
Fuzzing File Systems via
Two-Dimensional Input Space Exploration

Wen Xu Hyungon Moon† Sanidhya Kashyap Po-Ning Tseng Taesoo Kim

Georgia Institute of Technology
†Ulsan National Institute of Science and Technology

Abstract—File systems, a basic building block of an OS, are
too big and too complex to be bug free. Nevertheless, file systems
rely on regular stress-testing tools and formal checkers to find
bugs, which are limited due to the ever-increasing complexity
of both file systems and OSes. Thus, fuzzing, proven to be an
effective and a practical approach, becomes a preferable choice,
as it does not need much knowledge about a target. However,
three main challenges exist in fuzzing file systems: mutating a
large image blob that degrades overall performance, generating
image-dependent file operations, and reproducing found bugs,
which is difficult for existing OS fuzzers.

Hence, we present JANUS, the first feedback-driven fuzzer
that explores the two-dimensional input space of a file system,
i.e., mutating metadata on a large image, while emitting image-
directed file operations. In addition, JANUS relies on a library
OS rather than on traditional VMs for fuzzing, which enables
JANUS to load a fresh copy of the OS, thereby leading to better
reproducibility of bugs. We evaluate JANUS on eight file systems
and found 90 bugs in the upstream Linux kernel, 62 of which have
been acknowledged. Forty-three bugs have been fixed with 32
CVEs assigned. In addition, JANUS achieves higher code coverage
on all the file systems after fuzzing 12 hours, when compared
with the state-of-the-art fuzzer Syzkaller for fuzzing file systems.
JANUS visits 4.19× and 2.01× more code paths in Btrfs and ext4,
respectively. Moreover, JANUS is able to reproduce 88–100% of
the crashes, while Syzkaller fails on all of them.

I. INTRODUCTION

File systems are one of the most basic system services of an

operating system that play an important role in managing the

files of users and tolerating system crashes without losing data

consistency. Currently, most of the conventional file systems,

such as ext4 [8], XFS [64], Btrfs [59], and F2FS [30], run in

the OS kernel. Hence, bugs in file systems cause devastating

errors, such as system reboots, OS deadlock, and unrecoverable

errors of the whole file system image. In addition, they also

pose severe security threats. For instance, attackers exploit

various file system issues by mounting a crafted disk image [28]

or invoking vulnerable file system-specific operations [37]

to achieve code execution or privilege escalation on victim

machines. However, manually eliminating every bug in a file

system that has sheer complexity is a challenge, even for

an expert. For example, the latest implementation of ext4 in

Linux v4.18 comprises 50K lines of code, while that of Btrfs

is nearly 130K LoC. At the same time, many widely used

file systems are still under active development. File system

developers consistently optimize performance [72] and add new

features [11, 29], meanwhile introducing new bugs [26, 27, 40].

To automatically discover these potential bugs, most file

systems in development rely on the known stress-testing frame-

works (xfstests [63], fsck [56, 69], Linux Test Project [62], etc.)

that mostly focus on the regression of file systems with minimal

integrity checks. For example, one of the bugs we found in

ext4 (i.e., CVE-2018-10880) crashes the kernel by moving a

critical extended attribute out of the inode structure. We trigger

this bug by mounting a normal ext4 image formatted with

inline_data, which bypasses integrity checks in both xfstests

and fsck. In addition, some prior works have applied model

checking [73, 74] to find file system bugs, which requires a

deep understanding of both the file system and OS states. This

is now impractical due to the increasing complexity of modern

OSes [2, 35, 68]. On the other hand, most of the verified file

systems [6, 9] are too immature to adopt in practice.

Another approach—fuzzing—is gaining traction. Fuzzing

not only requires minimal knowledge about the target software,

but also is an effective and a practical approach that has found

thousands of vulnerabilities [15, 18, 34, 76]. Hence, fuzzing is a

viable approach to automatically discover bugs in a wide range

of file systems (e.g., 54 in the Linux kernel). However, unlike

other ordinary targets, fuzzing file systems is dependent on two

inputs: a mounted disk image and a sequence of file operations

(i.e., system calls) that are executed on the mounted image.

Existing fuzzers either focus on mutating images as ordinary

binary inputs [21, 48, 57, 61] or generating random sets of

file operation-specific system calls [20, 25, 46]. Unfortunately,

they all fail to efficiently and comprehensively test file systems

because of the following three challenges.

First, a disk image is a large binary blob that is structured

but complicated, and the minimum size can be almost 100×
larger than the maximum preferred size of general fuzzers [76],

which dramatically degrades the fuzzing throughput [21, 57, 61]

due to the heavy I/O involved in mutating images. Another

issue related to blob mutation is that existing fuzzers [20, 48]

mutate only non-zero chunks in an image. This approach is

unsound because these fuzzers do not exploit the properties

of structured data, i.e., file system layout, in which mutating

metadata blocks is more effective than mutating data blocks. In

addition, without any knowledge about the file system layout,

existing fuzzers also fail to fix any metadata checksum after

corrupting metadata blocks. The second challenge is that file

operations are context-aware workloads, i.e., a dependence

exists between an image and the file operations executed on

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

it. In particular, the real-time status of a mounted file system

determines which file objects a set of system calls can operate

on, and the invocation of a particular system call brings changes

to the object being operated on. Unfortunately, existing system

call fuzzers [20, 25, 46], which independently generate random

system calls with hard-coded file paths, fail to emit meaningful

sequences of file operations, and cover deep code paths of a

file system. The third issue with existing fuzzers is the aspect

of reproducing found bugs. Most of the existing fuzzers that

target OSes [20, 25, 46] or file systems [48] test generated

inputs without reloading a fresh copy of the OS instance or

file system image, i.e., they do not use a non-aging OS and
file system. The reason they do not re-initialize the OS or file

systems is that they rely on VM, QEMU, or user-mode Linux

(UML) [13] instances that take seconds to reload a fresh copy.

To overcome this issue, they reuse these instances, thereby

leading to dirty OS states, which eventually results in unstable

executions and irreproducible bugs.

We address the aforementioned challenges with JANUS, an

evolutionary feedback-driven fuzzer, that effectively explores

the two-dimensional input space of a disk file system. JANUS

addresses the first problem by exploiting the structured data

property in the form of metadata, i.e., it mutates only metadata

blocks of a seed image, thereby drastically pruning the

searching space of the input. Second, we propose the image-
directed syscall fuzzing technique to fuzz file operations, i.e.,

JANUS not only stores generated system calls but also deduces

the runtime status of every file object on the image after these

system calls complete. JANUS then uses the speculated status as

feedback to generate a new set of system calls, thereby emitting

context-aware workloads. During each fuzzing iteration, JANUS

performs image fuzzing with higher priority and then invokes

image-directed syscall fuzzing to fully explore a target file

system. Finally, JANUS solves the reproducibility problem,

which is tightly coupled with the scalability of OS fuzzing as

well as OS aging, by always loading a fresh copy of the OS

to test the file system-related OS functionalities with the help

of a library OS (i.e., Linux Kernel Library [54]), running in

user space.

With JANUS, we fuzzed eight popular file systems in the

upstream Linux kernel (v4.16–v4.18) for four months. Our

evaluation shows that JANUS achieves at most 4.19× more

code coverage than the state-of-the-art OS fuzzer Syzkaller.

Moreover, our choice of using a library OS enables us

to reproduce 88-100% of crashes, while Syzkaller fails to

reproduce any. Until now, we have successfully found 90 bugs,

and developers have already acknowledged 62 of them, 43 of

which have been fixed with 32 CVEs assigned.

This paper makes the following contributions:

• Issues. We identify three prominent issues of existing

file systems fuzzers: (1) fuzzing a large blob image is

inefficient; (2) fuzzers do not exploit the dependence

between a file system image and file operations; (3)

fuzzers use aging OSes and file systems, which results in

irreproducible bugs.

• Approach. We design and implement an evolutionary

file system fuzzer, called JANUS, that efficiently mutates

metadata blocks in a large seed image while generating

image-directed workloads to extensively explore a target

file system. JANUS further leverages a library OS (i.e.,

LKL) other than a VM to test OS functionalities, so as to

provide a clean-slate OS image in a matter of milliseconds.

• Impact. We evaluate JANUS on eight file systems and find

90 bugs in the upstream kernel, 62 and 43 of which have

been acknowledged and patched with 32 CVEs assigned.

Moreover, JANUS outperforms Syzkaller regarding code

coverage on all selected file systems. In particular, JANUS

eventually visits 4.19× and 2.01× more code paths than

Syzkaller when fuzzing Btrfs and ext4, respectively, for

12 hours. Meanwhile, JANUS can reproduce 88-100% of

the found crashes, while Syzkaller fails to reproduce any.

Threat Model. In this work, we assume that an attacker is

privileged to mount a fully crafted disk image on a target

machine and operate files stored on the image to exploit

security bugs in an in-kernel file system. Practical ways exist

for an attacker to achieve this without root privilege, including:

(1) Auto-mounting. Modern OSes automatically mount an

untrusted plugged-in drive if it supports the corresponding file

system, which is exploited by several infamous attacks such

as Stuxnet [28], "evil maid attack" [60], etc.; (2) Unprivileged

mounts. macOS allows a non-root user to mount an Apple disk

image applying various file systems such as HFS, HFS+, APFS,

etc., and a number of bugs are found in these file systems that

lead to memory read restriction bypass and code execution

in the kernel [38, 39, 77]. Linux also allows unprivileged

users to mount any file system with FS_USERNS_MOUNT in a user

namespace [12].

II. BACKGROUND AND MOTIVATION

Commodity OSes usually implement a disk file system as a

kernel module. Users are tasked with mounting the large-size
and formatted image and manage data via file operations. In this

section, we first describe general fuzzing approaches (§II-A)

and existing file system fuzzers (§II-B). Later, we explain why

they all fail to efficiently test file systems. We then summarize

the challenges and potential opportunities in file system fuzzing

(§II-C).

A. A Primer on Fuzzing

Fuzzing is a popular software-testing method that repeatedly

generates new inputs and injects them into a target program to

trigger bugs. It is one of the most effective approaches in prac-

tice to find security bugs in modern software. For example, the

state-of-the-art fuzzer AFL [76] and its variants [4, 5, 15, 51],

have discovered numerous bugs in open-source software. To

effectively explore a target program, recent fuzzers leverage

the past code coverage to later direct the input generation.

Moreover, software such as an OS is the most critical program,

as discovered bugs allow privilege escalation on a target

machine. To fuzz OSes, several frameworks [20, 46, 61] extend

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

super
block

group
descriptors

data block
bitmap

directory
entryi

inode
bitmap

inode
tables

data data extent
nodei

data journal
blocki

datasuper
block

group
descriptors

data block
bitmap

inode
bitmap

inode
tables

directory
entryi

extent
nodei

journal
blocki

Fig. 1: The on-disk layout of an ext4 image. The gray blocks shows
metadata in use, which occupies merely 1% of the image size. Some
of them, including extent tree nodes, directory entries, and journal
blocks, are scattered in the image, while others (e.g., superblock,
group descriptors, etc.) are in the beginning.

File system ext4 XFS Btrfs F2FS GFS2 ReiserFS NTFS AFL

Min. size (MB) 2 16 100 38 16 33 1 1

TABLE I: The minimal size of a block device allowed to be formatted
by various file systems with default options along with enabled
journaling or logging. Most of the image sizes exceed the size of a
fuzzing input suggested by AFL (1MB).

feedback-driven fuzzing approaches to trigger kernel bugs by

invoking randomly generated system calls.

