
Symbolic methods in computational cryptography proofs

Gilles Barthe∗, Benjamin Grégoire†, Charlie Jacomme‡, Steve Kremer§, Pierre-Yves Strub¶
∗MPI for Security and Privacy & IMDEA Software Institute, †Inria Sophia-Antipolis, ¶École Polytechnique

‡LSV, CNRS & ENS Paris-Saclay & Inria & Université Paris-Saclay
§LORIA, Inria Nancy-Grand Est & CNRS & Université de Lorraine

Abstract—Code-based game-playing is a popular methodology
for proving security of cryptographic constructions and side-
channel countermeasures. This methodology relies on treating
cryptographic proofs as an instance of relational program
verification (between probabilistic programs), and decompos-
ing the latter into a series of elementary relational program
verification steps. In this paper, we develop principled methods
for proving such elementary steps for probabilistic programs
that operate over finite fields and related algebraic structures.
We focus on three essential properties: program equivalence,
information flow, and uniformity. We give characterizations
of these properties based on deducibility and other notions
from symbolic cryptography. We use (sometimes improve) tools
from symbolic cryptography to obtain decision procedures or
sound proof methods for program equivalence, information
flow, and uniformity. Finally, we evaluate our approach us-
ing examples drawn from provable security and from side-
channel analysis—for the latter, we focus on the masking
countermeasure against differential power analysis. A partial
implementation of our approach is integrated in EASYCRYPT,
a proof assistant for provable security, and in MASKVERIF, a
fully automated prover for masked implementations.

1. Introduction

It is notoriously difficult to design cryptographic con-
structions with strong security. A common measure to deal
with this difficulty is to require that designs of cryptographic
constructions are validated by mathematical proofs showing
that the constructions are secure against arbitrary compu-
tationally bounded adversaries [1]. Many of these proofs
take the form of reductionist arguments. In such arguments,
both the security goals (indistinguishability of encryption,
unforgeability of signature. . .) and the computational as-
sumptions (hardness of decisional Diffie-Hellman. . .) are
modelled as probabilistic experiments where a challenger
interacts with an adversary; such experiments come with a
winning condition, which captures the situation where an
adversary has broken the security property. In the simple
case, only one assumption is involved. The reductionist
argument is then given by a method for transforming an
adversary A against the cryptographic construction under
consideration into an adversary B against the computa-

tional assumption, and a proof that pA ≤ f(pB), where
pB denotes the probability of B winning the experiment
(against the construction), pA denotes the probability of A
winning the experiment (against the assumption), and f is
a function such that f(x) is “small” whenever x is “small”.
This rigorous approach is a pillar of modern cryptography,
and arguably one of the keys to its success. However,
reductionist proofs are becoming increasingly complex, as
a consequence of new application scenarios (requiring more
complex constructions) and theoretical advances in the field
(yielding stronger but more complex constructions).

The game-playing technique [2] is a popular methodol-
ogy for proving security of cryptographic constructions. This
technique decomposes reductionist arguments into elemen-
tary steps that can be justified individually with relative ease.
In the simple case above, involving a single computational
assumption, the technique involves defining a sequence of
probabilistic experiments (which are called games in this
setting), such that the first experiment captures the secu-
rity of the construction, and the last experiment captures
the security assumption. In addition, the technique requires
proving for all steps that pAi ≤ fi(pAi+1), where Ai is
an adversary and pAi is his winning probability in the i-
th experiment. One then concludes by applying transitivity
of inequality. The game-playing technique is helpful to
tame the complexity of reductionist arguments. However,
it remains difficult to build and verify game-playing proofs
of complex constructions.

The code-based game-playing technique [3] is a com-
mon variant of the game-playing technique where experi-
ments are modelled as probabilistic programs. This approach
has been instrumental in the mechanization of reductionist
arguments using tools based on program verification [4], [5],
[6], [7]. These tools have been used for verifying many rep-
resentative examples of cryptographic constructions. How-
ever, these tools remain difficult to use by cryptographers,
because automation is limited and expertise in program
verification is required.

Specializations of the code-based game-playing ap-
proach have also been developed and implemented for
padding-based [8], pairing-based [9] and lattice-based [10]
constructions. Proofs are fully automated for several con-
structions. However, the most advanced constructions cannot
be proved secure in these tools. Furthermore, automation is

136

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Gilles Barthe. Under license to IEEE.
DOI 10.1109/CSF.2019.00017

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

primarily based on complex heuristics, making the tools dif-
ficult to use, maintain or extend. Similar specializations have
been proposed to validate masking, a popular countermea-
sure used for protecting implementations against differential
power analysis [11].

Problem statement. This paper focuses on developing prin-
cipled, automated, proof methods for elementary steps in
code-based game-playing proofs. We focus on three partic-
ularly common classes of steps:

1) program equivalence: such steps, known as bridging
steps in the cryptography literature, require proving
that two programs produce the same distribution. These
steps are used for proving that the probability of an
adversary winning the game is the same in both games
(assuming that the wining events are the same).

2) independence: such steps require proving that some
values in a given experiment are independent of some
secrets. This is modelled as a probabilistic information
flow problem, requiring that the joint distribution of
these values (viewed as a function of the secrets and
other inputs) is a constant function in the secrets. Such
steps are used to justify code transformations, and
also to conclude that the probability of some events
is “small”;

3) uniformity: such steps require proving that some values
in a given experiment are uniformly distributed. These
steps are very important for justifying lazy sampling, a
useful technique which allows to resample values from
uniform distributions immediately before they are used.

Contributions. The overall goal is to leverage, in a modular
way, existing techniques from symbolic cryptography in
order to solve these problems. Symbolic cryptography com-
pletely abstracts away probabilities and provides syntactic
rather than semantic reasoning techniques.

We first define syntax and semantics for probabilistic
programs built over arbitrary function symbols. When op-
erating over finite fields, this allows us to capture programs
with conditionals, but without support for loops. We are able
to prove that the three problems introduced above, as well
as some of their variants, are inter-reducible. This yields
several ways to tackle a same problem, some of them more
suited for mathematical reasoning and other more suited for
symbolic reasoning.

We provide a sound and complete semantic characteri-
zation of the three classes of problems. The characterization
is based on exhibiting a bijection between random coins (of
the two programs in the case of program equivalence or two
runs of the same program in the case of probabilistic infor-
mation flow), and performing equality checks. Intuitively,
two programs are equivalent if for any result of the first
program there exists a valuation of random variables for the
second program such that the results coincide—the bijection
ensures that the set of valuations used in the second program
follows the required probability distribution.

Based on this characterization we give a sound and
complete syntactic characterization of the three problems.

The characterization is based on the notion of primal algebra
used previously for proving decidability of unification in the
theory of finite fields [12]. The syntactic characterization
replaces the existence of a bijection by the existence of a
term satisfying specific syntactic properties.

We then leverage (and sometimes extend) methods from
symbolic cryptography, including deducibility, deduction
constraint and static equivalence, to check the syntactic
characterization of our properties.

Our abstract framework allows us to derive sound and
complete algorithms, as well as heuristics that may be only
sound or only complete. Given the high complexity, or lack
of decision procedures, such heuristics are of particular
interest in practice. Previously mentioned tools for proof
mechanization do use some heuristics, but they often lack
theoretical foundations, leading to a misunderstanding re-
garding the precision and limitations. Our results clarify
these questions for the heuristics we propose.

In particular, in the case of finite fields of a fixed size
we obtain sound and complete algorithms. Even though we
show that this problem has high computational complexity,
our algorithms appear to be more efficient in practice than
the straightforward ones. While the case of finite fields of
a fixed size is already useful in some cases, cryptographic
proofs (i) are often performed for an abstract size of the
finite field, for which we do not have a decision result,
and (ii) may require complex combinations of symbol func-
tions, where non interpreted function symbols may capture
attacker actions. Thanks to our framework, we can however
derive the soundness and/or completeness of many different
heuristics for those extended settings. For instance, to prove
program equivalence over F2n for all n, it follows from our
results that it is sound to prove their equivalence over a
commutative ring of characteristic 2.

We demonstrate the usefulness of our approach in
practice through the implementation of a library that we
interfaced with two existing tools: EASYCRYPT [7], and
MASKVERIF [11]. We do not implement all heuristics or
decision procedures discussed in this paper, but the ones
implemented are sufficient to improve the existing tools.
The source codes of the library and modified tools are
available online: [13], [14], [15]. We consider examples in
the area of masking, which provide challenging examples of
probabilistic information flow. In particular, unlike the orig-
inal MASKVERIF tool, our extension allows for insightful
feedback as it may provide attack witnesses when proofs
fail. Furthermore, the integration of our approach into the
EASYCRYPT proof assistant improves automation.

2. Setting

We start by providing background on terms built over
function symbols and their interpretation over a given do-
main. Such terms capture the operations performed by a
program, which are then interpreted over the domain.

