easily use the NN gradient to locate
the critical bytes in the program input that affects the magic
comparison and find inputs that satisfy the magic check.

cgc_ReceiveCommand
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Result 1: NEUZZ found 31 previously unknown bugs
in 6 different programs that other fuzzers could not find.
NEUZZ also outperforms the state-of-the-art fuzzers at
finding LAVA-M and CGC bugs.

RQ2. Can NEUZZ achieve higher edge coverage than
existing fuzzers?

To investigate this question, we compare the fuzzers on
24-hour fixed runtime budget. This evaluation shows not only
the total number of new edges found by fuzzers but also the
speed of new edge coverage versus time.

TABLE VI: Comparing edge coverage of NEUZZ w.r.t. other
fuzzers for 24 hours runs.

Programs  NEUZZ AFL AFLFast VUzzer KleeFL AFL-laf-intel
readelf -a 4942 746 1,073 12 968 1,023
nm -C 2,056 1,418 1,503 221 1,614 1,445
objdump -D 2,318 257 263 307 328 221
size 2,262 1,236 1,924 541 1,091 976
strip 3,177 856 960 478 869 1,257
libjpeg 1,022 94 651 60 67 2
libxml 1,596 517 392 16  n/af 370
mupdf 487 370 371 38 n/a 142
zlib 376 374 371 15 362 256
harfbuzz 6,081 3,255 4,021 111 n/a 2,724

Findicates cases where Klee failed to run due to external dependencies

We collect the edge coverage information from AFL’s
edge coverage report. The results are summarized in Ta-
ble VI. For all 10 real-world programs, NEUZZ significantly
outperforms other fuzzers in terms of edge coverage. As
shown in Fig 4, NEUZZ can achieve significantly more new
edge coverage than other fuzzers within the first hour. On
programs strip, harfbuz and readelf, NEUZZ can
achieve more than 1,000 new edge coverage within an
hour. For programs readelf and objdump, the number
of new edge coverage from NEUZZ’s 1 hour running even
beats the numbers of new edge coverage from all other
fuzzers’ 24 hours running. This shows the superior edge
coverage ability of NEUZzz. For all 9 out of 10 programs,
NEUZZ achieves 6x,1.5x,9x,1.8%x,3.7x,1.9%x,10x,1.3x and
3x edge coverage than baseline AFL, respectively, and
4.2x,1.3%x,7x,1.2%,2.5%,1.5%,1.5%,1.3x and 3x edge cover-
age than the second highest number among all 6 fuzzers. For the
smallest program z1ib, which has less than 2k lines of code,
NEUZZ achieves similar edge coverage with other fuzzers. We
believe it reaches a saturation point when most of the possible
edges for such a small program are already discovered after 24
hours fuzzing. The significant outperformance shows the effec-
tiveness of NEUZZ in efficiently locating and mutating critical
bytes using the gradient to cover new edges. NEUZZ also scales
well in large systems. In fact, for programs with more than
10K lines (e.g., readelf, harfbuzz, mupdf and 1ibxml),
NEUZzZ achieves the highest edge coverage, where the taint-

assisted fuzzer (i.e., VUzzer) and symbolic execution assisted
fuzzer (i.e., KleeFL) either perform badly or does not scale.

The gradient-guided mutation strategy allows NEUZZ
to explore diverse edges, while other evolutionary-based
fuzzers often get stuck and repetitively check the same branch
conditions. Also, the minimal execution overhead of the NN
smoothing technique helps NEUZZ to scale well for larger
programs while other advanced evolutionary fuzzers incur high
execution overhead due to the use of heavyweight program
analysis techniques like taint-tracking or symbolic execution.

Among the evolutionary fuzzers, AFLFast, uses an
optimized seed selection strategies that focuses more on rare
edges and thus achieves higher coverage than AFL on 8
programs, especially in 1ibJjpeg, size and harfbuzz.
VUzzer, on the other hand, achieves higher coverage than
AFL, AFLFast, and AFL-laf-intel within the first hour on small
programs (e.g., z1ib, nm, objdump, size and strip),
but its lead stalls quickly and eventually is surpassed by other
fuzzers. Meanwhile, VUzzer’s performance degrades on larger
programs like readelf, harfbuzz, 1ibxml, and mupdf.
We suspect that the imprecisions introduced by VUzzer’s taint
tracker causes it to perform poorly on large programs. KleeFL
uses additional seeds generated by the symbolic execution
engine Klee to guide AFL’s exploration. Similar to VUzzer,
for small programs (nm, objdump, and strip), KleeFL
has good performance at the beginning, but its advantage
of additional seeds from Klee fade away after several hours.
Moreover, KleeFL is based on Klee that cannot scale to large
programs with complex library code, a well-known limitation
of symbolic execution. Thus, KleeFL does not have results on
programs libxml, mupdf and harfbuzz. Unlike VUzzer
and KleeFL, NEUZZ does not rely on any heavy program
analysis techniques; NEUZZ uses the gradients computed from
NN to generate promising mutations even for larger programs.
The efficient NN gradient computation process allow NEUZZ
to scale better than VUzzer and KleeFL at identifying the
critical bytes that affect different unseen program branches,
achieving significantly more edge coverage.