B. File System Fuzzing

A disk file system has two-dimensional input space: (1) the

structured file system image format; and (2) file operations that

users invoke to access files stored on a mounted image. Several

file system fuzzing tools use a generic fuzzing infrastructure

to target either images or file operations.

1) Disk Image Fuzzer: A disk image is a large structured
binary blob. The blob has (1) user data and (2) several

management structures, called metadata, that a file system

needs to access, load, recover, and search data or to fulfill

other specific requirements of a file system. Figure 1 presents

the on-disk layout of a typical ext4 image.1 However, the size

of metadata constitutes merely 1% of the image size [1]. On

the other hand, the minimal size of a valid image can be 100

MBs (see Table I), which further increases on enabling certain

features. Three issues occur with an image as a fuzzing input:

(1) Large input size leads to an exponential increase in the

input space exploration. Meanwhile, important metadata are

mutated infrequently. (2) A fuzzer performs frequent read and

write operations on input files. When fuzzing a disk image, it

repeatedly reads during mutation, writes after mutation, and

saves the image if necessary. As a result, the large size of a

disk image slows down essential file operations, leading to

huge performance overhead. (3) Finally, to detect metadata

corruption, several file systems (e.g., XFS v5, GFS2, F2FS, etc.)

introduce checksums to protect on-disk metadata. Hence, the

kernel rejects a corrupt image, with mutated metadata blocks

without correct checksums, during initialization.

Disk image fuzzers [21, 48, 57, 61, 69] enforce a file system

to mount and execute a sequence of file operations on the

mutated disk images to trigger file system-specific bugs. Early

fuzzers [21, 57] ineffectively mutate bytes at random offsets in a

valid image to generate new images or mutate bytes in metadata

blocks only. These approaches incur heavy disk I/O from

loading and saving entire images. Moreover, these blind fuzzing

techniques generate poor-quality images without utilizing past

coverage. To overcome this, most recent fuzzers [20, 48] are

1We have listed its file hierarchy in Figure 9 including files and directories.

driven by code coverage. Moreover, they extract all the non-zero

chunks in a seed image for mutation. This approach touches

most of the metadata blocks and improves fuzzing performance

by decreasing input size. Nevertheless, these non-zero chunks

not only contain non-zero data blocks but also discard the

zero initialized metadata blocks, which results in sub-optimal

file system fuzzing. In addition, as metadata blocks are not

precisely located, this approach fails to fix their checksums.

2) File Operation Fuzzer: Since file systems are part of

the OS, a general approach to fuzz them is to invoke a set

of system calls [20, 25, 46]. Although porting these fuzzers

to target file system operations is straightforward, they fail

to efficiently fuzz file systems for two reasons: First, file

operations modify only file objects (e.g., directories, symbolic

links, etc.) that exist on the image, and a completed operation

affects particular objects. However, existing OS fuzzers do not

consider the dynamic dependence between an image and file

operations, as they blindly generate system calls, that explore

a file system superficially. For example, the state-of-the-art

OS fuzzer, Syzkaller, generates system calls based upon static

grammar rules describing the data types of every argument and

return value for every target system call. Therefore, Syzkaller

is able to generate a single semantically correct system call but

fails to explore the collective behavior of a set of system calls

and the modified file system image. For instance, Syzkaller may

emit multiples of open() calls on a file with its old path that

has been either renamed (rename()) or removed (unlink()).

Second, existing OS fuzzers [20, 61] mostly use virtualized

instances (e.g., KVM, QEMU, etc.) to run a target OS without

reloading a fresh copy of the OS or file system for every testing

input for the sake of performance. Unfortunately, fuzzing with

an aging OS or file systems has two issues: (1) The execution

of an aging OS becomes non-deterministic after processing

numerous system calls. For example, kmalloc() which depends

on prior allocations, behaves differently across runs. Sometimes

a kernel component (e.g., journaling system) quietly fails and

detaches from the OS without triggering any file system crash

during a long-run fuzzing. (2) A bug found by these fuzzers

accumulates the impact of thousands of invoked system calls,

which impedes the generation of a stable proof-of-concept for

developers to reproduce the bug and debug it [19].

3) File System Fuzzer: As mentioned before, most fuzzers

either fuzz a binary input [34, 76] or use a sequence of system

calls to fuzz the OS [20, 25]. However, to fuzz a file system,

we need to mutate two inputs: (1) the binary image (i.e., a file

system image) and (2) the corresponding workload (i.e., a set

of file system specific system calls). Unfortunately, combining

these two existing fuzzing techniques is not straightforward.

Recently, Syzkaller tried to achieve both by mutating non-zero

chunks in an image, while independently generating context-
unaware workloads to test the mutated image, which is still

unsound and ineffective.

C. Challenges of Fuzzing a File System

We summarize a set of challenges of fuzzing file systems

in the Linux kernel, and present our insights in designing

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

JANUS to overcome these challenges. Note that our insights

are applicable to other OSes as well.

Handling large disk images as input. An image fuzzer

should effectively fuzz a complicated, large disk image by (1)

mutating scattered metadata in the image with checksum, and

(2) mitigating frequent disk I/O due to input manipulation.

Unfortunately, current fuzzers fail to address these issues

simultaneously (see §II-B1). An ideal image fuzzer should

target only the metadata, rather than the entire disk image, and

must fix the checksum for any mutated metadata structure.

Missing context-aware workloads. File system-aware work-

loads directly affect the image. In particular, valid file opera-

tions modify file objects on an image (e.g., open() creates a

new file and unlink() removes one link of an existing file) at

runtime. However, existing fuzzers rely on the predefined image

information (i.e., valid file and directory paths on a seed image)

to generate system calls, and thereby fail to comprehensively

test all the accessible file objects in a target file system at

runtime (§II-B2). Therefore, a better approach is to maintain the

runtime status of every file object on an image after performing

past file operations for generating new ones.

Exploring input space in two dimensions. A file system

processes two types of inputs, including disk images and

file operations which are organized in completely different

formats (i.e., binary blob versus sequential operations), but

have an implicit connection between them. To fully explore

a file system, a fuzzer should mutate both of them, which is

not supported by existing fuzzers. Thus, we aim to propose

a hybrid approach that explores both dimensions by fuzzing

image bytes and file operations simultaneously.

Reproducing found crashes. Traditional OS fuzzers use

virtualized instances to test OS functionalities. However, to

avoid the expensive cost of rebooting a VM or reverting a

snapshot, they re-uses an OS or file system instance across

multiple runs, which leads to unstable kernel executions and

irreproducible bugs (see §II-B2). This issue can be overcome

by leveraging a library OS [53, 54] that provides the exact OS

behavior and re-initializes the OS states within milliseconds.

III. DESIGN

A. Overview

JANUS is a feedback-driven fuzzer that mutates the metadata

of a seed image, while generating context-aware file operations

(i.e., system calls) to comprehensively explore a file system. In

general, JANUS adopts the following design choices to resolve

the aforementioned challenges regarding file system fuzzing

(see §II-C). First, JANUS merely stores the metadata extracted

from the seed image as its mutation target, which is critical

for a file system to manage user data. In addition, JANUS

re-calculates every metadata checksum value after mutation.

Since the metadata occupy a small space (1%), the size of

an input test case is much smaller than that of an entire disk

image, which enables high fuzzing throughput. Second, JANUS

does not rely on manually specified information about the

files stored on a seed image, as it becomes stale over time

Image mutator

libOS
executor

Fuzzing engine

Corpusstatus

�

Syscall fuzzer

metadata'

program'

status'

Coverage
bitmap

metadata

program

�

� �

�

�
�

Fig. 2: An overview of JANUS. In each fuzzing iteration, JANUS

loads a test case from its working corpus, which consists of three
parts: the metadata of a seed image, a program containing a list of file
operations, and the speculated image status at runtime after executing
the program (1). Then the fuzzing engine of JANUS mutates the test
case in two directions: (1) The image mutator randomly mutates the
metadata, and the fuzzing engine outputs the mutated metadata along
with the intact program for testing (2), or (2) The syscall fuzzer
mutates existing system calls in the program or appends new ones, and
updates the image status correspondingly as the workload changes
(2). In this case, the fuzzing engine outputs the intact metadata
and the newly generated program. Next, JANUS releases the output
metadata into a full-size image (3) and delivers the image with the
output program (3) to a library OS based executor. The executor
mounts the image and executes the program, whose execution trace is
profiled into a bitmap shared with the fuzzing engine of JANUS (4).
If new code paths are discovered, the output metadata and program,
and the updated image status are packed as a new test case and saved
into the corpus for future mutation (5).

and results in ineffective test case generation. Instead, JANUS

generates new file operations based upon the deduced status

of an image after completing old ones in a workload. Third,

JANUS manages to explore the two-dimensional input space

of a file system by wisely scheduling image fuzzing and file

operation fuzzing. Considering the fact that the original image

determines the initial state of a file system and affects the

executions of the foremost file operations, JANUS makes the

first effort to mutate image bytes. Lastly, JANUS relies on a

library OS to test kernel functions in user space. A library OS

instance runs as a user application, which can be re-launched

with negligible overhead, and thereby helps to increase the

chance of reproducing a found bug.

Figure 2 presents the detailed design of JANUS. A binary

input for JANUS consists of three parts: (1) a binary blob

comprising the metadata blocks of a seed image, (2) a serialized

program (i.e., file system workload) that describes a sequence

of system calls, and (3) the speculated image status after the

program operates the image. In the beginning, JANUS relies

on a file system-specific parser to extract metadata from a

seed image. JANUS also inspects the seed image to retrieve

initial image status and generate starting programs. The original

metadata, along with the image status and the program, are

packed as a test case and are saved into JANUS’S working

corpus. JANUS initiates fuzzing with both the image mutator

and the system call fuzzer by selecting a test case from the

corpus (1) for exploring the two-dimensional input space in

an infinite loop. First, the fuzzing engine invokes the image

mutator to flip the bytes of the metadata blob in several ways

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

1 # Class Janus
2 def generate_corpus(self, image, fstype):
3 self.image_buffer = read_image(image)
4 meta_blocks = self.img_parser.parse_image(image, fstype)
5 meta_buffer = ""
6 for meta_block in meta_blocks:
7 self.meta_blocks[i].offset = meta_block.offset
8 self.meta_blocks[i].size = meta_block.size
9 if meta_block.has_csum:

10 self.meta_blocks[i].csum_offset = meta_block.csum_offset
11 else:
12 self.meta_blocks[i].csum_offset = None
13 meta_buffer += meta_block.buffer
14

15 file_objs = self.inspect_image(image)
16 program = Program()
17 status = Status(file_objs)
18 self.sys_fuzzer.initialize(program, status)
19 for file_obj in file_objs:
20 (new_program, new_status) = \
21 self.sys_fuzzer.generate_syscall(SYS_OPEN, [file_obj])
22 self.add_into_corpus((meta_buffer, new_program, new_status))

Fig. 3: Pseudo-code of how JANUS generates the initial corpus given
a seed image.

and outputs mutated blobs (2). At the same time, the program

in the test case remains unchanged. Later on, the system call

fuzzer enables JANUS to either mutate the argument values of

existing system calls in the program or append new ones to the

program. The system call fuzzer also produces new image status

according to the newly generated program (2). Meanwhile, the

metadata part remains intact. The output metadata is combined

with other unchanged parts (i.e., user data) to produce a full-size

image with all the checksum values re-calculated by JANUS

(3). And the output program is also serialized and saved onto

the disk (3). A user-space system call executor, which relies

on a library OS, launches a new instance to mount the full-size

image and perform the file operations involved in the program

loaded from the disk (4). The runtime path coverage of the

executor is profiled into a bitmap shared with JANUS’s fuzzing

engine. The fuzzing engine inspects the bitmap; on discovering

a new path, JANUS saves the shrunken image, the serialized

program, and the speculated image status into one binary input

for further mutation in successive runs (5). Note that for

each test case, JANUS always launches the image mutator first

for certain rounds and invokes the system call fuzzer if no

interesting test case is discovered.