137

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

t ::= x variables
| f(t1, . . . , tn) operation of arity n

p ::= x := t1 deterministic assignment

| r1, . . . , rn
$←− A probabilistic assignments

| p1; p2 sequential composition
| return (t1, . . . , tn) return of arity n

Figure 1. Syntax of terms and programs. f ranges over operations. x ranges
over variables.

x, x1, x2, y1, y2, z1, z2
$←− Fq;

sk := (gx, x1, x2, y1, y2, z1, z2);
pk := (gx, gx1+xx2 , gy1+xy2 , gz1+xz2);
return sk

Figure 2. Key generation in Cramer-Shoup encryption (abstracted and
simplified)

2.1. Background

A signature Σ is an indexed set (Fn)n∈N of function
symbols with their arity. Given a set X of variables, the
set TΣ(X) of terms is defined inductively as usual (see
Figure 1). A Σ-algebra A for the signature Σ = (Fn)n∈N is
given by a set A and the interpretation of Σ, which consists
of a total function fA : An �→ A for each f ∈ Fn.

We denote by AX the set of valuations ρ : X → A
and for I ⊂ X we denote ρ|I the restriction of ρ to I . bijX

denotes the set of bijections f : AX �→ AX . Every valuation
ρ ∈ AX is extended inductively to terms and tuples of terms
as follows:

[x]ρ = ρx
[f(t1, . . . , tn)]ρ = fA([(t1, . . . , tn)]ρ)
[(t1, . . . , tn)]ρ = ([t1]ρ, . . . , [tn]ρ)

2.2. Syntax and semantics of probabilistic pro-
grams

We consider a core probabilistic language over a signa-
ture Σ. Expressions of the language are built from variables
using function symbols from Σ. Commands are built from
probabilistic and deterministic assignments, and from return
commands. We assume that each program contains a single
return command as its last instruction. Figure 1 gives the
syntax of programs. We provide in Figure 2 a program
example which corresponds to a simplified version of the
key generation of the Cramer-Shoup encryption scheme. The
program is performing random sampling over a finite field,
and is using exponentiation in a group with fixed generator
g.

The semantics for such programs is standard and omit-
ted. To preserve the generality of our results with respect to
the signatures, we only consider linear programs. Note how-
ever that as it will be shown later, as soon as the signature
captures at least finite fields, we can encode conditionals.

Loops are currently out of scope, but this restriction still
allows us to consider many interesting examples.

Lemma 1. For every program p, there exist sets R and X
and terms t1, . . . , tk ∈ TΣ(R∪X) such that P is equivalent
to

r1, . . . , rm
$←− A; return 〈t1, . . . , tk〉

with R = {r1, . . . , rm}.
From now on, we identify commands as tuples of terms,

and let Ck(X,R) denote the set of tuples (t1, . . . , tk) of
terms such that ti ∈ TΣ(R∪X) for i = 1, . . . , k. Intuitively,
X corresponds to the input of the program, which we call
input variables, and R corresponds to the random samplings
of the program, the random variables.

Example 2. The program in Figure 2 can be written as the
tuple p ∈ Ck(∅, {x, y, z, x1, x2, y1, y2, z1, z2}) which does
not take any input, where

p = (gx, x1, x2, y1, y2, z1, z2)

We may also consider simpler programs corresponding
to booleans expressions.

Example 3. We provide Let Σ = {0, 1,+,×} where 0, 1
are of arity 0, i.e., constants and +,× are binary symbols,
and A = {0, 1}. With the interpretation +A = ⊕ (the xor
operator) and ×A = ∧ (the and operator) A defines Boolean
expressions.

We often write uv for u × v. We define the programs
p1, p2, p3 ∈ C1({x}, {u, v, w}):
• p1 = x+ v,
• p2 = xv,
• p3 = uv + vw + uw.

Let p = (t1, . . . , tk) be a command in Ck(X,R). For
every ρ ∈ AX , we let [[p]]ρ ∈ Distr(Ak) be the distribution
[(t1, . . . , tk)]ρ∪τ , where τ is sampled uniformly over AR.

The next lemma gives a counting semantics of com-
mands. The proof follows immediately from the observation
that sampling is uniform.

Lemma 4. Let p ∈ Ck(X,R), ρ ∈ AX and �v ∈ Ak. Then

[[p]]ρ(�v) =
1

|Ak| ·
∣∣S[[p]],ρ,�v∣∣

where [[p]]ρ(�v) is the probability of �v in the distribution [[p]]ρ
and S[[p]],ρ,�v is defined as

{ρ′ ∈ AX∪R | ρ′|X = ρ ∧ [p]ρ′ = �v}

Example 5. Let ρ = {x �→ 0}. Continuing Example 3 we
have that

[[p1]]ρ(0) = [[p1]]ρ(1) =
1

2

which corresponds to the fact that 0 + v follows the uni-
form distribution when v is uniformly sampled. However,
[[p2]]ρ(0) = 1 and [[p2]]ρ(1) = 0, as 0 × v always evaluates
to 0.

138

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

[[p3]] only depends on the random variables. We can
easily compute its distribution by writing the truth table of
the program:

u 0 0 0 0 1 1 1 1

v 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1

p3 0 0 0 1 0 1 1 1

We see that [[p3]] is actually the uniform distribution, i.e.,
we have that [[p3]](0) =

1
2 and [[p3]](1) =

1
2 .

2.3. Probabilistic relations

In this section we introduce several probabilistic rela-
tions that allow us to express interesting properties over
probabilistic programs. We first introduce the notion of
I-equivalence where I is a subset of inputs: we require
equivalent programs to have the same distribution on all
inputs that coincide on I .

Definition 6 (I-Equivalence). Let I ⊆ X and p, q ∈
Ck(X,R). p and q are I-equivalent, denoted p �I q, iff

∀ρ1, ρ2 ∈ AX . ρ1|I = ρ2|I ⇒ [[p]]ρ1 = [[q]]ρ2

When I = X we simply say that p and q are equivalent and
write p � q.

Example 7. Continuing Example 5, we see that p1 � p3.
Indeed, both programs correspond to the uniform distribu-
tion.

Remark 8. Note that pointwise equivalence of a tuple does
not imply the equivalence of the tuple. We have that u � v
and u � u, but (u, v) �� (v, v).

Another useful property is uniformity. This is easily
encoded as a program equivalence.

Definition 9 (Uniformity). p ∈ Ck(X,R) is uniform if and
only if p � r1, . . . , rk where {r1, . . . , rk} ⊆ R.

Finally we introduce the notion of independence. Intu-
itively, a program is independent of a subset of its inputs
Xs, if the output does not vary when changing the value of
Xs.

Definition 10 (Independence). p ∈ Ck(Xs � Xpub, R) is
independent of Xs, denoted p ⊥ Xs, iff p �Xpub

p.

Independence typically captures the notion of non-
interference: when the input variables are partitioned into
secret variables Xs and public variables Xpub, non-
interference expresses that the program does not leak any-
thing about the values of Xs.

Example 11. Continuing Example 5 we have that p2 ⊥ {x}
as [[x+ v]]{x �→1} = [[x+ v]]{x �→0}.

The definition of independence is strongly linked to a
classical notion, probabilistic non-interference, which can
be defined in our framework as follows.

Definition 12 (Probabilistic non-interference). Let p ∈
Ck(X,R), I ⊂ X and O ⊂ {1, . . . , k}. Probabilistic non-
interference of p with respect to I,O is defined as

πO(p) �I πO(p)

where πO denotes the projection of p = p1, . . . , pk keeping
only indices in O.

2.4. Links between problems

In this section we show relationships between equiva-
lence, uniformity and independence. A summary of reduc-
tions between these problems is depicted in Figure 3. Con-

ditions on the algebra for these reductions are highlighted .

When the algebra is interpreted as a finite field, all decision
problems are equivalent, and reduce to the uniformity of a
program with only random variables. Proofs for this Section
can be found in the long version [16].

We start by giving a Lemma which states that some
program p is independent from a set of secret Xs if and
only if p and a copy of p with a distinct set of secrets are
equivalent.

Lemma 13. Let p ∈ Ck(Xs �Xpub, R). We have that

p ⊥ Xs ⇔ p � p[X
′
s/Xs

]

where Xs ∩X ′
s = ∅ and |Xs| = |X ′

s|.
Using this Lemma we can directly relate the decision

problems for independence and uniformity.

Proposition 14. Independence and uniformity are polyno-
mial time reducible to equivalence.

From the previous Lemma, we also get that if a program
is uniform, it is independent of all its inputs.

Corollary 15. Let p ∈ Ck(X,R) with {r1, . . . , rk} ⊆ R.
We have that

p � r1, . . . , rk ⇒ p ⊥ X

We now provide a Lemma which states that a program
p is uniform if and only if it can be used to hide the value
of some secret s.

Lemma 16. Let A be a Σ-algebra that contains a bi-
nary symbol + such that +A is right invertible. Let p =
(p1, . . . , pk) ∈ Ck(X,R) with {r1, . . . , rk} ⊆ R and
x1, . . . , xk fresh input variables. We have that

p � r1, . . . , rk ⇔ (p1 + x1, . . . , pk + xk) ⊥ {x1, . . . , xk}
The reduction from uniformity to independence directly

follows.

Proposition 17. If A contains a binary symbol + such that
+A is right invertible then uniformity is polynomial time
reducible to independence.