AFL-laf-intel transforms complex magic number comparison
into nested byte-comparison using an LLVM pass and then runs
AFL on the transformed binaries. It achieves second-highest
new edge coverage on program strip. However, the com-
parison transformations add additional instructions to common
comparison operations and thus cause a potential edge explo-
sion issue. The edge explosion greatly increases the rate of edge
conflict and hurt the performance of evolutionary fuzzing. Also,
these additional instructions cause extra execution overheads.
As a result, programs like 1ibjpeqg with frequent comparison
operations suffer significant slowdown (e.g., 1ibjpeq), and
AFL-laf-intel struggles to trigger new edges.

Result 2: NEUZZ can achieve significantly higher edge
coverage compared to other gray-box fuzzers (up to 4
x better than AFL, and 2.5x better than the second-best
one for 24-hour running).
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Fig. 4: The edge coverage of different fuzzers running for 24 hours.

RQ3. Can NEUZZ perform better than existing RNN-based
Juzzers?

Existing recurrent neural network (RNN)-based fuzzers learn
mutation patterns from past fuzzing experience to guide future
mutations [72]. These models first learn mutation patterns
(composed of critical bytes) from a large number of mutated
inputs generated by AFL. Next, they use the mutation patterns
to build a filter to AFL which only allows mutations on critical
bytes to pass, vetoing all other non-critical byte mutations. We
choose 4 programs studied by the previous work to evaluate the
performance of NEUZZ compared to the RNN-based fuzzer for
1 million mutations. We train two NN models with the same
training data, then let the two NN-based fuzzers run to generate
1 million mutations and compare the new code coverage
achieved by the two methods. We report both the achieved
edge coverage and training time, as shown in Table VIIL.

TABLE VII: NEUZZ vs. RNN fuzzer w.r.t. baseline AFL

Edge Coverage ‘ Training Time (sec)

Programs

NEuzz RNN AFL ‘ NEuzz RNN AFL
readelf -a 1,800 215 213 108 2,224 NA
libjpeg 89 21 28 56 1,028 NA
libxml 256 38 19 95 2,642 NA
mupdf 260 70 32 62 848  NA

For all the four programs, NEUZZ significantly outperforms
the RNN-based fuzzer on 1M mutations. NEUZZ achieves
8.4%,4.2%,6.7x, and 3.7 x more edge-coverage than the RNN-
based fuzzer across the four programs respectively. In addition,
the RNN-based fuzzer has, on average, 20x more training
overhead than NEUZZ, because RNN models are significantly
more complicated than feed-forward network models.

An additional comparison of the RNN-based fuzzer with
AFL shows that the former achieves 2x more edge coverage
on average than AFL on 1ibxml and mupdf using the 1-hour
corpus. We also observe that the RNN-based fuzzer vetoes

around 50% of the mutations generated by AFL. Thus, the
new edge coverage of 1M mutations from RNN-based fuzzer
can achieve the edge coverage of 2M mutations in vanilla AFL.
This explains why the RNN-based fuzzer uncovers around 2 x
more new edges of AFL on some programs. If AFL gets stuck
after 2M mutations, the RNN-based fuzzer would also get stuck
after 1M filtered mutations. The key advantage of NEUZZ over
the RNN-based fuzzer is that NEUZZ obtains critical locations
using neural-network-based gradient-guided search, while the
RNN fuzzer tries to model the task in an end-to-end manner.
Our model can distinguish different contributing factors of
critical bytes that the RNN model may miss as demonstrated
by our experimental results. For mutation generation, we
perform an exhaustive search for critical bytes determined
by corresponding contributing factors, while the RNN-based
fuzzer still relies on AFL’s uniform random mutations.

Result 3: NEUZZ, a fuzzer based on simple feed-
forward network, significantly outperforms the RNN-based
fuzzers by achieving 3.7x to 8.4x more edge coverage
across different projects.

RQ4. How do different model choices affect NEUZZ’s
performance?