We first describe how JANUS generates the starting test cases

by parsing a seed image in §III-B. We then present how it

fuzzes image bytes and generates file operations in §III-C and

§III-D, respectively. More important, we describe how JANUS

integrates two core fuzzers in §III-E. Finally, we present our

new library OS-based environment for file system fuzzing in

§III-F.

B. Building Corpus

JANUS relies on its image parser and system call fuzzer

to build its initial corpus upon a seed image (see Figure 3).

The first part of the test cases in the corpus is the essential

metadata blocks of the seed image, which constitutes around

1% of the total size, thereby overcoming the challenges of

fuzzing a disk image, as described in §II-C. Specifically, JANUS

1 # Class ImageMutator
2 def mutate_image(meta_buffer):
3 choice = Random.randint(0, 8)
4 if choice == 0:
5 return flip_bit_at_random_offset(meta_buffer)
6 elif choice == 1:
7 return set_interesting_byte_at_random_offset(meta_buffer)
8 elif choice == 2:
9 return set_interesting_word_at_random_offset(meta_buffer)

10 elif choice == 3:
11 return set_interesting_dword_at_random_offset(meta_buffer)
12 elif choice == 4:
13 return inc_random_byte_at_random_offset(meta_buffer)
14 elif choice == 5:
15 return inc_random_word_at_random_offset(meta_buffer)
16 elif choice == 6:
17 return inc_random_dword_at_random_offset(meta_buffer)
18 else:
19 return set_random_byte_at_random_offset(meta_buffer)

Fig. 4: Pseudo-code of how JANUS randomly mutates metadata blocks.

first maps the entire image into a memory buffer. Then a file

system-specific image parser scans the image and locates all

the on-disk metadata according to the specification of the

applied file system. JANUS re-assembles these metadata into a

shrunken blob for mutation afterward and records their sizes

and in-image offsets. For any metadata structure protected

by checksum, JANUS records the in-metadata offset of the

checksum field recognized by the image parser. Second, the

starting test cases also include the information of every file

and directory on the image that allows JANUS to use that

knowledge for generating context-aware workloads afterward.

In particular, the system call fuzzer probes the seed image and

retrieves the path, type (e.g., normal file, directory, symbolic

link, FIFO file, etc.), and extended attributes of every file object

on it, which are packed into every initial test case. Moreover,

every initial test case involves a starting program that has a

distinct system call generated by the system call fuzzer for

mutation. To enlarge the overall coverage of the corpus, each

randomly generated system call operates a unique file object

(see §III-D for the details of program format and system call

generation). The metadata and the file status of the seed image,

along with a starting program together form an input test case,

which is packed by JANUS and saved into the corpus on the

disk for future fuzzing.

C. Fuzzing Images

JANUS relies on the image mutator to fuzz images. In

particular, the image mutator loads the metadata blocks of

a test case, and applies several common fuzzing strategies [76]

(e.g., bit flipping, arithmetic operation on random bytes, etc.)

to randomly mutate the bytes of the metadata, as described in

Figure 4 (2). Similar to existing fuzzers [75], JANUS prefers a

group of specific integers (i.e., interesting values in Figure 4),

such as -1, 0, INT_MAX, etc., instead of purely random values

to mutate the metadata. In our evaluation, these special values

enable the image mutator to produce more corner cases, which

are not correctly handled by the file system (e.g., bug #1, #6,

#14, #28, #33, etc. in Table VI found by JANUS) and also

more extreme cases that increase the probability of crashing

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

1 # Class Janus
2 def release_image(self, meta_buffer):
3 pos = 0
4 for meta_block in self.meta_blocks:
5 meta_block_buffer = meta_buffer[pos:pos + meta_block.size]
6 if meta_block.csum_offset is not None:
7 self.fix_csum(meta_block_buffer, meta_block.csum_offset)
8 copy_buffer(self.image_buffer[meta_block.offset],
9 meta_block_buffer, meta_block.size)

10 pos += meta_block.size

Fig. 5: Pseudo-code of how JANUS releases the mutated metadata
blocks back to a full-size image for testing.

1 # Class SyscallFuzzer
2 def mutate_syscall(self):
3 new_program = Program(self.program)
4 syscall_index = Random.randint(0, len(self.program.syscalls))
5 syscall = self.program.syscalls[syscall_index]
6 args = [i for i in range(len(syscall.args)) \
7 if not may_effect_status(syscall, i)]
8 arg = Random.choice(args)
9 mutated_arg = self.generate_arg_by_status(syscall, arg)

10 new_program.syscalls[syscall_index].args[arg_index] = mutated_arg
11 return new_program
12

13 def generate_syscall(self, sysno=None, args=[]):
14 new_program = Program(self.program)
15 new_status = Status(self.status)
16 syscall = Syscall()
17 if sysno is None: syscall.sysno = Random.choice(FS_SYSNOS)
18 else: syscall.sysno = sysno
19 for arg in args: syscall.add_arg(arg)
20 for i in range(len(args), SYSCALL_ARG_NUM[syscall.sysno]):
21 syscall.add_arg(self.generate_arg_by_status(syscall, i))
22 new_program.add_syscall(syscall)
23 new_status.update(syscall)
24 return (new_program, new_status)

Fig. 6: Pseudo-code of how JANUS randomly mutates existing system
calls and generate new ones given a program.

the kernel by triggering a specific bug at runtime (e.g., most

of the out-of-bound access bugs discovered by JANUS).

After mutating the entire metadata blob, JANUS copies each

metadata block in the blob back to its corresponding position

inside the memory buffer, which stores the original full-size

image (3). To maintain the sanctity of the image, the image

parser recalculates the checksum value of every metadata block

by following the specific algorithm adopted by the target file

system, and fills the value at the recorded offset of the checksum

field.

D. Fuzzing File Operations

The system call fuzzer enables JANUS to generate image-

directed workloads to effectively explore how a file system

handles various file operations requested by users. First, we

present the structure of a program manipulated by the system

call fuzzer. A program includes a list of ordered system calls

that modifies the mutated image and maintains a variable bank

that stores the variables used by system calls. JANUS describes

each system call as a tuple of the syscall number, argument

values, and a return value. If any argument value or return

value is not a simple constant but a variable, JANUS presents

it as an index pointing to the variable stored in the variable

bank. In addition, the program also includes a list of active

file descriptors that are opened and have not been closed by

the program.

Similar to existing fuzzers (e.g., Syzkaller), the system call

fuzzer generates new programs from an input program in two

ways: (1) Syscall mutation. The system call fuzzer randomly

selects one system call in the program, and generates a list

of new values to replace the old value of a randomly selected

argument; (2) Syscall generation. The system call fuzzer

appends a new system call to the program, whose arguments

have randomly generated values. In particular, JANUS adopts

the same strategies that Syzkaller uses to generate values for the

trivial arguments of a system call. The candidate values of these

arguments are independent of our speculated runtime status.

For any argument that has a clearly defined set of its available

values, JANUS randomly selects values from the set for it.

(e.g., int whence for lseek()). Moreover, JANUS generates

random numbers in a certain range for the arguments of an

integer type (e.g., size_t count for write()). Furthermore, a

number of file operations requires an argument of a pointer

type. Such a pointer normally points to a buffer that is used to

store either user data (e.g., void *buf for write()) or kernel

output (e.g., void *buf for read()). For the former case, the

system call fuzzer declares an array filled with random values

for the argument. A fixed array is always used in the latter

case, since JANUS is not driven by what the kernel outputs at

runtime except for its code coverage.

Nevertheless, for those non-trivial arguments whose proper

values depend on the running context of a file system, JANUS

generates their values based not only on their expected types,

but more important, on our maintained status by following

mainly three rules: (1) If a file descriptor is required, the system

call fuzzer randomly picks an opened file descriptor of proper

type. For instance, write() requires a normal file descriptor,

while getdents() asks for the file descriptor of a directory; (2)

If a path is required, the system call fuzzer randomly selects the

path of an existing file or directory, or a stale file or directory

that is removed by recent operations. For instance, JANUS

provides the path of a normal file or a directory to rename(),

but delivers only that of a valid directory required by rmdir().

If the path is used to create a new file or directory, JANUS may

also randomly generate a brand new path that is located under

an existing directory; (3) If a system call operates the existing

extended attribute of a particular file (e.g., getxattr() and

setxattr()), the system call fuzzer randomly picks a recorded

extended attribute name of the file. The generation strategies

enable JANUS to emit context-aware workloads on fresh file

objects that are free of runtime errors and achieve high code

coverage.

For a newly generated system call, JANUS appends it to

the program and, more important, summarizes the potential

changes to the file system caused by the system call and

updates the speculated status of the image correspondingly.

For instance, open(), mkdir(), link(), or symlink() may

create a new file or directory, while open() also introduces

an active file descriptor; rmdir() or unlink() removes a file

or a directory from the image; rename() updates the path of

a file and setxattr() or removexattr() updates a particular

extended attribute.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

1 # Class Janus
2 def run_one(self, buffer, program, status):
3 cov, lkl_status = self.lkl_test(self.image_buffer, program)
4 if lkl_status == CRASH:
5 self.save_crash((buffer, program))
6 elif self.has_new_path(cov):
7 self.add_into_corpus((buffer, program, status))
8 return True
9 return False

10

11 def fuzz_one(self):
12 (meta_buffer, program, status) = ctx.pick_from_corpus()
13 found_new = False
14 for _ in range(IMAGE_MUTATE_CYCLES):
15 mutated_buffer = self.img_mutator.mutate_image(meta_buffer)
16 if self.run_one(mutated_buffer, program, status):
17 found_new = True
18 if found_new: return
19 self.release_image(ctx, meta_buffer)
20 self.sys_fuzzer.initialize(program, status)
21 for _ in range(SYSCALL_MUTATE_CYCLES):
22 new_program = self.sys_fuzzer.mutate_syscall()
23 if self.run_one(meta_buffer, new_program, status):
24 found_new = True
25 if found_new: return
26 for _ in range(SYSCALL_GENERATE_CYCLES):
27 (new_program, new_status) = \
28 self.sys_fuzzer.generate_syscall()
29 self.run_one(meta_buffer, new_program, new_status)

Fig. 7: Pseudo-code of one fuzzing iteration in JANUS.

Note that in the current design, JANUS maintains only the

speculated image status after completing the execution of

a program. Therefore, JANUS avoids any mutation on the

existing arguments that result in potential changes to the image

status. For instance, JANUS may mutate fd of a write() in the

program while never touching path of unlink(), since such

a mutation may invalidate the system calls after the mutated

ones (e.g., changing unlink("A") to unlink("B") affect all the

existing file operations afterward on file B in a test case).