We now focus on how to reduce program equivalence to
uniformity. Our first result applies to finite fields Fq where
q is a prime power pn. We model Fq by a Σ-algebra where

139

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

p ⊥ Xs

p � q

p � r1, . . . , rk

p � q over Ck(∅, R)

p � r1, . . . , rk over Ck(∅, R)

Lemma 13

+A right-invertible , Lemma 16

Lemma 20

Fq ,Lemma 18

Lemma 20

Lemma 13: p ⊥ Xs ⇔ p � p[X
′
s/Xs

]
Lemma 16: if +A is right-invertible then p � r ⇔ p+ xr ⊥ xr

Lemma 18: over Fq , p � p′ ⇔ (if r = 0k then (p+ x)q−1else if r = 1k then (1k − (p′ + x)q−1)else r) � r
Lemma 20: p � q ⇔ (p[rX/X], rX) � (q[rX/X], rX)

Figure 3. Summary of reductions.

Σ = {+,×, 0, 1}. +, ×, 0 and 1 are interpreted using the
field composition laws and corresponding unit elements as
expected. We also write

xy for x×y, x−y for x+y + · · ·+ y︸ ︷︷ ︸
p−1 times

, xn for x× · · · × x︸ ︷︷ ︸
n times

.

The encoding that we present below rely on the fact that
for any element x ∈ Fq ,

xq−1 =

{
0 if x = 0

1 else

which also allows us to introduce a syntactic sugar for the
if then else construct that we will use when inside a finite
field Fq:

(if r = i then p else p′) := (1− (r − i)q−1)p +
(r − i)q−1p′

Before giving a general encoding of program equiva-
lence in terms of uniformity, we show the simpler case of
Boolean algebras, i.e., the case where q = 2, and programs
returning a single value. Let

t = (if r = 1 then p else 1− p′)

We show that
p � p′ iff t � r

where r is a fresh random variable. We fix a valuation ρ ∈
AX . By disjunction on the possible values of r, we have

[[t]]ρ(0) =
1

2
[[p]]ρ(0)+

1

2
[[p′]]ρ(1) =

1

2
+

[[p]]ρ(0)− [[p′]]ρ(0)
2

.

It follows that: t � r ⇔ ∀ρ.[[t]]ρ(0) = 1
2 ⇔ ∀ρ.[[p]]ρ(0) =

[[p′]]ρ(0)⇔ p � p′
We can generalize the result to programs of arbitrary

length over any finite field Fq where q is a prime power.
To generalize the encoding to arbitrary length programs,

for any k, we denote 0k = (0, . . . , 0) and 1k = (1, . . . , 1)
and extend + and × to tuples homomorphically, i.e for
programs p = (p1, . . . , pk),p

′ = (p′1, ..., p
′
k), we will have

that p + p′ = (p1 + p′1, . . . , pk + p′k), and for any n,
pn = (pn1 , . . . , p

n
k).

Lemma 18. Let p, p′ ∈ Ck(X,R) be programs over Fq .
Let r = (r1, . . . , rk) be a tuple of random variables and
x = (x1, . . . , xk) a tuple of input variables, not appearing
in p nor p′. We have that

p � p′ ⇔ T (p+ x, p′ + x) � r

where

T (p, p′) := if r = 0k then pq−1

else if r = 1k then 1k − p′q−1

else r

Intuitively, T (p, p′) is a generalization of the previ-
ous encoding for Booleans, and is uniform if and only if
[[p]]ρ(0) = [[p′]]ρ(0). To prove p � p′, we need to have that
for any value x, [[p]]ρ(x) = [[p′]]ρ(x), this is equivalent to
prove that for a fresh variable x, [[p+x]]ρ(0) = [[p′+x]]ρ(0).

From this encoding we immediately have the following
proposition.

Proposition 19. In a finite field, program equivalence is
polynomial time reducible to uniformity for programs.

140

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

Finally, we show that program equivalence can be en-
coded into equivalence of two programs that do not use
any input variables, by replacing the input variables of the
program by random variables that are revealed at the end of
the program.

Lemma 20. Let p, q ∈ Ck(X,R) and rX a sequence of
random variables such that |X| = |rX |.

p � q ⇔ (p[rX/X], rX) � (q[rX/X], rX)

Hence we have the following proposition.

Proposition 21. � is polynomial time reducible to equiva-
lence without input variables.

3. Characterizations

To leverage existing methods from symbolic cryptog-
raphy, we need to be able to reason in term of syntax
rather than semantic on our different problems, as symbolic
cryptographic abstract probabilities away. In this Section,
we first provide a general characterization of equivalence
using the semantic of equivalence.

Then, we identify precisely what are the properties re-
quired from our algebras to be able to reason only on the
syntax, yielding the notion of effective algebra. Using those
effective algebras, we are able to translate the semantic char-
acterization into a purely syntactic characterization. Proofs
can be found in the long version [16].

3.1. Semantic characterization

We start by giving a semantic characterization of equiv-
alence, which will later on allow us to obtain a syntactic
characterization. Intuitively, two programs are equivalent if
they evaluate the same number of times to the same values.
More formally, they are equivalent if, for each possible value
of the programs, the number of valuations that result in the
given value coincides. This means that the set of valuations
for which the two equivalent programs output a given value
have the same cardinality. We may then exhibit a bijection
between the random variables of the two programs so that
their results coincide on every valuation.

Proposition 22. Let p, q ∈ Ck(X,R). For every ρ1, ρ2 ∈
AX , the following are equivalent:

1) [[p]]ρ1 = [[q]]ρ2 ,
2) ∀�v ∈ Ak.

∣∣S[[p]],ρ1,�v

∣∣ = ∣∣S[[q]],ρ2,�v

∣∣,
3) ∃f ∈ bijR. ∀τ ∈ AR. [p]ρ1∪τ = [q]ρ2∪f(τ).

The following corollary will be used extensively
throughout the paper.

Corollary 23. Let p, q ∈ Ck(X,R) and I ⊆ X . We have
that

p �I q iff ∀ρ1, ρ2 ∈ AX . ∃f ∈ bijR. ∀τ ∈ AR.
ρ1|I = ρ2|I ⇒ [p]ρ1∪τ = [q]ρ2∪f(τ)

Example 24. Using Corollary 23 we can prove that x+v � v
using the bijection f : v �→ x + v (we may see f as a

function over the terms, rather than the valuations) which
satisfies x+ v = f(v).

Consider now the equivalence p3 � u where p3 = uv+
vw + wu. We define the function

f(r, s, t) :=

⎧⎪⎨
⎪⎩
(1, 0, 0) if (r, s, t) = (0, 1, 1)

(0, 1, 1) if (r, s, t) = (1, 0, 0)

(r, s, t) otherwise

where a valuation is denoted by a tuple of values. Obviously,
f is a bijection and, extending the truth table given in
Example 5, we see that f verifies ∀τ ∈ A{u,v,w}, [uv +
vw + wu]τ = [u]f(τ)

u 0 0 0 0 1 1 1 1

v 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1

p3 0 0 0 1 0 1 1 1

fu 0 0 0 1 0 1 1 1

where fu denotes the projection of f(u, v, w) on the first
component.

Relying on Corollary 23 we can now introduce a charac-
terization of uniformity based on the notion of R-bijection.
Intuitively, a program is R-bijective if for any fixed value of
its inputs, the output produced by the program can be seen
as a bijection over its random variables. For p ∈ Ck(X,R),
it is possible if and only if k = |R|.
Definition 25. p ∈ Ck(X,R) is R-bijective if and only if

∀ρ ∈ AX . τ �→ (R �→ [p]ρ∪τ) ∈ bijR

Example 26. We have that x+u is {u}-bijective as for any
ρ ∈ A{x}, τ �→ (u �→ [u+ x]ρ∪τ) is a bijection, with itself
as inverse.

Corollary 27. If p ∈ Ck(X,R) with R = {r1, . . . , rk}, then

p � r1, . . . , rk ⇔ p is R-bijective

Note that for uniformity to imply R-bijectivity the con-
dition that |R| = k is necessary.

Example 28. As seen before, x + u � u (Example 24),
and x + u is {u}-bijective (Example 26). Note that |R| =
k is important here, as for instance uv + vw + wu is not
{u, v, w}-bijective, |uv + vw + wu| = 1 �= |{u, v, w}|, and
uv + vw + wu � u.

3.2. Symbolic abstraction

In this Section we introduce a framework to completely
axiomatize Σ-algebras: in some cases the term algebra
equipped with an equational theory E gives a fully abstract
representation of the Σ-algebra.

141

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

3.2.1. Primal Algebra. A central notion of this section is
primality introduced in [12]:

Definition 29. A is said to be primal if and only if

∀n. ∀f : An �→ A. ∃t ∈ T (Σ, (x1, ..., xn)). f = tA

Primality expresses that for any function in the algebra,
there exists a term whose interpretation is equal to the
function.

Term algebra for Fq . We denote by Fq a finite field, where
q = pn and p is prime, and by P an irreducible polynomial
over Fp[α] of degree n. The Fq-algebra is defined by the
signature

ΣFq = {0, 1, α,+, ∗}
and their usual mathematical interpretation with Fq seen as
Fp[α]/(P (α)). Nipkow [12] has shown that the Fq-algebra is
a primal algebra:

Proposition 30 ([12]). Fq is a primal algebra.