NEUzZ’s fuzzing performance heavily depends on the
accuracy of the trained NN. As described in Section V, we
empirically find that an NN model with 1 hidden layer is
expressive enough to model complex branching behavior of
real-world programs. In this section, we conduct an ablation
study by exploring different model settings for a 1 hidden
layer architecture, i.e., a linear model, an NN model without
refinement, and an NN model with incremental refinement. We
evaluate the effect of these models on NEUZZ’s performance.

To compare the fuzzing performance, we generate 1M muta-
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TABLE VIII: Edge coverage comparison of 1M mutations
generated by NEUZZ using different machine learning models.

Programs Linear Model NN Model NN + Incremental
readelf -a 1,723 1,800 2,020
libjpeg 63 89 159
libxml 117 256 297
mupdf 93 260 329

tions for each version of NEUZZ on 4 programs. We implement
the linear model by removing the non-linear activation functions
used in the hidden layer and thus making the whole feed-
forward network completely linear. The NN model is trained
same seed corpus from AFL. Next, We generate 1M mutations
from the passive learning model and measure the edge coverage
achieved by these 1M mutations. Finally, we filter out the
mutated inputs that exercise unseen edges from the 1 million
mutations and add these selected inputs to original seed corpus
to incrementally retrain another NN model and use it to generate
further mutations. The results are summarized in Table VIII.
We can see that both NN models (with or without incremental
learning) outperform the linear models for all 4 tested programs.
This shows that the nonlinear NN models can approximate
program behaviors better than a simple linear model. We also
observe that incremental learning helps NNs to achieve signif-
icantly higher accuracy and therefore higher edge coverage.

Result 4: NN models outperform linear models and
incremental learning makes NNs even more accurate over
time.

VII. CASE STUDIES OF BUGS

In this section, we provide samples of and analyze three
different types of bugs discovered by NEUZZ: integer overflow,
out-of-memory, and crash-inducing bugs.

We note that a large number of program bugs result from
incorrect handling of extreme values of variables. As NEUZZ
can enumerate all critical bytes from 0x00 to Oxff (see
Algorithm 1 line 3), we manage to find a large number of bugs
caused by mishandled extrema. For example, NEUZZ is able
to find many out-of-memory bugs in 1ibjpeg, objdump,
nm and strip by setting the input bytes that affect memory
allocation size to extremely large values.
strip’s integer overflow. NEUZZ found an integer overflow
bug that can induce an infinite loop on strip. Listing 2
shows a function in the strip program that parses every
section in the program header table of an input ELF file and
assigns all sections to a new program header table in the
output ELF file. The integer overflow occurs at the if-condition
in line 11 of Listing 2 as NEUZZ sets segment_size to an
extremely large value. Consequently, the program gets stuck in
an infinite loop. We found that this bug exists in both the latest
version of Binutils 2.30 and in older versions 2.26 and 2.29.
libjpeg’s out-of-memory. During the JPEG compression
process, the data of every color space is down-sampled by

the corresponding sampling factor in order to reduce file size.
According to the JPEG standard, the sampling factor must
be an integer between 1 and 4. This value is used during
the decompression process to determine how much memory
needs to be allocated as shown in Listing 4. NEUZZ sets a
large value which causes too much memory to be allocated
for image data, causing a out-of-memory error. Such errors
can potentially be exploited to launch denial of service attacks
on servers using 1ibjpeg for displaying images.

1 // binutils-2.30/bfd/elf.c:6499

> #define IS_CONTAINED (saddr, ssize,
(saddr >= baddr

4 && saddr <= (baddr + ssize))

baddr) \

6 rewrite_elf_ program_header (bfd xibfd, bfd xobfd)
7 {

8 for(j = 0;
9 {

10 output_section = section->output_section;
11 if (IS_CONTAINED (output_section,

12 segment_size, base_addr)

13 {

j < section_count; Jj++)

15 isec++;

16 sections[j] = NULL;

Listing 2: strip integer overflow

// binutils-2.30/binutils/readelf.c:5901
static bfd_boolean

3 process_section_headers (Filedatax filedata)
4

5 filedata->section_headers =
6 ...

7 if (filedata->file_header.e_shnum == 0)
8 {

NULL;

10 return TRUE;
11 }

1}

13 // binutils-2.30/binutils/readelf.c:654
14 static E1f_Internal_Shdr =

15 find_section(Filedatax filedata,

16 {

char* name)

18 assert (filedata->section_headers != NULL);

20 }
Listing 3: readelf section header parsing bug

// libjpeg/jmemmgr.c:444

alloc_barray (j_common_ptr cinfo, ...)
3 q

4 ...
5 while (currow < numrows) {

7 alloc_large((size_t) rowsperchunk
* (size_t) blocksperrow * SIZEOF (JBLOCK)) ;

Listing 4: 1ibjpeg out-of-memory bug

readelf’s crash. An ELF file consists of a file header,
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program header, section header and section data. According
to the ELF specification, the ELF header contains the field
e_shnum located at the 60th byte for a 64-bit binary, which
specifies the number of sections in the ELF file. NEUZZ sets
the number of sections of the input file to be 0. As shown
in Listing 3, if the number of sections is equal to 0, the
implementation returns a NULL pointer which is dereferenced
by subsequent code, triggering a crash.