E. Exploring Two-Dimensional Input Space

To fuzz both metadata and system calls together, JANUS

schedules its two core fuzzers in order. Figure 7 describes

one fuzzing iteration of JANUS. Specifically, for an input test

case, which contains a shrunken image and a program, JANUS

first launches the image mutator to mutate random bytes on

the shrunken image. If no new code path is discovered with

the unchanged program, JANUS invokes the system call fuzzer

to mutate the argument values of an existing system call in

the program for certain rounds. If still no new code path is

explored, JANUS eventually tries to append new system calls

to the program. Note that rounds in every fuzzing stage are

user defined.

Scheduling image fuzzing and file operation fuzzing in such

an order is effective as follows: (1) The extracted metadata

indicate the initial state of an image, whose impacts on the

executions of file operations gradually decreases when the

image has been operated by several system calls. Hence, JANUS

always tries to mutate metadata first. (2) Introducing new file

operations exponentially increases the mutation space of a

program and may also erase the changes from past operations of

the image. Therefore, JANUS prefers mutating existing system

calls rather than generating new ones.

Component LoC Languange

Fuzzing engine
Image parser (8 file systems) 5,229 C++
Image inspector 141 Python
Program serializer 1,163 C++
Syscall fuzzer 3,137 C++
Other AFL changes 497 C

LKL changes
Shared image buffer 16 C
KASAN 804 C

Instrumentation tool 360 C++
LKL-based executor 851 C++

PoC generator 1,108 C++, Python

TABLE II: Implementation complexity of JANUS, including the
changes to AFL and LKL for file system fuzzing. Since we directly
reuse the existing binary mutation algorithms in AFL for the image
mutator, we omit its code size.

F. Library OS based Kernel Execution Environment

To avoid using an aging OS or file system that results

in unstable executions and irreproducible bugs (see §II-C),

JANUS relies on a library OS based application (i.e., executor)

to fuzz OS functionalities. Specifically, JANUS forks a new

instance of the executor to test every newly generated image and

workload from the fuzzing engine (4). Note that forking a user

application incurs negligible time compared with resetting a

VM instance. Hence, JANUS guarantees a clean-slate kernel for

every test case with low overhead. Moreover, as both fuzzing

engine and executor run in user space on one machine, sharing

input files and coverage bitmap between them is straightforward,

which is challenging for VM-based fuzzers that run the fuzzing

engine outside VM instances. In addition, a library OS instance

requires far less computing resources compared with any type

of VMs. Therefore, we can deploy JANUS instances on a large

scale without severe contention.

IV. IMPLEMENTATION

We implement JANUS as a variant of AFL (version 2.52b).

JANUS adopts the basic infrastructure of AFL, including the

forkserver, coverage bitmap, and test-case scheduling algorithm.

We extend AFL with the the image mutator and the system

call fuzzer. In addition, we implement an image inspector to

build the initial corpus from a seed image and a program

serializer for delivering generated programs between memory

and working corpus. Furthermore, we implement an executor

based on Linux Kernel Library (LKL) to test newly generated

images and workloads. Note that we also modify LKL to

support the kernel address sanitizer (KASAN) [17], which

is widely adopted by OS fuzzers to detect memory errors.

For ease of reproducing bugs in a real environment, we also

implement a Proof-of-Concept (PoC) generator that produces

a full-size image along with a compilable C program from a

serialized test case. Table II presents the lines of code (LoC)

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

of each components of JANUS. In this section, we describe the

implementation details of several main components.

Image parser and image mutator. We implement the image

parser as a dynamic library to locate metadata and identify

checksums on a seed image. Currently, the image parser

supports parsing the disk images of eight widely used file

systems on Linux, including ext4, XFS, Btrfs, F2FS, GFS2,

HFS+, ReiserFS, and VFAT. Our implementation of the image

parser refers to the user-space utilities (e.g., mkfs and fsck) of

those file systems. We also implement the image mutator, which

randomly mutates the bytes of a shrunken image through eight

strategies (see Figure 4). We directly port the implementation

of these mutation strategies from AFL in JANUS.

Image inspector. We implement an image inspector for

JANUS, which iterates files and directories on a seed image,

and records their in-image paths, types, and extended attributes

for building initial test cases (see §III-B).

Program serializer. We describe newly generated programs

and updated status in a serializable format (see Figure 12) and

implement a corresponding program serializer. The serializer

loads them from the disk into the memory for fuzzing and

testing, and saves them from memory onto the disk for

bookkeeping.

System call fuzzer. The system call fuzzer is implemented

as a new extension for AFL, which is invoked by JANUS

when image mutation fails to make progress. The system call

fuzzer receives a deserialized program and the corresponding

status, and outputs new programs and updated status through

system call mutation or system call generation (see §III-D).

Currently, JANUS supports generating and mutating 34 system

calls designed for fundamental file operations (see §F). A

number of system calls related to file operations to a certain

extent but mainly realized at the VFS (virtual file system) layer

(e.g., dup(), splice(), tee(), etc.) are not worth being tested

and are excluded by JANUS.

In our implementation, JANUS basically mutates metadata

in a test case for 256 rounds, which is the default setting for

the havoc stage (i.e., nondeterministic mutation) in AFL. If the

code coverage fails to increase, JANUS tries to mutate existing

system calls for 128 rounds and appends new ones for another

64 rounds. JANUS spends more effort on image mutation due

to its higher priority when exploring the two-dimensional input

space (see §III-E).

LKL-based executor. We build our executor for JANUS upon

Linux Kernel Library (LKL), which is a typical library OS that

exposes kernel interfaces to user-space programs. Figure 11

presents a code example of using LKL system calls to operate

an ext4 image. The official LKL currently works with Linux

kernel v4.16 and we port it to be compatible with recent

versions, including v4.17 and v4.18. To achieve AFL-style path

coverage at runtime, we implement a GCC wrapper to selectively

instrument the source files of a target file system when building

LKL. Furthermore, we implement a user application (i.e., the

executor) linked with LKL as the fuzzing target of JANUS. For

a generated test case, the executor forks a new instance through

the forkserver and invokes LKL system calls to mount an image

mutated by the image mutator and perform a sequence of file

operations generated by the system call fuzzer.

As flushing a full-size image onto the disk every time takes

much time, we introduce a persistent memory buffer shared

between JANUS’s fuzzing engine and the LKL-based executor

to store the image (i.e., ctx.image_buffer in Figure 3). The

LKL’s block device driver underlying a file system is then

modified to access the memory buffer instead of the image file

on the disk when acquiring any image data. Moreover, we apply

the Copy-on-Write (CoW) technique at runtime to guarantee

that besides the mutated blocks, other parts inside the image

buffer never change when the image buffer is operated by the

generated workload. Specifically, when the device driver tends

to flush any byte back to a block on the image at runtime,

the block is duplicated for modification and later accesses

from LKL. In addition, we port the kernel address sanitizer

(KASAN) to LKL, which can effectively detect memory errors

at runtime. KASAN allocates shadow memory at runtime to

record whether each byte of the original memory is safe to

access. Note that KASAN relies on MMU to translate an

address to its corresponding shadow address, which is not

supported by LKL. Hence, we reserve the shadow memory

space and build the mappings from the memory space of LKL

to the shadow memory at LKL’s boot time.

V. EVALUATION

In this section, we evaluate the effectiveness of JANUS in

terms of its ability to find bugs in the latest file systems and

achieve higher code coverage than existing file system fuzzers.

In particular, we answer the following questions:

• Q1: How effective is JANUS in discovering previously

unknown bugs in file systems? (§V-A)

• Q2: How effective is JANUS in exploring (1) the state

of file system images, (2) file operations, and (3) the

two-dimensional input space including images and file

operations? (§V-B, §V-C, §V-D)

• Q3: Is the library OS based executor more effective in

reproducing crashes than traditional VMs? (§V-E)

• Q4: Besides finding new bugs, what else can JANUS

contribute to the file system community? (§V-F)

Experimental Setup. We evaluate JANUS on a 2-socket,

24-core machine running Ubuntu 16.04 with Intel Xeon E5-

2670 processors and 256GB memory. We use JANUS to fuzz

file systems in Linux v4.18-rc1, unless otherwise stated. In

particular, we test eight file systems including ext4, XFS, Btrfs,

F2FS, GFS2, HFS+, ReiserFS, and VFAT. We create a seed image

for each file system that has the on-disk file organization shown

in Figure 9 with most features enabled except ext4 and XFS.

For ext4, we create two seed images: one compatible with

ext2/3 and the other with ext4 features. Similarly, we do the

same for XFS representing XFS v4 and XFS v5, which introduces

on-disk checksums to enforce metadata integrity. In total, we

evaluate 10 seed images. In addition, we compare our results

with Syzkaller (commit ID 9be5aa1), which is the state-of-the-

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

File Systems #Reported #Confirmed #Fixed #Patches #CVEs
ext4 18 16 16 20 13
XFS 17 11 7 9 5
Btrfs 9 9 8 10 5
F2FS 11 11 11 12 8
GFS2 14 0 0 0 0
HFS+ 8 7 1 1 1
ReiserFS 13 8 0 0 0
VFAT 0 0 0 0 0

Total 90 62 43 52 32

TABLE III: An overview of bugs found by JANUS in eight widely-
used file systems in upstream Linux kernels. The column #Reported
shows the number of bugs reported to the Linux kernel community;
#Confirmed presents the number of reported bugs that are previously
unknown and confirmed by kernel developers; #Fixed indicates
the number of bugs that have already been fixed, at least in the
development branch, and #Patches reports the number of git commits
for fixing found bugs; #CVEs lists the number of CVEs assigned for
confirmed bugs.

art OS fuzzer. We run Syzkaller with KVM instances, each of

which has two cores and 2GB of memory.

Note that Syzkaller relies on KCOV to profile code coverage,

while JANUS relies on the method of AFL. For an apples-to-

apples comparison between Syzkaller and JANUS, after fuzzing

12 hours, we mount every image mutated by JANUS, and

execute the corresponding program generated by JANUS on a

KCOV-enabled kernel to get the KCOV-style coverage. (see

Appendix §B for the details of AFL- and KCOV- style code

coverage).

A. Bug Discovery in the Upstream File Systems

We intermittently ran JANUS for four months (i.e., from April

2018 to July 2018) to fuzz the aforementioned file systems

in upstream kernels from v4.16 to v4.18. Over the span of

few days to a week, we ran three instances of JANUS to test

each file system. JANUS found 90 unique bugs that resulted in

kernel panics or deadlocks, which we reported to the Linux

kernel community. We differentiated bugs on the basis of

KASAN reports and call stack traces. Among them, developers

confirmed 62 as previously unknown bugs, including 36 in

ext4, XFS, and Btrfs—the three most widely used file systems

on Linux. So far, developers have already fixed 43 bugs with

52 distinct patches, and also assigned 32 CVEs (see Table III).

Another important finding is that some bugs, (e.g., four bugs

related to log recovery in XFS and six bugs about extended

attributes in HFS+) are not going to be fixed by developers in the

near future, as these bugs require large-scale code refactoring.

In addition, ReiserFS developers will not fix five bugs that

lead to the BUG() condition, as ReiserFS is in maintenance

mode.

Note that there are other notable efforts on finding file system

bugs through fuzzing or manual auditing.

• Syzkaller, the state-of-the-art system call fuzzer that

started to support mutating file system images in March,

2018. Note that Google deployed many more instances

of Syzkaller (i.e., syzbot) than those of JANUS for

continuously fuzzing the upstream kernel. Although syzbot

fuzzes the whole kernel, we found more file system bugs

with JANUS in four months. According to our investigation,

Syzkaller reported only two ext4 bugs, one XFS bug, four

F2FS bugs, and one HFS+ bug during our evaluation period,

among which one of the ext4 bugs, the XFS bug, and the

HFS+ bug were also found by JANUS. JANUS missed one

ext4 bug requiring a 4K block size, which is larger than

that of our seed images. And we started using JANUS to

fuzz F2FS after these four F2FS bugs were fixed.