The main idea underlying the proof relies on the encod-
ing of conditionals of the form if x = i then t1 else t2.
We already presented such an encoding for Fq in Sec-
tion 2.4. This allows for a basic encoding of any function
as

if x = 0 then f(0) else . . . if x = i then f(i) else . . .

As we are working on finite sets, this encoding completely
captures a function. In the case of Booleans (q = 2), we
basically write down the truth table of the function inside a
term.

Term algebra for (Fq)
m . It is interesting to note that (Fq)

m

can be made primal. We write tuples directly as sequences
of elements, for example we denote (0, 0, 0) with 000, or
03. The (Fq)

m-algebra is then defined by the signature

Σ(Fq)m = {0m, (0k10m−1−k)0≤k≤m−1,
(0kα0m−1−k)0≤k≤m−1,+, ∗}

and their mathematical interpretations, where we extend
multiplication and addition to tuples component by com-
ponent. This is similar to the classical notation for xor on
bitstrings.

Defined this way, we still have primality for those alge-
bras:

Proposition 31. (Fq)
m is a primal algebra.

3.2.2. Equational theories. To fully abstract our algebras,
we need to be able to capture equalities between terms. We
achieve this using equational theories. An equational theory
E is a set of equalities {ti = ui}i where ti, ui ∈ T (Σ, V)
for some set of variables V . E induces a relation =E on
terms defined as the smallest equivalence relation that con-
tains equalities in E and that is closed under substitutions
of variables by terms, and application of function symbols.

Definition 32. An equational theory E is said to be sound
(⇐) and faithful (⇒) with respect to A if and only if

∀t1, t2 ∈ T (Σ). tA1 = t
A
2 ⇔ t1 =E t2

When E is both sound and faithful we may use = for =E .

The equational theory EFq
. We consider the equational

theory EFq
parameterized by n and P such that q = pn, and

P is an irreducible polynomial P ∈ Fp[α] of degree n. De-
noting by P (α) the term corresponding to this polynomial,
we define EFq

as follows.

x+ 0 = x x ∗ 0 = 0
x ∗ 1 = x x+ · · ·+ x = 0 (p times)

x+ y = y + x x ∗ · · · ∗ x = 1 (q-1 times)
x ∗ y = y ∗ x x ∗ (y + z) = x ∗ y + x ∗ z

x+ (y + z) = (x+ y) + z x ∗ (y ∗ z) = (x ∗ y) ∗ z
P (α) = 0

Proposition 33. EFq is sound and faithful with respect to
Fq .

3.2.3. Effective algebra. We can finally define the new
general class of algebras we will be able to reason about.

Definition 34. (A,Σ, E) is called an effective algebra if A
is a finite primal term algebra over Σ, and E is sound and
faithful with respect to A.

We consider the examples where A is a finite field,
denoted (Fq)

n, where q is an explicit value, and n is a pa-
rameter. We may for instance study programs manipulating
bitstrings of length n using F

n
2 .

Some interesting effective algebra are, for an explicit q
and a parameter n, (Zp,ΣZp , EZp) and (Fq,ΣFq , EFq).

We remark that effective algebras provide in the follow-
ing work equivalences between probabilistic programs and
symbolic methods. Yet, if the equational theory is sound
but not not faithful, or if the algebra is not primal, we
lose completeness of our reductions, but we still keep sound
proof techniques.

3.3. Symbolic characterization

We provide an extension of Proposition 22 based on
effective algebras. This is the abstraction which allows us
to reason only at the syntax level.

Lemma 35. Let (A,Σ, E) be an effective algebra and p, q ∈
Ck(X,R)

p � q iff ∃T ∈ T (Σ, X ∪R)|R|.
T R-bijective ∧ p =E q[T /R]

Moreover, if E is sound, but not faithful, then the implication
from right to left (⇐) still holds.

Example 36. Consider again uv + vw + uw � u from
Example 5. A valid witness of this equivalence is

t(u, v, w) = (uv + wu+ vw, u+ v, u+ w)

142

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

To show that t = (t1, t2, t3) is indeed a valid witness, we
show that t is R-bijective, which we do by exhibiting the
inverse. We have t2t3 = uv + uw + wv + u = t1 + u.
Thus, we have t2t3 + t1 = u. Then, t2 + t2t3 + t1 = v
and t3 + t2t3 + t1 = w. Finally, if we set g(x1, x2, x3) :=
(x2x3 + x1, x2 + x2x3 + x1, x3 + x2x3 + x1), we find that
g(t(u, v, w)) = (u, v, w)), i.e t is a bijection1.

4. Symbolic methods for probabilistic pro-
grams

Using the previous syntactic characterization of equiva-
lence, we can now leverage several techniques coming from
the theory or symbolic cryptography, such as deduction,
deduction constraints and static equivalence. Proofs for this
Section can be found in the long version [16].

4.1. Using deduction to check uniformity

One of the most fundamental notions in symbolic cryp-
tography is deduction: it captures what terms can be com-
puted by an adversary from a given set of terms. It is
formally defined as follows.

Definition 37. Let Σ be a signature equipped with E, V a
set of variables, and t1, . . . , tk, s ∈ T (Σ, V). We say that s
is deducible from t1, . . . , tk, denoted t1, . . . , tk �E s if and
only if:

∃R ∈ T (Σ, (x1, . . . , xk)). Rσ =E s

where x1, . . . xn are variables disjoint from V and σ =
{x1 �→ t1, . . . , xk �→ tk}.

Intuitively, the term u models the computation of the
adversary, and the variables xi are used as handles to refer
to the corresponding terms ti.

Example 38. Consider Σ⊕ = {0,+} and the equational
theory E⊕ defined as the subset of EFq with q = 2 defined
over Σ⊕. We have that

u+ v + w, v + w �E⊕ u

witnessed by the term R = x1 + x2. However,

u+ v + w, v + w ��E⊕ u+ w.

We now show that, on effective algebras, deduction
can be used to decide uniformity. When the equational
theory is sound (which is generally straightforward), but
not necessarily complete, deduction can still be used as a
proof technique, as in that case our encoding still implies
uniformity.

The intuition behind the result is given through Corol-
lary 27 which links uniformity and bijectivity. As a bijective
function is a function which given its outputs allows to

1. Actually, we show that t has a left inverse g, which implies that t is
injective. For a function over a finite set, injective implies bijective, so we
conclude that t is a bijection.

recompute its inputs, it can be checked if a function is
bijective using deduction.

Proposition 39. Let (A,Σ, E) be an effective algebra and
p ∈ Ck(X,R) with R = {r1, . . . , rk}. We have that

p � r1, . . . , rk ⇔ ∀ri ∈ R. p,X �E ri

Moreover, if E is sound, but not faithful, the implication
from right to left (⇐) still holds.

4.2. Deduction constraints and unification for pro-
gram equivalence

In this section we show how deduction constraint as used
in symbolic cryptography [17] and (equational) unification
can be used to verify program equivalence. Deduction con-
straints generalize deduction from ground terms to terms that
contain variables that have to be instantiated by the attacker.

Definition 40. Let Σ be a signature equipped with E, and V
a set of variables. A deduction constraint is an expression
T �?E u where T ⊆ T (Σ, V) is a set of terms and u ∈
T (Σ, V) a term.

A deduction constraint system is either ⊥ or a conjunc-
tion of deduction constraints of the form:

T1 �?E u1 ∧ . . . Tn �?E un

where T1, . . . , Tn are finite set of terms, u1, . . . , un are
terms.

A substitution σ with dom(σ) = V is a solution over
variables V of a deduction constraint system if and only if
∀i. Tiσ �E uiσ.

A deduction constraint system may satisfy additional
properties:

• monotonicity: ∅ ⊆ T1 ⊆ . . . ⊆ Tn

• origination: ∀i. vars(Ti) ⊆ vars(u1, . . . , ui−1)
• one-turn: ∀i, j. Ti = Tj ∧ vars(ui) = ∅
Monotonicity and origination are classical notions that

are naturally satisfied in the context of security protocols
and exploited in decision procedures: monotonicity ensures
that the attacker knowledge (the Tis) only grows, and orig-
ination ensures that any variable appearing in the attacker
knowledge has been instantiated in a previous constraint.

The one-turn property is novel: it requires that the at-
tacker knowledge is invariant and that all variables actually
appear in the attacker knowledge. We show in the long ver-
sion [16] that extending the signature with a homomorphic
function symbol allows to transform a one-turn constraint
system into a constraint system that satisfies origination and
monotonicity while preserving solutions.

Unification [18] is the problem that, given two terms,
asks to find a substitution which makes the terms equal
in the equational theory. For any terms u, v, we denote by
mguΣ,E,V(u, v) the set of most general unifiers of u and
v over Σ, equational theory E and variables V . A set of
unifiers is a most general set of unifiers if for any unifier
σ, there exists a most general unifier μ, such that σ is an

143

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

instance of μ, i.e., there exists a substitution θ such that
σ =E μθ.

We now reduce program equivalence to unification and
solving of one-turn deducibility constraint systems. For any
set of variables V , we denote by V 0 a set of corresponding
function symbols of arity 0, one for each element of V .