VIII. RELATED WORK

Program smoothing. Parnas et al. [67] observed that
discontinuities are one of the fundamental challenges behind
the development of secure and reliable software. Chaudhury et
al. [21], [18], [19] suggested the idea of program smoothing to
facilitate program analysis and presented a rigorous smoothing
algorithm using abstract interpretation and symbolic execution.
Unfortunately, such algorithms incur prohibitive performance
overhead, especially for large programs. By contrast, our
smoothing technique leverages the learning power of NNs to
achieve better scalability.

Learning-based fuzzing. Recently, there has been increasing
interest in using machine learning techniques for improving
fuzzers [37], [72], [84], [9], [81], [12], [64]. However, existing
learning-based fuzzers model fuzzing as an end-to-end ML
problem, i.e., they learn ML models to directly predict input
patterns that can achieve higher code coverage. By contrast, we
first use NNs to smoothly approximate the program branching
behavior and then leverage gradient-guided input generation
technique to achieve higher coverage. Therefore, our approach
is more tolerant to learning errors by ML models than the end-
to-end approaches. In this paper, we empirically demonstrate
that our strategy outperforms end-to-end modeling both in
terms of finding bugs and achieving higher edge coverage [72].

Taint-based fuzzing. Several evolutionary fuzzers have tried
to use taint information to identify promising mutating
locations [85], [42], [63], [73], [55], [22]. For example,
TaintScope [85] is designed to identify input bytes that
affects system/library calls and focus on mutating these bytes.
Similarly, Dowser [42] and BORG [63] specifically use taint
information to target detection of buffer boundary violations
and buffer over-read vulnerabilities respectively. By contrast,
Vuzzer [73] captures magic constants through static analysis
and mutates existing values to these constants. Steelix [55]
instruments binaries to collect additional taint information about
comparing instructions. Finally, Angora [22] uses dynamic taint
tracking to identify promising mutation locations and perform
coordinate descent to guide mutations on these locations.

However, all these taint-tracking-based approaches are
fundamentally limited by the fact that dynamic taint analysis
incurs very high overhead while static taint analysis suffers
from a high rate of false positives. Our experimental
results demonstrate that NEUZZ easily outperforms existing
state-of-the-art taint-based fuzzers by using neural networks
to identify promising locations for mutation.

Several fuzzers and test input generators [43], [83],
[22] have tried to use different forms of gradient-guided

optimization algorithms directly on the target programs.
However, without program smoothing, such techniques tend
to struggle and get stuck at the discontinuities.

Symbolic/concolic  execution. Symbolic and concolic
execution [50], [14], [77], [61], [36] use Satisfiability Modulo
Theory (SMT) solvers to solve path constraints and find
interesting test inputs. Several projects have also tried to
combining fuzzing with such approaches [17], [32], [82].
Unfortunately, these approaches struggle to scale in practice
due to several fundamental limitations of symbolic analysis
including path explosion, incomplete environment modeling,
large overheads of symbolic memory modeling, etc. [16].

Concurrent to our work, NEUEX [79] made symbolic
execution more efficient by learning the dependencies between
intermediate variables of a program using NNs and used
gradient-guided neural constraint solving together with
traditional SMT solvers. By contrast, in this paper, we focus
on using NNs to make fuzzing more efficient as it is by far
the most popular technique for finding security-critical bugs
in large, real-world programs.

Neural programs. A neural program is essentially a neural
network that learns a latent representation of the target
program’s logic. Several recent works have synthesized
such neural programs from input-output samples of a
program to accurately predict the program’s outputs for new
inputs [41], [74], [62]. By contrast, we use NNs to learn
smooth approximations of a program’s branching behaviors.

IX. CONCLUSION

We present NEUZZ, an efficient learning-enabled fuzzer that
uses a surrogate neural network to smoothly approximate a
target program’s branch behavior. We further demonstrate how
gradient-guided techniques can be used to generate new test
inputs that can uncover different bugs in the target program. Our
extensive evaluations show that NEUZZ significantly outper-
forms other 10 state-of-the-art fuzzers both in the numbers of
detected bugs and achieved edge coverage. Our results demon-
strate the vast potential of leveraging different gradient-guided
input generation techniques together with neural smoothing to
significantly improve the effectiveness of the fuzzing process.
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