• Google Project Zero, a team of security researchers

seeking zero-day vulnerabilities who found one ext4 bug

through source review. The bug was also discovered by

JANUS.

• Internal efforts from the file system development com-

munity. XFS developers noticed four XFS bugs found by

JANUS before we reported them. Unfortunately, we were

unable to provide the total number of memory safety

bugs found by developers whose patches cannot easily be

differentiated from the ones for fixing functionalities.

Table VI lists the details of 43 patched bugs that were

previously unknown. The bugs have a wide range of types,

from relatively harmless floating point exceptions to critical

out-of-bound access and heap overflow bugs that can be used

to corrupt critical kernel data and execute arbitrary code with

kernel privileges. Most of the bugs require mounting a corrupted

image followed by particular file operations to trigger, which

are the joint effects from two types of input of a file system

that JANUS manages to explore. In particular, one needs to

invoke three or more system calls to trigger 80% of these bugs,

which indicates the effectiveness of the system call fuzzer.

Moreover, a quarter of the bugs are triggered by mounting only

a corrupted image, which further proves the effectiveness of

JANUS in fuzzing images. As JANUS emphasizes the priority

of mutating image bytes, all the generated test cases contain

the images with error bytes. Therefore, no reported bug only

requires particular file operations without an uncorrupted image

to trigger.

Result. JANUS successfully found 90 bugs in widely-used

and mature file systems in upstream kernels. Among them,

62 bugs have been confirmed as previously unknown. As a

specialized fuzzer for file systems, JANUS helped the Linux

kernel community to discover and patch more file system bugs

than Syzkaller in recent months.

B. Exploring the State Space of Images

We first evaluate how JANUS mutates image bytes to explore

a target file system by comparing it with Syzkaller. Syzkaller

recently supported mounting mutated images by introducing

a wrapper call: syz_mount_image(), which takes mutated non-

zero segments of an image as input, flushes them into a loop

device at corresponding offsets, and eventually invokes mount().

To evaluate the impact of state space of an input image, we

disable the system call fuzzing stage in JANUS and concentrate

only on fuzzing the image. We denote our image fuzzer as

JANUSi. After a mutated image is mounted, we enforce both

our LKL-based executor, used by JANUSi, and the executor

of Syzkaller (called Syzkalleri) running in a KVM instance to

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

perform a fixed sequence of system calls under the mounting

point (see Figure 13) to demonstrate how mutated image bytes

help fuzzers to explore a file system. We evaluate both fuzzers,

with the seed images of eight file systems, described in the

experimental setup, for 12 hours. For each target file system,

we launch one JANUSi instance and one KVM instance for

Syzkalleri.

Figure 8 presents the number of paths both JANUSi and

Syzkalleri visit in selected file systems. After running for

30 minutes, JANUSi always has higher code coverage than

Syzkalleri. JANUSi outperforms Syzkalleri by 1.47–4.17× for

the evaluated file systems. Note that most selected file systems

have relatively complex implementation, which shows the

ability of JANUS mutating important image bytes to discover

deeper code paths. Our approach differs from Syzkalleri, as

Syzkalleri considers only the important parts of an image as

an array of non-zero chunks, that can either miss metadata

blocks or even include inessential data blocks. By contrast,

JANUSi leverages the semantics of an image, namely locating

and mutating metadata blocks only. In addition, both GFS2

and Btrfs have checksum for metadata blocks, which severely

degrades the performance of Syzkalleri. Another interesting

observation is that Syzkalleri does not correctly use the seed

image for XFS because Syzkaller does not support an image

containing more than 4096 non-contiguous non-zero chunks,

which is one of the big limitations of Syzkaller in fuzzing

file systems. Therefore, Syzkalleri has to generate XFS images

from scratch. Since XFS v5 has metadata checksum, Syzkalleri

cannot make any forward progress even after running for 12

hours, as it does not fix the checksum of metadata.

Result. By mutating metadata blocks and fixing checksums,

JANUSi quickly explores more code paths in the selected file

systems than Syzkalleri when fuzzing only images with fixed

file operations. More specifically, JANUSi achieves at most

4.17× more code coverage than Syzkalleri, which shows the

effectiveness of JANUS when fuzzing only images.

C. Exploring File Operations

We now evaluate the effectiveness of only fuzzing file

operations without mutating the file system image, i.e., we

discard the image fuzzing stage. We denote our file operation

fuzzer as JANUSs, which automatically generates nine seed

programs for mutation after inspecting a seed image, each one

containing an open() system call on a file or directory in the

image (see Figure 9). We compare JANUSs with Syzkallers

by fuzzing 27 file system-specific system calls2 and executing

generated programs on a seed image after being mounted. We

hard-code the paths of all available files and directories on a

seed image in the description file for Syzkallers to fill the values

of certain arguments when fuzzing particular system calls. We

run both of these fuzzers on eight file systems for 12 hours.

2 Syzkallers and JANUSs fuzz the following system calls: read(),
write(), open(), lseek(), getdents64(), pread64(), pwrite64(), stat(),
lstat(), rename(), fsync(), fdatasync(), access(), ftruncate(), truncate(),
utimes(), mkdir(), rmdir(), link(), unlink(), symlink(), readlink(),
chmod(), setxattr(), fallocate(), listxattr() and removexattr()

As already mentioned, we launch one JANUSs instance and

one KVM instance for Syzkallers in this experiment. Further,

we re-execute all programs generated by JANUSs to obtain

comparable path coverage in KCOV style.

Figure 8 presents the evaluation result, which shows that

with a wiser fuzzing strategy, JANUSs keeps exploring more

code paths than Syzkallers in the span of 12 hours. In particular,

JANUSs eventually visits 2.24×, 1.27×, and 1.25× more unique

code paths than Syzkallers when fuzzing the three most popular

file systems, XFS v5, Btrfs, and ext4, respectively. Moreover,

JANUSs also outperforms Syzkallers 1.72× and 1.49× on HFS+

and GFS2, respectively. By generating context-aware workloads,

we observe that JANUS is more effective than Syzkallers for

fuzzing file systems. The reason is that Syzkallers is a general

and advanced system call fuzzer, but, unlike JANUSs, Syzkallers

completely fails to exploit the domain knowledge of a file

system to explore its code path effectively.

Result. By generating context-aware workloads, JANUS

explores more code paths than Syzkallers in all eight popular

file systems when only targeting the system calls related to

file operations. In particular, the programs generated by JANUS

manage to visit at most 2.24× more paths. The evaluation

result fully demonstrates the effectiveness of JANUS in terms

of file operation fuzzing.

D. Exploring Two-Dimensional Input Space

To demonstrate the comprehensiveness of JANUS’S fuzzing

by mutating both image bytes and file operations, we run

original JANUS and Syzkaller on the eight aforementioned file

systems with the same seed images for 12 hours. We provide

syz_mount_image() in the description file to make Syzkaller

not only generate system calls but also mutate the bytes in a

seed image while invoking 27 file system-specific system calls

(see §V-C). In this experiment, we simultaneously launch three

instances for both JANUS and Syzkaller for parallel fuzzing.

Moreover, both fuzzers share generated test cases for each

corresponding file systems. Figure 8 (marked Syzkaller and

JANUS) shows the results of this experiment.

We observe that JANUS discovers more code paths than both

JANUSi and JANUSs. Our results illustrate the importance of

fuzzing both images and file operations to comprehensively

explore a file system. More important, JANUS further out-

performs Syzkaller on all tested file systems. In particular,

JANUS achieves at most 4.19×, 4.04×, and 3.11× higher code

coverage than Syzkaller when fuzzing Btrfs, GFS2, and F2FS,

respectively. For ext4, JANUS also hits 2.01× more unique

code paths. The major reason is that Syzkaller prioritizes system

call fuzzing over image fuzzing, while JANUS incorporates

the strategy of blob-directed system call fuzzing. For instance,

while generating a program for fuzzing, Syzkaller does not guar-

antee whether a valid file system is mounted before performing

any file operation, i.e., it completely forgoes the file system

context-awareness to blindly fuzz a file system. We mitigate

this issue by invoking umount() and syz_mount_image() at

the beginning of a program. Nevertheless, Syzkaller is still

not capable of stopping if mounting a mutated image fails. In

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

0.0k

2.0k

4.0k

6.0k

8.0k

10.0k

12.0k

0.0k

2.0k

4.0k

6.0k

8.0k

10.0k

12.0k

0.0k

3.0k

6.0k

9.0k

12.0k

15.0k

0.0k

4.0k

8.0k

12.0k

16.0k

0.0k

4.0k

8.0k

12.0k

16.0k

20.0k

0.0k

1.5k

3.0k

4.5k

6.0k

7.5k

9.0k

0.0k

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

0.0k

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

8.0k

0 2 4 6 8 10 12
0.0k

0.3k

0.6k

0.9k

1.2k

1.5k

1.8k

2.1k

0 2 4 6 8 10 12

N
u

m
b

er
o

f
co

v
er

ed
p

at
h

s

(a) ext4 (ext2/3 compatible)

Syzkalleri

Syzkallers

Syzkaller

(b) ext4

JANUSi

JANUSs

JANUS

N
u

m
b

er
o

f
co

v
er

ed
p

at
h

s

(c) XFS (v4) (d) XFS (v5)

N
u

m
b

er
o

f
co

v
er

ed
p

at
h

s

(e) Btrfs (f) F2FS

N
u

m
b

er
o

f
co

v
er

ed
p

at
h

s

(g) GFS2 (h) HFS+

N
u

m
b

er
o

f
co

v
er

ed
p

at
h

s

Time (h)

(i) ReiserFS

Time (h)

(f) VFAT

Fig. 8: The overall path coverage of using Syzkaller and JANUS to fuzz eight file system images for 12 hours. The y-axis represents the
number of unique code paths of each file system visited during the fuzzing process. In particular, JANUSi and Syzkalleri only mutate bytes
on a seed image and perform a fixed sequence of system calls on a mutated image and JANUSi outperforms Syzkalleri up to 4.17×. JANUSs

and Syzkallers generate random system calls to be executed on a fixed seed image, in which JANUSs achieves up to 2.24× higher coverage
than Syzkallers. JANUS and Syzkaller fuzz both image bytes and file operations, and JANUS visits at most 4.19× unique paths.

fact, syz_mount_image() can be invoked anywhere and several

times in a program generated by Syzkaller. Unlike Syzkaller,

JANUS fuzzes each image separately with a clean LKL instance.

If mounting a mutated image succeeds, the executor will

execute context-aware workloads afterward and terminate with

umount(). As we mentioned in §V-B, the comparison for XFS

is partially unfair due to the limitation of Syzkaller in handling

dense images. Another advantage of JANUS is that it utilizes

many fewer CPU and memory resources for LKL instances

but still outperforms Syzkaller, which relies on VMs.

Result. JANUS achieves higher code coverage than both

JANUSs and JANUSi, which proves the importance of mutating

both images and operations in file system fuzzing. Moreover,

JANUS outperforms Syzkaller on all eight file systems. In

particular, JANUS outperforms Syzkaller at most 4.19× on

Btrfs, one of the popular file systems that has an extremely

complex design. Our evaluation result shows the effectiveness

of JANUS in fuzzing a file system by exploring its two-

dimensional input space.