Lemma 41. Let (A,Σ, E) be an effective algebra and p, q ∈
Ck(X,R). Let R′ be a set of variables such that |R′| = |R|
and R′ ∩R = ∅. We have that

p � q ⇔ ∃σ ∈ mguΣ∪X0∪R0,E,R′(p, q).
(
∧

r∈R(X,R′)σ �? r) has a solution over R′

Moreover, if E is only sound, but not faithful, the implication
from right to left (⇐) still holds.

Note that in some cases, the most general unifier may
not contain any fresh variables. Then the constraint solving
problem is simply a deduction problem. For instance, by
restricting equivalence to uniformity, the unifier becomes
trivial and we obtain the following corollary:

Corollary 42. Let (A,Σ, E) be an effective algebra and
p1, . . . , pm ∈ C1(X,R) where R = {r1, . . . , rn} and m <
n. Let R′ be a disjoint set of variables such that |R′| = n.
We have that

p1, . . . , pm
�

r1, . . . , rm
⇔

∃pm+1, . . . , pn ∈ C1(X,R).

∀r ∈ R. (p1, . . . , pn, X) � r

Moreover, if E is sound, but not faithful, then the implication
from right to left (⇐) still holds.

4.3. Static equivalence and non equivalence

The notion of static equivalence was introduced in [19]
and its decidability has been studied in [20]. Static equiva-
lence expresses the inability of an adversary to distinguish
two sequences of messages.

Definition 43. Let Σ be a signature equipped with E, V a
set of variables, and t11, . . . , t

1
k, t

2
1, . . . , t

2
k ∈ T (Σ, V). Two

sequences t11, . . . , t
1
k, and t21, . . . , t

2
k are statically equivalent

in E, written t11, . . . , t
1
k ∼E t21, . . . , t

2
k iff

∀u1, u2 ∈ T (Σ, (x1, . . . , xk)).
u1σ

1 =E u2σ
1

⇔
u1σ

2 =E u2σ
2

where x1, . . . xn are variables disjoint from V and σi =
{x1 �→ ti1, . . . , xk �→ tik}.

Intuitively, two sequences of terms are statically equiv-
alent if the set of relations between terms are the same on
both sequences.

Example 44. Consider again the signature Σ⊕ and the
equational theory E⊕ introduced in Example 38. Then we
have that

u⊕ v, v ⊕ w, u⊕ w �∼E⊕ u, v, w

as the relation x1 +x2 = x3 holds on the left hand side but
not on the right hand side. However,

u⊕ v, v ⊕ w,w′ ∼E⊕ u, v, w

This notion has similarities to program equivalence.
We show that indeed program equivalence implies static
equivalence, and hence static non-equivalence may be used
to show that two programs are not equivalent.

Proposition 45. Let A be a finite primal algebra over Σ
with a sound equational theory E, and p, q ∈ Ck(X,R). We
have that

p �∼E q ⇒ p �� q

Example 46. The converse does not hold. Consider the
Boolean algebra F2 and let u and v be random variables.
We have that uv ∼EF2

u, but uv �� u, as uv and v do not
follow the same distribution.

Static non-equivalence can then be used to contradict
non-interference.

Corollary 47. Let A be a finite primal algebra over Σ with
a sound equational theory E, p, q ∈ Ck(Xpub�Xs, R), and
X ′

s such that |Xs| = |X ′
s|.

p,Xs �∼E p[X
′
s/Xs

], Xs ⇒ p �⊥ Xs

5. Deriving heuristics

We can derive from our framework different ways to
solve a specific problem, providing principled algorithms
that are sound and/or complete. In this section, we illustrate
how such algorithms might be obtained either for general
algebras or more precisely for Boolean algebras. We focus
mostly on the case of Boolean algebras, which is of partic-
ular interest for cryptography. Nevertheless, procedures for
more general settings can be obtained, such as the bilinear
setting.

Regarding Boolean algebras, a first interesting subcase
is uniformity in the linear case, where only the xor is used.
It was previously explored and shown useful in [21], and
Using our work we are able to derive more general results,
going beyond linearity and uniformity.

In the general case of Boolean algebras (xor and con-
junction), we develop several heuristics. As deciding equiv-
alence for a given finite field Fq is at least coNP-hard (most
likely strictly above NP and coNP, unless the polynomial
hierarchy collapses; we refer the reader to Section A for
our results on computational complexity) developing such
heuristics is particularly important.

Our techniques rely on well established symbolic meth-
ods. Novel extensions of these techniques and a summary of
related, existing results are given in the long version [16].

5.1. Soundness and completeness

A first important consideration is that when given an
algebra and an instance of a problem, we might be unable

144

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

to solve it using a sound and faithful equational theory,
i.e., a theory that matches exactly the algebra. However,
our previous results allow us to either add equations and
maintain completeness, or remove equations maintaining
soundness.

Example 48. Let r be a random variable and x an input
variable.
• u + x is uniformly distributed for any Fq , as we can

prove that it is uniformly distributed in a ring theory,
which is a sound theory for any Fq;

• u × x is never uniform for any F2n , as we can prove
that it is not uniform in EF2 , which is a faithful theory
for F2n ;

• uv + vw + wu is uniform over F2 but not F4, while
EF2 is faithful for F4;

• u× u is not uniform over a ring, but is over F2, while
a ring theory is sound for F2.

5.2. Boolean algebras: the linear case

Consider programs only built on Booleans and the xor
operator, i.e., without conjunction, which corresponds to an
Associative Commutative Unit Nilpotent (ACUN) theory.
Uniformity and independence can be decided by program
equivalence (see Figure 3). Program equivalence can be
decided using unification and solving one-turn deduction
constraint systems thanks to Lemma 41. Unification is solv-
able in polynomial time for ACUN theories [22]. Solving
one-turn deduction constraints for the ACUN theory can
be reduced to solving classical reduction constraints for the
ACUNh theory where h is a private symbol (see the long
version [16]).

This problem is decidable in polynomial time [23]. Note
that [23] does not claim to handle private symbols, but
they compute a basis of all possible solutions, and there
exists a solution with h being private if only if we can find
one in the basis that does not use h. The general decision
procedures consist of two steps, first a unification, and then
the resolution of a linear system over a polynomial ring
using Gaussian elimination.

The authors of [21] solved uniformity in the linear case
using Gaussian elimination. Our decision procedures are
essentially the same for uniformity. However we extend the
procedures to independence and program equivalence by
adding the unification step, and also add support for the
non linear case.

5.3. Boolean algebras: the general case

Consider programs over a general Boolean algebra, i.e.,
including xor and conjunction operators. This setting is
unlikely to admit an efficient procedure for solving program
equivalence. We therefore use our framework to derive
several heuristics.

Example 49. Going back to Example 5, let p = uv+vw+vu.
We cannot directly show that p � u. However, if we extend
p into a program of size 3, we may decide that

(uv + vw + uv, u+ w, u+ v) � (u, v, w)

using deduction in finite fields (cf the long version [16]).

Example 50. Let u, v, w be three random variables. We can
show using deduction in a commutative ring [24] that:

(u, v + uw,w − uw − v) � u, v, w

Indeed, u, v + uw,w− uw− v � u, v, w by computing:

r, s, t �→ r, s− rt− rs, s+ t

We now consider several heuristics that may be used in
this context.

5.3.1. Unification. Lemma 41 may yield a deduction con-
straint system with a trivial solution R′ �→ R that can be
checked with deduction. This provides an efficient heuristic
for program equivalence.

Example 51. Let u be a random variable, x, s, s′ three input
variables, p = x(u + s) and q = x(u + s′). We have that
x(u+ s) � x(u+ s′), by Lemma 41 with the unifier u′ �→
u + s′ + s on x(u + s) =E x(u′ + s′) which is trivially
bijective when seen as a function on u.

5.3.2. Derandomization. Given a program, all of its ran-
domness may not be needed to satisfy a given property
(this is a trivial consequence of Proposition 22). We may
for instance prove that a program is uniform even when
we replace some of its random variables by input vari-
ables. This reduces the domain of the bijection needed to
prove uniformity, and may simplify the proof. The same
derandomization technique can be applied to equivalence or
independence.

Example 52. Let u, v be random and xv, s be input vari-
ables. We may solve v(u+ s) ⊥ s by replacing v with the
input variable xv and prove xv(u + s) ⊥ s, which follows
directly from Example 51 and Lemma 13.

5.3.3. Solving uniformity through independence. Propo-
sition 17 may be used to prove uniformity through indepen-
dence. This may be useful as it may simplify the deducibility
constraints obtained by Lemma 41.

Example 53. Consider again p = uv + vw + vu. Applying
Lemma 41 directly we obtain the deducibility constraint

uv + vw + vu, v′, w′ �? u, v, w
which admits no obvious solution. Let s, s′ be two input
variables. Applying Proposition 17, uniformity of p is equiv-
alent to uv + vw + vu+ s ⊥ s, which in turn (Lemma 13)
holds if and only if

uv + vw + vu+ s � u′v′ + v′w′ + v′u′ + s′

By setting s to s+ s′, this is directly equivalent to

uv + vw + vu+ s � u′v′ + v′w′ + v′u′

On this equivalence, Lemma 41 provides a unifier
u′, v′, w′ �→ u + s, v + s, w + s for which the deducibility
constraint has a trivial solution.