E. Reproducing Crashes

To evaluate whether the library OS used by JANUS (i.e.,

LKL) helps to reproduce more found crashes compared to

VMs, for each collected crashing input generated in the final

experiment where both of two types of inputs are mutated (see

§V-D), we first use our PoC generator to parse out the image

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

File System Syzkaller JANUS #Unique

ext4 (com.) 0/7 (0%) 16/16 (100%) 6
ext4 0/3 (0%) 196/196 (100%) 8
XFS v4 0/2517 (0%) 24/24 (100%) 2
XFS v5 0/6 (0%) 67/67 (100%) 2
Btrfs 0/0 (0%) 1793/2054 (88%) 18
F2FS 0/1288 (0%) 2390/2458 (97%) 28
GFS2 0/916 (0%) 1030/1080 (95%) 12
HFS+ 0/8 (0%) 815/815 (100%) 6
ReiserFS 0/2535 (0%) 1800/1800 (100%) 20
VFAT 0/0 (-) 0/0 (-) 0

TABLE IV: The bug reproducibility of Syzkaller and JANUS using
KVM instances and LKL-based executors, respectively. For each X/Y
pair in the table, X indicates the number of crashes triggered by a
fuzzer during our experiment in §V-D, and Y represents the number of
crashes that can be reproduced again with saved crashing inputs. The
column #Unique reports the unique crashes among the ones found
by JANUS in the experiment based on their crashing PC values.

Reboot VM Revert snapshot LKL

14.5s 1.4s 10.7ms

TABLE V: The average time costs of VM-based (i.e., KVM) fuzzer
and JANUS for a non-aging OS and file system. The total time includes
reloading a clean-slate OS and mounting an image.

and a particular sequence of system calls. We then mount

the image and execute system calls under the mounting point

again to see if the kernel crashes. Based on the crashing PC

values, we also count the number of unique crashes among

those reproducible ones. Table IV summarizes the number of

crashes and reproducible ones found by JANUS and Syzkaller.

Note that Syzkaller originally records these numbers in its logs.

Because of the fundamental limitation of using an aging OS, in

which Syzkaller mounts different images and invokes system

calls without initialization, Syzkaller fails to reproduce any of

its found crashes. On the contrary, JANUS can reproduce more

than 95% of crashes found in most file systems, except Btrfs.

Btrfs launches multiple kernel threads completing different

transactions in parallel, which results in non-deterministic

kernel execution. In addition, F2FS and GFS2 also spawns few

worker threads to accomplish particular tasks, such as garbage

collection, logging, etc. Note that, in theory, it is possible

to reproduce 100% of crashes if we can control the thread

scheduling, which is currently outside the scope of this work.

We also estimate the performance overhead of bringing up a

fresh copy of OS (non-aging OS) for a VM-based fuzzer to test

every generated input. More specifically, we evaluate the total

time that a KVM instance (two cores and 2GB memory) spends

on either rebooting VM or reverting an existing snapshot and

testing an input image, and compare it to the corresponding

time that our LKL executor requires. Table V presents the

evaluation result. By simply invoking fork() to launch a new

LKL instance, our LKL-based executor spends negligible time

on setting up a clean OS and a fresh file system compared

with a KVM instance.

Result. LKL, on which JANUS relies, provides a clean-slate

OS that has more stable execution than an OS running in a

VM. This approach results in reproducing most of the crashes.

In particular, JANUS is able to reproduce at least 88% of the

crashes found during a 12-hour fuzzing period. By contrast, a

VM-based fuzzer (i.e., Syzkaller) fails to reproduce any of its

crashes. Moreover, re-initializing OS states in a VM suffers

from unacceptable overhead.

F. Miscellany

Besides finding previously unknown bugs, JANUS contributes

the following notable results to the file system development

community.

Malicious image samples. The development communities of

several file systems including Btrfs, F2FS, etc., have already

added a number of corrupted images generated by JANUS

into their repositories for internal fuzzing and for future

regression testing. Currently, developers consider these images

as representative malicious samples that involve diverse error

bytes in various metadata fields for testing the functionality of

file systems.

General patches for file system hardening. F2FS developers

have not only fixed the bugs reported by us in the kernel

module but also extended corresponding security checks into

the user-space tool (i.e., fsck.f2fs) to help users detect these

image corruptions in advance, i.e., before the Linux kernel

mounts images containing critical error bytes.

VI. DISCUSSION

We have demonstrated that JANUS effectively explores the

code paths and discovers unknown bugs in a disk file system

in the Linux kernel. We now discuss the limitations of JANUS

and our future directions.

Library OS based executor. JANUS relies on LKL to test in-

kernel file systems. In fact, other OS fuzzers can use it to test

other kernel sub-systems, except MMU-dependent components.

For instance, JANUS cannot fuzz the DAX mode of a file

system [31] without modification on LKL. We could also use

user-mode Linux (UML), as done by Oracle’s kernel fuzzer [48].

However, UML suffers from the limitation of its multi-process

design, which complicates the spotting of a kernel crash and

termination of all its processes during each iteration. Therefore,

UML does not support fuzzing the kernel as a user application

well.

Minimal PoC generator. An ideal PoC for developers to

debug crashes consists of an image that only has essential error

bytes and a program with the least file operations. To achieve

this, JANUS currently uses a brute force approach to revert

every mutated byte and also tries to remove every invoked

file operation to check whether the kernel still crashes at the

expected location. Although this approach is sub-optimal, we

can leverage certain file system utilities such as fsck and

debugfs and system call trace distillation techniques [22, 49]

to pinpoint root-causing bytes and system calls. Another

possibility is to apply taint tracking on the kernel.

Fuzzing FUSE drivers. Currently, JANUS does not support

file systems (e.g., NTFS [70], GVfs [67], SSHFS [55], etc.)

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

that rely on FUSE (Filesystem in Userspace) [32]. We can

easily extend the fuzzing engine of JANUS to fuzz such file

systems as long as they store user data in a disk image and

support certain file operations for users to interact with data.

Fuzzing file system utilities. Developers heavily rely on

system utilities (e.g., mkfs, fsck, etc.), to manage file systems.

For instance, Linux automatically launches fsck for recovering

disk data from a sudden system crash. Moreover, users use

fsck to check the consistency of an untrusted disk image before

mounting the disk. Hence, developers desire such utilities to

be bug free. We believe that developers can easily extend the

image mutator of JANUS to generate corrupted images for

fuzzing these tools, thereby improving their robustness. In fact,

we use JANUS to find two unknown bugs in fsck.ext4, and

one has already been fixed.

Extending to fuzz file systems on other OSes. Extending

JANUS for fuzzing in-kernel file systems on other OSes will be

straightforward if the corresponding library OS solution exists.

For instance, Drawbridge [52] enables Windows to efficiently

run in a process. Moreover, we can also integrate the core

fuzzing engine of JANUS with other general kernel fuzzing

frameworks such as kAFL [61] built upon QEMU and KVM

to fuzz file systems used by other commodity OSes such as

Windows and macOS.

Improving other file system testing tools. The goal of JANUS

is to find general security bugs in file systems, contrary to the

goals of other tools, including crash-consistency checkers [6,

73] and semantic correctness checkers [36, 58]. However, these

tools also need sequences of file operations. Hence, JANUS

becomes a one-stop solution on which other tools can rely.

VII. RELATED WORK

Structured input fuzzing. Numerous approaches have been

proposed to fuzz inputs that are highly structured like file

system images. Unlike JANUS, a number of generation fuzzers

([14, 23, 41, 42, 50]) construct syntactically correct inputs

from scratch based on input specifications described through

manual efforts. Furthermore, EXE [7] relies on symbolic

execution to build valid inputs that satisfy deep path constraints.

More advanced approaches such as [3, 16, 24] learn the

input structures from a set of samples. On the other side,

mutation-based fuzzers [4, 5, 10, 15, 18, 34, 76] generate new

inputs by mutating valid samples. The generated inputs have

correct structures with slight errors, and hopefully trigger bugs.

Considering the complexity of a file system image and the

diversity in image format among different file systems, JANUS

adopts mutation-based strategies to fuzz images. Similar to

file system images, many file formats involve checksums for

integrity checks. JANUS specifically fixes metadata checksums

with expertise knowledge. Nevertheless, some checksum-aware

fuzzers [33, 71] identify checksum fields and bypass checksum

checks at runtime through dynamic taint analysis.

OS kernel fuzzers. To find security bugs in OSes, a number

of general kernel fuzzing frameworks [20, 43, 46, 61] and

OS-specific kernel fuzzers [22, 25, 44, 45, 47] have been

proposed. Unlike JANUS, all these fuzzers generate random

system calls based upon predefined grammar rules, which is

ineffective in the context of file system fuzzing. Several recent

OS fuzzers such as IMF [22] and MoonShine [49] focusing

on seed distillation are orthogonal to this work. Nevertheless,

JANUS can start with seed programs of high quality by utilizing

their approaches.

File system semantic correctness checkers. JUXTA [36]

and SibylFS [58] are other types of file system checkers, that

aim to find whether the implementation of a file system exactly

meets the standard (e.g., the POSIX standard, man pages,

etc.) through static analysis and high-level modeling of file

system behaviors. They are orthogonal to JANUS regarding their

purposes and methodologies. Similarly, JANUS can generate

meaningful system calls to find crash consistency bugs [6, 73].

File system abstraction. Several studies [65, 66] propose

general interfaces for file system utilities to access and

manipulate the on-disk metadata of various file systems through

high-level abstraction. By utilizing these interfaces, JANUS

can compress disk images in a more general manner without

implementing an image parser for every target file system.

VIII. CONCLUSION

In this work, we propose JANUS, an evolutionary file system

fuzzer, that explores an in-kernel file system by exploring its

two-dimensional input space (i.e., images and file operations).

Unlike existing file system fuzzers, JANUS efficiently mutates

metadata blocks of input images while emitting context-aware

workloads on an image. Rather than traditional VMs, JANUS

relies on a library OS that supports fast reloading to test

OS functionalities, thereby avoiding unstable executions and

irreproducible bugs. We reported 90 bugs found by JANUS

in the upstream kernel, 43 of which have been fixed with 32

CVEs assigned. JANUS outperforms Syzkaller by exploring at

most 4.19× more code paths when fuzzing popular file systems

for 12 hours and manages to reproduce 88–100% of found

crashes. We will open source our implementation of JANUS,

which has been requested by several file system development

communities due to our notable results. We believe that JANUS

will be one-stop solution for file system testing, as JANUS

can act as a basic infrastructure to design new semantic and

crash-consistency checkers for file systems.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers, and our shepherd,

Thorsten Holz, for their helpful feedback. We also thank all

the file system developers, including Theodore Ts’o, Darrick

J. Wong, Dave Chinner, Eric Sandeen, Chao Yu, Wenruo

Qu and Ernesto A. Fernández for handling our bug reports.

This research was supported, in part, by the NSF award

CNS-1563848, CNS-1704701, CRI-1629851 and CNS-1749711

ONR under grant N000141512162, DARPA TC (No. DARPA

FA8650-15-C-7556), and ETRI IITP/KEIT[B0101-17-0644],

and gifts from Facebook, Mozilla and Intel.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A Five-year
Study of File-system Metadata. In Proceedings of the ACM Transactions
on Storage (TOS), 2007.

[2] Apple Inc. macOS High Sierra. https://www.apple.com/macos/high-sierra,
2018.