145

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

5.3.4. Brute forcing the witnesses space. We know that we
can reduce each of the problems we study to testing unifor-
mity of fully random programs, using the encoding given in
Figure 3. Let p ∈ Cm(X,R) where R = {r1, . . . , rn}. Using
Proposition 39, uniformity is equivalent to the existence of a
program α ∈ Cn−m(X,R) such that P, α is uniform, which
can be verified using deducibility by Proposition 39. Such
an α exists if and only if p is uniform.

This yields a sound and complete procedure. However,
the procedure has an exponential running time, as we need
to search over all possible polynomials. This technique is
nevertheless of interest when combined with approximations
of the algebra, because the witness found might be valid
only using a subset of the equations over the algebra.

5.4. Extension to more complex algebras

In [25] the question of deducibility or static equivalence
for the union of disjoint theories is reduced to the deducibil-
ity or the static equivalence in each theory. We extend their
result for deducibility to typed equational theory in the long
version [16]. By Proposition 39, we reduce uniformity to
deducibility. Thus, we may use our results on algebras that
are the union of disjoint algebras.

We may for instance consider programs over both
Boolean linear expressions and group exponentiation with
linear maps. Indeed, deducibility for Boolean linear expres-
sions is decidable in polynomial time [26], and deducibility
in the bilinear setting was studied in [24] (which we extend
to the case where the finite field is of explicit size in the
long version [16]).

We may also consider a combination of any theory ex-
tended with free function symbol. The free function symbols
might for instance represent arbitrary code, e.g attacker
actions inside cryptographic games.

5.5. Interference witnesses

Corollary 47 allows to find witnesses of non interference.
The idea is that given p = (p1, . . . , pk) ∈ Ck(X,R), every
relation of the form C1[p1, . . . , pn] = C2[X

′] where X ′ ⊂
X and C1, C2 are contexts is a witness that p �⊥ {X ′}.

The techniques for deciding static equivalence developed
in [24] provide an algorithm that computes the set of rela-
tions satisfied between multiple polynomials. Based on this
work, we develop an algorithm that, given a program, returns
a set of variables that do not verify non interference, and wit-
nesses to verify the leakage. This is done by computing the
set of all relations over the program and the secrets, keeping
those that are actual witnesses, and simply outputting the set
of all secrets leaked according to the witnesses.

5.6. Sampling from multiple distributions

We considered that programs were only performing
random sampling over a single distribution, the uniform
distribution over some algebra. In practice, we often sample

random variables over multiple distributions or domains.
Our results, and notably Proposition 22, can be extended
to this case, for instance by considering programs built over
Ck(X,R1, . . . , Rn) and exhibiting bijections over each Ri

to prove program equivalence.

6. Applications

We provide in this section applications of our techniques,
describing how we developed a library based on some of
our results and integrated it into two cryptographic tools,
EASYCRYPT [7], [27], and MASKVERIF [11]. The imple-
mentations are available online [13], [14], [15].

6.1. Implementation of a library

We implemented parts of our framework as an OCaml
library. Given that our main focus is automation of cryp-
tographic proofs, the library provides procedures to handle
programs over finite fields. We implemented Gröbner basis
techniques developed for deciding deducibility in rings [24].
This allows for rings of both characteristic 0 and 2 to:

• compute the inverse of a function over multiple vari-
ables,

• compute the set of relations between elements.

With those building blocks and based on the practical
considerations of the previous section, we thus provide
algorithms that can either be sound or complete (Section 5.1)
to:

• decide uniformity through deducibility (Proposi-
tion 39);

• heuristically prove uniformity through derandomization
(Section 5.3.2);

• provide a witness of interference through static non-
equivalence (Section 5.5);

• provide a witness of non-interference through unifor-
mity (Corollary 15).

In particular our building blocks for rings of charac-
teristic 0 and 2, yield a sound heuristic to show uniformity
through derandomization and deducibility for any finite field
F2n . We may also use static non-equivalence to provide a
witness of interference which is valid for any finite field
F2n .

6.2. Integration in MASKVERIF

MASKVERIF is a tool developed to formally verify
masking schemes, i.e., counter measure against differential
power analysis attacks.

MASKVERIF allows to check security properties like
n-probing security, non-interference (NI) and strong non-
interference (SNI). Those notions are strongly related to
Definition 12 of probabilistic non-interference. All proper-
ties require that for any n-tuple of sub-expressions p used
inside the program the following base property is satisfied:
there exists a a subset of the input I such that p �I p.
Furthermore, there is a cardinality constraint on I but this is

146

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

independent of the property and not relevant here. The three
properties are checked using a common algorithm which
require to be able to check the base property for a single
tuple.

MASKVERIF provides a very efficient procedure to
check the base property. However it is incomplete and, in
case of failure, does not provide a witness of interference.
We propose here a new method that limits incompleteness
and, importantly, provides a witness of interference.

We use two functionalities of our library. A witness
of interference can be obtained when checking static non-
equivalence and a witness of non-interference can be ob-
tained by showing uniformity which allows to prove that a
given tuple verifies the base property. Those two procedures
are sound but not complete, yielding results for all finite
fields F2n .

Combining both procedures, we obtain an efficient al-
gorithm. We first compute a set of secrets that are leaked
from the tuple. If this set of secrets is already larger than the
expected size of I , we have a proof that the tuple depends
on too many inputs. Otherwise, we try to prove that the
remainder of the tuple, the part for which we did not find
any obvious secret leakage, is actually independent of the
remaining secrets by proving that it is uniform. This last
step is still incomplete.

The modification of MASKVERIF is minor: we first try
the original heuristic and if it fails we call the new heuristic
based on our library. This change does not affect efficiency
when the original heuristic succeeds but allows to prove new
examples, such as proving that the masked multiplication
proposed in [28] is NI and SNI. The key point for this
example is to prove independence of tuples of the form:

x1y1 + (x1(y0 + r) + (x1 + 1)r)

where r0 and r1 are the random variables.
A major advantage is that we can now provide witnesses

of interference, ensuring that a proof failure is not a false
negative. For instance, when analysing a masked implemen-
tation of an AND gate, among the 3,784 tuples to check,
there is a tuple (t1, t2, t3) of the form

((a1b1 + r1) + a1b0 + a0b1 + r0, r0, r1)

A simple witness of interference that we obtain is then the
equation t1 + t2 + t3 = a1b1 + a1b0 + a0b1.

Our procedure does output a witness demonstrating that
the masked implementation of the Verilog implementation
of the AES Sbox as designed in [29] is not NI at order 1.

We remark that our algorithm may also be applied to the
verification of multi party computation protocols, as shown
in the long version [16].

6.3. Integration in EASYCRYPT

6.3.1. The rnd rule. In cryptographic games, one may
replace an expression by another expression as long as both
expressions range over the same distribution. E.g., if an
expression is uniformly distributed, on may replaced it by
a variable that is sampled at random.

In EASYCRYPT, this is done via the proof tactic rnd. It
allows to replace an expression of the form f(x) by x if f
is invertible - i.e., if one can give an effective expression
for f−1. For instance, we may replace x⊕ y by x because
⊕ is an involution, i.e., (x⊕ y)⊕ y = x.

Listing 1 presents actual examples of the rnd tactic,
where the bijection inverse is specified by hand.

> examples/elgamal.ec
rnd (fun z, z + log (if b then m1 else m0){2})

(fun z, z - log (if b then m1 else m0){2}).

> examples/cramer-shoup/cramer_shoup.ec
rnd (fun x2 ⇒ (x2 + G2.v * G1.y2)

* (G1.w * (G1.u' - G1.u))
+ G1.u * (G1.x + G2.v * G1.y)){2}

(fun r ⇒ (r - G1.u * (G1.x + G2.v * G1.y))
/ (G1.w * (G1.u' - G1.u))
- G2.v * G1.y2){2}.

> examples/incomplete/oaep/OAEP.eca
rnd (fun x ⇒ x + pad (if b then m0 else m1){2})

(fun x ⇒ x - pad (if b then m0 else m1){2}).

Listing 1. Examples of the EASYCRYPT rnd tactic

Using our library, it has been possible to enhance the rnd

tactic by making optional the bijection inverse expressions
— in that case, EASYCRYPT tries to automatically compute
the inverse. Our library is powerful enough to remove all the
explicit inverse expressions in every occurrence of the rnd

tactic in the EASYCRYPT standard libraries and examples.

6.3.2. Simultaneous rnd rules. Based on the fact that we
can actually compute inverse for tuples, we developed an
EASYCRYPT tactic which allows to reduce the distance
between cryptographic pen and paper proofs and EASY-
CRYPT proofs. It appears that in this field of applications,
the hypothesis of Proposition 39 about the number of outputs
of the program equal to the number of its random variables
is not a restriction.

As an example, let us consider once again the Cramer-
Shoup encryption scheme of Figure 2. We consider a goal
that appears in the EASYCRYPT proof of the Cramer-Shoup
encryption scheme, at the point where one has to apply
the DDH assumption. We present in Figure 4 the pseudo-
code of the goal, i.e., the two games and the (simplified)
post-condition for these games. For readability, we omit the
variable prefixes and suffixes used by EASYCRYPT, and
simply write w for G1.w2. We also omit some variables
assignments that do not affect the post condition.

This goal amounts to prove that the secret keys provided
by the actual game or the simulator are the same. We
directly used our previous notations to capture this goal. If
we expend some variable bindings, we obtain the following
goal:

(k, g, gx, x1, x2, y1, y2, z1, z2)
�

(k, g, gw, x− w ∗ x2, x2, y − w ∗ y2, y2, z − w ∗ z2, z2)
We can then conclude by proving that the following map:

(k, g, x, x1, x2, y1, y2, z1, z2) �→
(k, g, w, x− w ∗ x2, x2, y − w ∗ y2, y2, z − w ∗ z2, z2)

147

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

Left game:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx, gy, gz

x1, x2, y1, y2, z1, z2
$←− Fq

g , a, a ← gx, gy, gz

k
$←− dk

e← gx1 ∗ g x2

f ← gy1 ∗ g y2

h← gz1 ∗ g z2

pk ← (k, g, g , e, f, h)
sk ← (k, g, g , x1, x2, y1, y2, z1, z2)

Right game:

w
$←− Fq \ {0}

u, x0
$←− Fq

g ←= gw

k
$←− dk

x, x2
$←− Fq

x1, e← x− w ∗ x2, g
x

y, y2
$←− Fq

y1, f ← y − w ∗ y2, gy
z, z2

$←− Fq

z1 ← z − w ∗ z2

Post-condition:
(k, g, g , x1, x2, y1, y2, z1, z2) � (k, g, g , x1, x2, y1, y2, z1, z2))

Figure 4. (Abstracted) EASYCRYPT Goal for Cramer-Shoup

is a bijection - for example, the inverse of x1 �→ x−w ∗x2
being r �→ r + w ∗ x2.

Currently, performing this part of the proof in EASY-
CRYPT requires a mixture of code motion, code inlining and
single application of the rnd rules, as shown in Listing 2.

swap{1} 16 -9; wp; swap -1; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.z2{2})

(fun z ⇒ z - G1.w{2} * G1.z2{2}).
rnd.
wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.y2{2})

(fun z ⇒ z - G1.w{2} * G1.y2{2}).
rnd.
wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.x2{2})

(fun z ⇒ z - G1.w{2} * G1.x2{2}).
rnd; wp; rnd; wp.

Listing 2. EASYCRYPT proof script

Using our techniques, we were able to replace it with a
single line tactic, using the new tactic rndmatch.

rndmatch
(k, g, x, x_1, x_2, y_1, y_2, z_1, z_2)
(G.k, G.g, G.w, G.x - G.w * G.x2, G.x2,

G.y - G.w * G.y2, G.y2, G.z - G.w * G, z2, G.z2))

The underlying idea is that a user should only specify the
variables on the left which he wishes to map to expressions
on the right. The tactic handles the necessary code motions
and inlinings into the game until it produces a tuple at the
end. The tactic automatically solves the equivalence using
the enhanced rnd tactic:

rnd (fun (v1, v2, v3, v4, v5, v6, v7, v8, v9) ⇒
(v1, v3, v3, v4 - v3 * v5, v5,

v6 - v3 * v7, v7, v8 - v2 * v9, v9).

7. Related work
Our work explores the relationship between probabilistic

and symbolic approaches to cryptography. The probabilis-

tic approach is focused on computational or information-
theoretic notions of security, which are modelled using prob-
abilistic experiments. The symbolic approach uses methods
from universal algebra, automated reasoning and logic to
model and reason about security. Both models have been
used extensively in the literature, and there is active research
to develop formal methods and tools for proving security in
these models.

The connection between these two approaches was first
established by Abadi and Rogaway [30], who prove com-
putational soundness of symbolic security proofs for sym-
metric key encryption: under specific assumptions, protocols
that are secure in the symbolic model are also secure in the
computational model. Their seminal work triggered a long
series of results for other cryptographic constructions [31].
The difficulty in computational soundness results stems from
the fact that the soundness of a security proof requires that
every possible behaviour of a computational adversary is
captured by a symbolic adversary. In our work, we ex-
ploit soundness of symbolic attacks: every symbolic attack
(e.g., an attacker deduction) corresponds to a computational
attack. This form of soundness is generally obtained by
construction, as every symbolic term induces a probabilistic
algorithm. This form of connection originates from the work
of Barthe et al [8] on automatically verifying and synthesiz-
ing RSA-based public-key encryption. This connection was
further extended in [9] and [10] to deal with pairing-based
and lattice-based cryptography.

Our work is also closely related to approaches to reason
about equivalence and simulatability of probabilistic pro-
grams. Barthe et al [32] show decidability of equality for
probabilistic programs (without conditionals or oracle calls)
over fixed-length bitstrings. Jutla and Roy [33] show decid-
ability of simulatability for programs (with conditionals but
no oracle calls) over finite-length bistrings.

Applications of symbolic methods to masking were con-
sidered by Barthe et al in [11], [34], who develop special-

148

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

ized logics to prove different notions of (threshold) non-
interference.

8. Conclusion

We have developed new symbolic methods for
information-theoretic and computational security proofs of
cryptographic constructions. Our methods leverage the nat-
ural correspondence between commonly used techniques
from the code-based game-playing technique and symbolic
tools, including deducibility and unification. The benefits
of our approach are two-fold. From a theoretical point of
view, it provides new insights on the relationship between
computational and symbolic approaches to cryptography.
From a practical perspective, it helps improving automation
and robustness of computer-aided proofs (in contrast with
heuristics, which are often limited and brittle).

An important direction for future work is to extend our
approach to discover cryptographic reductions automatically.
Such an extension could form the basis of a principled em-
bedding into EASYCRYPT of the automated logics from [9]
and [10]. More speculatively, it would be interesting to
leverage connections between equivalence of programs (for
the class considered in this paper) and permutation polyno-
mials [35]. Indeed, it follows from our results that program
equivalence over finite fields reduces in polynomial time to
deciding if a set of multivariate polynomials is an orthogonal
system. Thus, it would be interesting to develop efficient
procedures for checking whether a system of polynomials
is orthogonal. We provide a more detailed presentation of
those perspectives in the long version [16].

Finally, it would be interesting to obtain a better under-
standing of the decidability and computational complexity
of equivalence of programs over finite fields F2n for all
n. While we show that the use of procedures for program
equivalence over a commutative ring of characteristic two
is a sound abstraction, completeness is currently open. Also
note that while we can decide uniformity in some cases
on such rings, program equivalence can only be verified
heuristically. To the best of our knowledge, there currently
exists no unification procedure for commutative rings of
characteristic 2: there seems to be a gap in the literature,
between unification over commutative rings which is unde-
cidable (due to Hilbert tenth problem) and the procedure for
primal algebras and finite fields [12].

Acknowledgements. We wish to thank the anonymous re-
viewers for their useful comments. We are grateful for the
support by the ERC under the EU’s Horizon 2020 research
and innovation program (grant agreements No 645865-
SPOOC), the French National Research Agency (ANR)
under the project Tecap (ANR-17-CE39-0004-01), and ONR
Grant N000141512750.

References

[1] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput.
Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984.

[2] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” Cryptology ePrint Archive, Report 2004/332, 2004.

[3] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Advances in
Cryptology – EUROCRYPT 2006, ser. Lecture Notes in Computer
Science, vol. 4004. Heidelberg: Springer, 2006, pp. 409–426.

[4] S. Halevi, “A plausible approach to computer-aided cryptographic
proofs,” Cryptology ePrint Archive, Report 2005/181, 2005.

[5] B. Blanchet, “A computationally sound mechanized prover for secu-
rity protocols,” in 27th IEEE Symposium on Security and Privacy,
S&P 2006. IEEE Computer Society, 2006, pp. 140–154.

[6] G. Barthe, B. Grégoire, and S. Zanella-Béguelin, “Formal certification
of code-based cryptographic proofs,” in 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009.
New York: ACM, 2009, pp. 90–101.

[7] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin,
“Computer-aided security proofs for the working cryptographer,” in
Advances in Cryptology – CRYPTO 2011, ser. Lecture Notes in
Computer Science, vol. 6841. Heidelberg: Springer, 2011, pp. 71–90.

[8] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech,
B. Schmidt, and S. Z. Béguelin, “Fully automated analysis of
padding-based encryption in the computational model,” in 2013 ACM
SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, A. Sadeghi, V. D.
Gligor, and M. Yung, Eds. ACM, 2013, pp. 1247–1260. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516663

[9] G. Barthe, B. Grégoire, and B. Schmidt, “Automated proofs of
pairing-based cryptography,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, I. Ray, N. Li, and
C. Kruegel, Eds. ACM, 2015, pp. 1156–1168. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813697

[10] G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme,
and E. Shi, “Symbolic proofs for lattice-based cryptography,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. ACM, 2018, pp. 538–555. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243825

[11] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and
P. Strub, “Verified proofs of higher-order masking,” in Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
ser. Lecture Notes in Computer Science, E. Oswald and M. Fischlin,
Eds., vol. 9056. Springer, 2015, pp. 457–485. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-46800-5 18

[12] T. Nipkow, “Unification in primal algebras, their powers and their
varieties,” J. ACM, vol. 37, no. 4, pp. 742–776, Oct. 1990. [Online].
Available: http://doi.acm.org.ins2i.bib.cnrs.fr/10.1145/96559.96569

[13] “Solveq github repository,” https://github.com/EasyCrypt/solveq.