[3] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Synthesizing program
input grammars. In ACM SIGPLAN Notices, pages 95–110. ACM, 2017.

[4] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016.

[5] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed
greybox fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[6] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak, and
X. Wang. Specifying and checking file system crash-consistency models.
In Proceedings of the 21st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Atlanta, GA, Apr. 2016.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008.

[8] M. Cao, S. Bhattacharya, and T. Ts’o. Ext4: The next generation of
ext2/3 filesystem. In USENIX Linux Storage and Filesystem Workshop,
2007.

[9] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek, E. Kohler, and
N. Zeldovich. Specifying Crash Safety for Storage Systems. In 15th
USENIX Workshop on Hot Topics in Operating Systems (HotOS) (HotOS
XV), Kartause Ittingen, Switzerland, May 2015.

[10] P. Chen and H. Chen. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[11] J. Corbet. Improving ext4: bigalloc, inline data, and metadata checksums.
https://lwn.net/Articles/469805, 2011.

[12] J. Corbet. Filesystem mounts in user namespaces. https://lwn.net/Articles/
652468, 2015.

[13] J. Dike. User-mode Linux. In Annual Linux Showcase Conference, 2001.

[14] I. Fratric. DOM fuzzer. https://github.com/googleprojectzero/domato,
2018.

[15] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. CollAFL:
Path Sensitive Fuzzing. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[16] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Champaign, IL,
Oct. 2017.

[17] Google. KernelAddressSanitizer, a fast memory error detector for the
Linux kernel. https://github.com/google/kasan, 2016.

[18] Google. OSS-Fuzz - Continuous Fuzzing for Open Source Software.
https://github.com/google/oss-fuzz, 2018.

[19] Google. syzbot. https://syzkaller.appspot.com, 2018.

[20] Google. syzkaller is an unsupervised, coverage-guided kernel fuzzer.
https://github.com/google/syzkaller, 2018.

[21] S. Grubb. fsfuzzer-0.7. http://people.redhat.com/sgrubb/files/fsfuzzer-
0.7.tar.gz, 2009.

[22] H. Han and S. K. Cha. IMF: Inferred Model-based Fuzzer. In Proceedings
of the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.–Nov. 2017.

[23] R. Hodován, Á. Kiss, and T. Gyimóthy. Grammarinator: a grammar-
based open source fuzzer. In Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation, pages 45–48. ACM, 2018.

[24] M. Höschele and A. Zeller. Mining input grammars from dynamic taints.
In Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), Champaign, IL, Oct. 2017.

[25] D. Jones. Linux system call fuzzer. https://github.com/kernelslacker/
trinity, 2018.

[26] Kernel.org Bugzilla. Btrfs bug entries. https://bugzilla.kernel.org/buglist.
cgi?component=btrfs, 2018.

[27] Kernel.org Bugzilla. ext4 bug entries. https://bugzilla.kernel.org/buglist.
cgi?component=ext4, 2018.

[28] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy (Oakland), Oakland,
CA, May 2011.

[29] M. Larabel. F2FS File-System Moves Forward With Encryption Sup-
port. https://www.phoronix.com/scan.php?page=news_item&px=F2FS-
Encryption-Support, 2015.

[30] C. Lee, D. Sim, J. Y. Hwang, and S. Cho. F2FS: A New File System
for Flash Storage. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST), Santa Clara, CA, Feb. 2015.

[31] Linux. Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt, 2015.

[32] Linux. fuse - Filesystem in Userspace (FUSE) device. http://man7.org/
linux/man-pages/man4/fuse.4.html, 2015.

[33] X. Liu, Q. Wei, Q. Wang, Z. Zhao, and Z. Yin. CAFA: A Checksum-
Aware Fuzzing Assistant Tool for Coverage Improvement. Security and
Communication Networks, 2018, 2018.

[34] LLVM Project. libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, 2018.

[35] Microsoft. Windows. https://www.microsoft.com/en-us/windows, 2018.

[36] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

[37] MITRE Corporation. CVE-2009-1235. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1235, 2009.

[38] MITRE Corporation. CVE-2017-13830. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-13830, 2017.

[39] MITRE Corporation. CVE-2017-6990. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-6990, 2017.

[40] MITRE Corporation. F2FS CVE entries. http://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=f2fs, 2018.

[41] Mozilla Corporation. MozPeach. https://github.com/MozillaSecurity/
peach, 2017.

[42] Mozilla Corporation. JavaScript engine fuzzers. https://github.com/
MozillaSecurity/funfuzz, 2018.

[43] MWR Labs. Cross Platform Kernel Fuzzer Framework. https://github.
com/mwrlabs/KernelFuzzer, 2016.

[44] MWR Labs. macOS Kernel Fuzzer. https://github.com/mwrlabs/
OSXFuzz, 2017.

[45] NCC Group. System call fuzzing of OpenBSD amd64 using TriforceAFL.
https://github.com/nccgroup/TriforceOpenBSDFuzzer, 2016.

[46] NCC Group. AFL/QEMU fuzzing with full-system emulation. https:
//github.com/nccgroup/TriforceAFL, 2017.

[47] NCC Group. A linux system call fuzzer using TriforceAFL. https:
//github.com/nccgroup/TriforceLinuxSyscallFuzzer, 2017.

[48] V. Nossum and Q. Casasnovas. Filesystem Fuzzing with American Fuzzy
Lop. In Vault Linux Storage and Filesystems Conference, 2016.

[49] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS Fuzzer Seed
Selection with Trace Distillation. In Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[50] Peach Tech. Peach Fuzzer. https://sourceforge.net/projects/peachfuzz,
2016.

[51] H. Peng, Y. Shoshitaishvili, and M. Payer. T-Fuzz: fuzzing by program
transformation. In Proceedings of the 39th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2018.

[52] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library os from the top down. In ACM SIGPLAN Notices,
2011.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

[53] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library OS from the top down. In ACM SIGPLAN Notices.
ACM, 2011.

[54] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The Linux kernel library.
In Proceedings of the 9th Roedunet International Conference (RoEduNet).
IEEE, 2010.

[55] N. Rath and M. Szeredi. A network filesystem client to connect to SSH
servers. https://github.com/libfuse/sshfs, 2018.

[56] Red Hat Inc. Utilities for managing the XFS filesystem. https://git.kernel.
org/pub/scm/fs/xfs/xfsprogs-dev.git, 2018.

[57] Ribose Inc. FuzzBSD, a filesystem image fuzzing script to test BSD
kernels. https://github.com/riboseinc/fuzzbsd, 2017.

[58] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell. SibylFS: formal specification and oracle-based testing for
POSIX and real-world file systems. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[59] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree filesystem.
In Proceedings of the ACM Transactions on Storage (TOS), 2013.

[60] B. Schneier. "Evil Maid" Attacks on Encrypted Hard Drives. https:
//www.schneier.com/blog/archives/2009/10/evil_maid_attac.html, 2009.

[61] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver, BC,
Canada, Aug. 2017.

[62] SGI, OSDL and Bull. Linux Test Project. https://github.com/linux-test-
project/ltp, 2018.

[63] Silicon Graphics Inc. (SGI). (x)fstests is a filesystem testing suite.
https://github.com/kdave/xfstests, 2018.

[64] Silicon Graphics Inc. (SGI) and Red Hat Inc. XFS. http://xfs.org, 2018.

[65] K. Sun, D. Fryer, J. Chu, M. Lakier, A. D. Brown, and A. Goel. Spiffy:
enabling file-system aware storage applications. In Proceedings of the
16th USENIX Conference on File and Storage Technologies (FAST),
Oakland, CA, Feb. 2018.

[66] K. Sun, M. Lakier, A. D. Brown, and A. Goel. Breaking Apart the
VFS for Managing File Systems. In Proceedings of the 10th USENIX
Workshop on Hot Topics in Storage and File Systems, Boston, MA, July
2018.

[67] The GNOME Project. GVfs. https://wiki.gnome.org/Projects/gvfs, 2018.

[68] L. Torvalds. Linux kernel source tree. https://github.com/torvalds/linux,
2018.

[69] T. Ts’o. Ext2/3/4 file system utilities. https://github.com/tytso/e2fsprogs,
2018.

[70] Tuxera. NTFS-3G. https://www.tuxera.com/community/open-source-ntfs-
3g, 2017.

[71] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 31th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2010.

[72] M. Xie and L. Zefan. Performance improvement of btrfs. LinuxCon
Japan, 2011.

[73] J. Yang, C. Sar, and D. Engler. Explode: a lightweight, general system
for finding serious storage system errors. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Nov. 2006.

[74] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. In Proceedings of the ACM Transactions
on Computer Systems (TOCS), 2006.

[75] M. Zalewski. american fuzzy lop (2.52b) - config.h. https://github.com/
mirrorer/afl/blob/master/config.h, 2017.

[76] M. Zalewski. american fuzzy lop (2.52b). http://lcamtuf.coredump.cx/afl,
2018.

[77] Zero Day Initiative. CVE-2018-4268. https://www.zerodayinitiative.com/
advisories/ZDI-18-602, 2018.

APPENDIX

A. Seed Image

1 ./ # root
2 ./foo # folder
3 ./foo/bar # folder
4 ./foo/bar/acl # file protected by ACL
5 ./foo/bar/baz # normal file
6 ./foo/bar/fifo # FIFO file
7 ./foo/bar/hln # hardlink to baz
8 ./foo/bar/sln # softlink to baz
9 ./foo/bar/xattr # file with an extended attribute

Fig. 9: The hierarchy of a seed image tested by JANUS in the
evaluation.

Figure 9 presents the organization of files and directories stored on a seed
image in our evaluation.

B. Coverage Profiling: AFL versus KCOV

1 /* AFL */
2 cur_location = <COMPILE_TIME_RANDOM_NUMBER>;
3 bitmap[cur_location ^ prev_location]++;
4 prev_location = cur_location >> 1;
5

6 /* Syzkaller */
7 uint32_t pc = cover_data[i];
8 uint32_t sig = pc ^ prev;
9 prev = hash(pc);

Fig. 10: The code injected by AFL and the code used by Syzkaller
to profile runtime path coverage.

AFL and KCOV used to support Syzkaller apply two different approaches to
instrument a fuzzing target and reserve runtime path coverage in two different
formats. In particular, AFL labels every basic block with a random number,
and at each branch, the code shown in Figure 10 is instrumented. Each byte
set in the bitmap can be considered as a hit on a particular code path.

KCOV relies on the -fsanitize-coverage=trace-pc flag of GCC (>= 6.0)
to inject code at every basic block which emits the current PC value into
a buffer mapped in user space. After the execution for a mutated input is
completed, Syzkaller uses every two consequent PC values to calculate out a
hash value to represent a particular code path (see Figure 10).

Note that Syzkaller uses the lowest 32 bits of a PC value to label the
corresponding basic block, which has lower randomness compared to pseudo
random numbers generated by AFL and thereby results in more collisions that
degrade the fuzzing performance.

C. An LKL Example
Figure 11 provides a simple example of leveraging LKL in an user

application to operate an ext4 image.

D. Serialization Format
JANUS serializes a generate program along with the speculated image status

into a binary file by following the format described in Figure 12.

E. A Testing Program for Image Fuzzing
Figure 13 presents a fixed sequence of system calls to be performed on

any mutated image when evaluating the effectiveness of JANUS and Syzkaller
in image fuzzing.

F. Supported System Calls
In our implementation, JANUS supports generating and mutating the follow-

ing 34 system calls: read(), write(), open(), seek(), mmap(), getdents64(),
pread64(), pwrite64(), stat(), lstat(), rename(), fsync(), fdatasync(),
syncfs(), sendfile(), access(), ftruncate(), truncate(), fstat(), statfs(),
fstatfs(), utimes(), mkdir(), rmdir(), link(), unlink(), symlink(),
readlink(), chmod(), fchmod(), setxattr(), fallocate(), listxattr(), and
removexattr().

G. File system bugs found by JANUS

Table VI lists the patched bugs found by JANUS in five widely used file
systems that were previously unknown.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

File system CVE File Function Type Conditions
1

ext4

CVE-2018-1092 fs/ext4/inode.c ext4_iget Use-after-free I
2 CVE-2018-1093 fs/ext4/balloc.c ext4_valid_block_bitmap Out-of-bounds access I+S
3 CVE-2018-1094 fs/ext4/super.c ext4_fill_super Null pointer dereference I+S
4 CVE-2018-1095 fs/ext4/xattr.c ext4_xattr_check_entries Out-of-bounds access I+S
5 CVE-2018-10840 fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow I+S
6 CVE-2018-10876 fs/ext4/extents.c ext4_ext_remove_space Use-after-free I+S
7 CVE-2018-10877 fs/ext4/extents.c ext4_ext_drop_refs Out-of-bounds access I+S
8 CVE-2018-10878 fs/ext4/balloc.c ext4_init_block_bitmap Out-of-bounds access I+S
9 CVE-2018-10879 fs/ext4/xattr.c ext4_xattr_set_entry Use-after-free I+S
10 CVE-2018-10880 fs/ext4/inline.c ext4_update_inline_data Out-of-bounds access I+S
11 CVE-2018-10881 fs/ext4/ext4.h ext4_get_group_info Uninitialized memory I+S
12 CVE-2018-10882 fs/jbd2/transaction.c start_this_handle BUG() I+S
13 CVE-2018-10883 fs/jbd2/transaction.c jbd2_journal_dirty_metadata BUG() I+S
14 - fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow I+S
15 - fs/ext4/namei.c ext4_rename Use-after-free I+S
16 - fs/ext4/inline.c empty_inline_dir Divide by zero I+S

17

XFS

CVE-2018-13093 fs/xfs/xfs_icache.c xfs_iget_cache_hit Use-after-free I+S
18 CVE-2018-10322 fs/xfs/xfs_inode.c xfs_ilock_attr_map_shared Null pointer dereference I+S
19 CVE-2018-10323 fs/xfs/libxfs/xfs_bmap.c xfs_bmapi_write Null pointer dereference I+S
20 CVE-2018-13094 fs/xfs/xfs_trans_buf.c xfs_trans_binval Null pointer dereference I+S
21 CVE-2018-13095 fs/xfs/libxfs/xfs_bmap.c xfs_bmap_extents_to_btree Out-of-bounds access I+S
22 - fs/xfs/libxfs/xfs_alloc.c xfs_alloc_get_freelist Null pointer dereference I+S
23 - fs/xfs/libxfs/xfs_dir2.c xfs_dir_isempty Null pointer dereference I+S

24

Btrfs

CVE-2018-14609 fs/btrfs/relocation.c __del_reloc_root Null pointer dereference I
25 CVE-2018-14610 fs/btrfs/extent_io.c write_extent_buffer Out-of-bounds access I+S
26 CVE-2018-14611 fs/btrfs/free-space-cache.c try_merge_free_space Use-after-free I
27 CVE-2018-14612 fs/btrfs/ctree.c btrfs_root_node Null pointer dereference I
28 CVE-2018-14613 fs/btrfs/free-space-cache.c io_ctl_map_page Null pointer dereference I+S
29 - fs/btrfs/volumes.c btrfs_free_dev_extent BUG() I+S
30 - fs/btrfs/locking.c btrfs_tree_lock Deadlock I
31 - fs/btrfs/volumes.c read_one_chunk BUG() I

32

F2FS

CVE-2018-13096 fs/f2fs/segment.c build_sit_info Heap overflow I
33 CVE-2018-13097 fs/f2fs/segment.h utilization Divide by zero I
34 CVE-2018-13098 fs/f2fs/inode.c f2fs_iget Out-of-bounds access I+S
35 - fs/f2fs/segment.h verify_block_addr BUG() I+S
36 CVE-2018-13099 fs/f2fs/segment.c update_sit_entry Use-after-free I+S
37 CVE-2018-13100 fs/f2fs/segment.c reset_curseg Divide by zero I
38 - fs/inode.c clear_inode BUG() I
39 - fs/f2fs/node.c f2fs_truncate_inode_blocks BUG() I+S
40 CVE-2018-14614 fs/f2fs/segment.c __remove_dirty_segment Out-of-bounds access I
41 CVE-2018-14615 fs/f2fs/inline.c f2fs_truncate_inline_inode Heap overflow I+S
42 CVE-2018-14616 fs/crypto/crypto.c fscrypt_do_page_crypto Null pointer dereference I+S

43 HFS+ CVE-2018-14617 fs/hfsplus/dir.c hfsplus_lookup Null pointer dereference I+S

TABLE VI: The list of previously unknown bugs in widely used file systems found by JANUS that have already been fixed in Linux kernel
v4.16, v4.17, and v4.18. We are still waiting for CVE assignment for several confirmed bugs. For security concerns, we exclude other 19
found bugs that developers have not fixed. The rightmost column, Conditions, indicates what components of JANUS contribute to discovering
the bugs. I means that triggering the bug only requires mounting a mutated image. I+S represents that the bug is triggered by mounting a
mutated image and also invoking specific system calls.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

1 int mount_and_read(char *fsimg_path) {
2 struct lkl_disk disk;
3 char mpoint[32], buffer[1024];
4 unsigned int disk_id;
5 char *file;
6 int fd;
7 disk.fd = open(fsimg_path, O_RDWR);
8 disk.ops = NULL;
9 disk_id = lkl_disk_add(&disk);

10 lkl_start_kernel(&lkl_host_ops, "mem=128M");
11 lkl_mount_dev(disk_id, 0, "ext4", 0,
12 "errors=remount-ro", mpoint, sizeof(mpoint));
13 asprintf(&file, "%s/file", mpoint);
14 fd = lkl_sys_open(file, LKL_O_RDONLY, 0666);
15 if (fd >= 0) {
16 lkl_sys_read(fd, buf, 1024);
17 lkl_sys_close(fd);
18 }
19 lkl_umount_dev(disk_id, cla.part, 0, 1000);
20 lkl_disk_remove(disk);
21 lkl_sys_halt();
22 }

Fig. 11: A function example that mounts an ext4 image and reads a
file stored on the image through LKL APIs.

1 message Variable {
2 required int32 index; // variable index
3 required int32 size; // variable size
4 required bool is_pointer; // if the variable is a pointer
5 // the buffer data pointed to by a pointer
6 required bytes buffer;
7 // the file object type of an active file descriptor
8 // for normal variables, it is -1
9 required int32 type;

10 }
11

12 message Variables {
13 repeated Variable variables;
14 }
15

16 message Arg {
17 // if the argument is a variable
18 required bool is_var;
19 // an immediate value or
20 // the index of the corresponding variable
21 required int64 value;
22 }
23

24 message Syscall {
25 required int32 nr; // syscall number
26 repeated Arg args;
27 // the index of the variable that
28 // stores the return value of the syscall
29 // if necessary (e.g., fd returned from open());
30 // by default it is -1
31 required int64 ret_index;
32 }
33

34 message FileObject {
35 required string path; // relative path
36 // the file object type (FILE, DIR, SYMLINK, etc.)
37 required int32 type;
38 // the names of all the extended attributes
39 repeated string xattr_names;
40 }
41

42 message Program {
43 repeated Syscall syscalls;
44 }
45

46 message Status {
47 repeated FileObject fobjs;
48 }

Fig. 12: The format of a serialized program and speculated image
status described in protocol buffer language.

1 void activity(const char *mountpoint)
2 {
3 DIR *dir = opendir(mountpoint);
4 if (dir) {
5 readdir(dir);
6 closedir(dir);
7 }
8 static int buf[8192];
9 memset(buf, 0, sizeof(buf));

10 int fd = open(foo_bar_baz, O_RDONLY);
11 if (fd != -1) {
12 void *mem = mmap(NULL, 4096, PROT_READ,
13 MAP_PRIVATE | MAP_POPULATE, fd, 0);
14 munmap(mem, 4096);
15 read(fd, buf, 11);
16 read(fd, buf, sizeof(buf));
17 close(fd);
18 }
19 fd = open(foo_bar_baz, O_RDWR | O_TRUNC, 0777);
20 if (fd != -1) {
21 write(fd, buf, 517);
22 write(fd, buf, sizeof(buf));
23 fdatasync(fd);
24 fsync(fd);
25

26 lseek(fd, 0, SEEK_SET);
27 read(fd, buf, sizeof(buf));
28 lseek(fd, 1234, SEEK_SET);
29 read(fd, buf, 517);
30 close(fd);
31 }
32 fd = open(foo_bar_baz, O_RDWR | O_TRUNC, 0777);
33 if (fd != -1) {
34 lseek(fd, 1024 - 33, SEEK_SET);
35 write(fd, buf, sizeof(buf));
36 lseek(fd, 1024 * 1024 + 67, SEEK_SET);
37 write(fd, buf, sizeof(buf));
38 lseek(fd, 1024 * 1024 * 1024 - 113, SEEK_SET);
39 write(fd, buf, sizeof(buf));
40 lseek(fd, 0, SEEK_SET);
41 write(fd, buf, sizeof(buf));
42 fallocate(fd, 0, 0, 123871237);
43 fallocate(fd, 0, -13123, 123);
44 fallocate(fd, 0, 234234, -45897);
45 fallocate(fd, FALLOC_FL_KEEP_SIZE |
46 FALLOC_FL_PUNCH_HOLE, 0, 4243261);
47 fallocate(fd, FALLOC_FL_KEEP_SIZE |
48 FALLOC_FL_PUNCH_HOLE, -95713, 38447);
49 fallocate(fd, FALLOC_FL_KEEP_SIZE |
50 FALLOC_FL_PUNCH_HOLE, 18237, -9173);
51 close(fd);
52 }
53 rename(foo_bar_baz, foo_baz);
54 struct stat stbuf;
55 memset(&stbuf, 0, sizeof(stbuf));
56 stat(foo_baz, &stbuf);
57 chmod(foo_baz, 0000);
58 chmod(foo_baz, 1777);
59 chmod(foo_baz, 3777);
60 chmod(foo_baz, 7777);
61 chown(foo_baz, 0, 0);
62 chown(foo_baz, 1, 1);
63 unlink(foo_bar_baz);
64 unlink(foo_baz);
65 mknod(foo_baz, 0777, makedev(0, 0));
66 char buf2[113];
67 memset(buf2, 0, sizeof(buf2));
68 listxattr(xattr, buf2, sizeof(buf2));
69 removexattr(xattr, "user.mime_type");
70 setxattr(xattr, "user.md5", buf2, sizeof(buf2), XATTR_CREATE);
71 setxattr(xattr, "user.md5", buf2, sizeof(buf2), XATTR_REPLACE);
72 readlink(sln, buf2, sizeof(buf2));
73 }

Fig. 13: The fixed file operations used for evaluating how effectively
JANUS and Syzkaller fuzz images.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 03:27:01 UTC from IEEE Xplore. Restrictions apply.