[14] “Easycyrpt github repository,” https://github.com/EasyCrypt/
easycrypt/tree/deploy-solveeq.

[15] “Maskverif source files,” https://sites.google.com/site/
symbolicforcrypto/.

[16] G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P.-Y. Strub,
“Symbolic methods in computational cryptography proofs.” [Online].
Available: https://hal.inria.fr/hal-02117794

[17] J. K. Millen and V. Shmatikov, “Constraint solving for bounded-
process cryptographic protocol analysis,” in CCS 2001, Proc.
8th ACM Conference on Computer and Communications Security
(CCS’01). ACM, 2001, pp. 166–175. [Online]. Available: https:
//doi.org/10.1145/501983.502007

149

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

[18] K. Knight, “Unification: A multidisciplinary survey,” ACM Comput.
Surv., vol. 21, no. 1, pp. 93–124, Mar. 1989. [Online]. Available:
http://doi.acm.org.ins2i.bib.cnrs.fr/10.1145/62029.62030

[19] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in 28th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, POPL 2001. New York:
ACM, 2001, pp. 104–115.

[20] M. Abadi and V. Cortier, “Deciding knowledge in security protocols
under equational theories,” Theor. Comput. Sci., vol. 367, no. 1-2, pp.
2–32, 2006.

[21] G. Barthe, M. Daubignard, B. Kapron, Y. Lakhnech, and V. Laporte,
“On the Equality of Probabilistic Terms,” in Logic for Programming,
Artificial Intelligence, and Reasoning, ser. Lecture Notes in Computer
Science, E. M. Clarke and A. Voronkov, Eds. Springer Berlin
Heidelberg, 2010, pp. 46–63.

[22] Q. Guo, P. Narendran, and D. Wolfram, “Complexity of nilpotent
unification and matching problems,” Information and Computation,
vol. 162, no. 1, pp. 3 – 23, 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0890540199928493

[23] S. Delaune, S. Kremer, and D. Pasaila, “Security protocols,
constraint systems, and group theories,” in Proceedings of
the 6th International Joint Conference on Automated Reasoning
(IJCAR’12), ser. Lecture Notes in Artificial Intelligence, B. Gramlich,
D. Miller, and U. Sattler, Eds., vol. 7364. Manchester, UK:
Springer, Jun. 2012, pp. 164–178. [Online]. Available: https:
//members.loria.fr/skremer/files/Papers/CKP-ijcar12.pdf

[24] G. Barthe, X. Fan, J. Gancher, B. Grégoire, C. Jacomme, and E. Shi,
“Symbolic proofs for lattice-based cryptography,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2018, pp. 538–555.

[25] M. Arnaud, V. Cortier, and S. Delaune, “Combining algorithms for
deciding knowledge in security protocols,” in Proceedings of the
6th International Symposium on Frontiers of Combining Systems
(FroCoS’07), ser. Lecture Notes in Artificial Intelligence, F. Wolter,
Ed., vol. 4720. Liverpool, UK: Springer, Sep. 2007, pp. 103–117.

[26] S. Delaune, “Easy intruder deduction problems with
homomorphisms,” Information Processing Letters, vol. 97,
no. 6, pp. 213 – 218, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0020019005003248

[27] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P. Strub, “Easycrypt: A tutorial,” in Foundations of Security Analysis
and Design VII - FOSAD 2012/2013 Tutorial Lectures, ser. Lecture
Notes in Computer Science, A. Aldini, J. López, and F. Martinelli,
Eds., vol. 8604. Springer, 2013, pp. 146–166. [Online]. Available:
https://doi.org/10.1007/978-3-319-10082-1 6

[28] G. Cassiers and F. Standaert, “Improved bitslice masking: from
optimized non-interference to probe isolation,” IACR Cryptology
ePrint Archive, vol. 2018, p. 438, 2018. [Online]. Available:
https://eprint.iacr.org/2018/438

[29] H. Groß, S. Mangard, and T. Korak, “An efficient side-channel
protected AES implementation with arbitrary protection order,” in
Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track
at the RSA Conference 2017, San Francisco, CA, USA, February
14-17, 2017, Proceedings, ser. Lecture Notes in Computer Science,
H. Handschuh, Ed., vol. 10159. Springer, 2017, pp. 95–112.
[Online]. Available: https://doi.org/10.1007/978-3-319-52153-4 6

[30] M. Abadi and P. Rogaway, “Reconciling two views of cryptography
(The computational soundness of formal encryption),” J. Cryptology,
vol. 15, no. 2, pp. 103–127, 2002.

[31] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” J.
Autom. Reasoning, pp. 1–35, 2010.

[32] G. Barthe, M. Daubignard, B. M. Kapron, Y. Lakhnech, and
V. Laporte, “On the equality of probabilistic terms,” in Logic
for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers, ser. Lecture Notes
in Computer Science, E. M. Clarke and A. Voronkov, Eds.,
vol. 6355. Springer, 2010, pp. 46–63. [Online]. Available:
https://doi.org/10.1007/978-3-642-17511-4 4

[33] C. S. Jutla and A. Roy, “A completeness theorem for pseudo-linear
functions with applications to uc security,” Electronic Colloquium on
Computational Complexity (ECCC), vol. 17, p. 92, 2010.

[34] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub,
and R. Zucchini, “Strong non-interference and type-directed higher-
order masking,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds. ACM, 2016, pp. 116–129. [Online].
Available: https://doi.org/10.1145/2976749.2978427

[35] G. L. Mullen and D. Panario, Handbook of finite fields. Chapman
and Hall/CRC, 2013.

[36] R. Chang, J. Kadin, and P. Rohatgi, “On unique satisfiability
and the threshold behavior of randomized reductions,” Journal of
Computer and System Sciences, vol. 50, no. 3, pp. 359 – 373, 1995.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0022000085710288

[37] S. Fenner, F. Green, S. Homer, and R. Pruim, “Determining accep-
tance possibility for a quantum computation is hard for the polyno-
mial hierarchy,” Proceedings of The Royal Society A Mathematical
Physical and Engineering Sciences, vol. 455, 02 1999.

[38] S. Toda and M. Ogiwara, “Counting classes are at least as hard as
the polynomial-time hierarchy,” in [1991] Proceedings of the Sixth
Annual Structure in Complexity Theory Conference, June 1991, pp.
2–12.

[39] M. N. Vyalyi, “Qma = pp implies that pp contains ph,” in In ECC-
CTR: Electronic Colloquium on Computational Complexity, technical
reports, 2003.

Appendix A.
Complexity results

A.1. Classical complexity classes

Program equivalence for a given Σ-algebra A yields a
natural decision problem EQUIVk

A defined as follows.

INPUT: p, q ∈ Ck(X,R) defined over A.
QUESTION: p ∼ q.

We first show a coNP lower and PSPACE upper bound.

Proposition 54. EQUIVk
Fq

is in PSPACE and coNP-hard.

Proof. We first show that EQUIVk
Fq

is in PSPACE. For
this consider the following decision procedure where conv
converts a tuple of k elements in Fq , into a corresponding
number in [1, qk].

For ρ i n AX :

i n i t i a l i s e a r r a y s tp , tq of s i z e qk t o 0
f o r τ i n AR :

tP [conv([p]ρ∪τ)] + +
tQ[conv([q]ρ∪τ)] + +

i f tp �= tq r e t u r n F a l s e
r e t u r n True

150

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

The time complexity of this algorithm is in EXP(|X|+ |R|).
However the space complexity is polynomial as the maxi-
mum value for each element of the arrays tp,tq is q|R|, which
can be represented using log2(q) · |R| bits.

We next show coNP-hardness by reduction from
UNSAT. Given a formula CNF φ over variables in R and
(∨,∧) we transform φ into a formula φ′ over R and ⊕,∧
in polynomial time w.r.t the size of the formula. Indeed,
given a clause of φ of the form x ∨ y ∨ z, we have that
x∨y∨z = (x⊕y⊕xy)∨z = (x⊕y⊕xy)⊕z⊕(x⊕y⊕xy)z =
x⊕y⊕xy⊕z⊕xz⊕yz⊕xyz = x⊕y⊕z⊕xy⊕yz⊕xz⊕xyz.
With this transformation, we have |φ′| ≤ 5×|φ|. Let p = φ′.
We have that p ∈ C1(∅, R) defined over F2 and

p � 0⇔ φ ∈ UNSAT

Indeed, if φ is unsatisfiable, then for any values taken by
the variables in X , φ evaluates to 0 and p equals 0. This
means that p is equal to the zero distribution. Conversely, if
φ is satisfiable, then there exists a valuation of the variables
so that p is equal to 1, and thus p cannot be the zero
distribution.

We next show that program equivalence for programs
returning a single value is most unlikely to be in coDP.
Recall that coDP = {L1 ∪ L2|L1 ∈ NP, L2 ∈ coNP}).
Proposition 55. If EQUIV1

F2
∈ coDP then PH collapses.

Proof. Recall that unique satisfiability USAT is the set of
satisfiability problems that admit exactly one satisfying as-
signment. By [36], we have that USAT ∈ coDP implies that
PH collapses. We thus reduce USAT to program equivalence
in polynomial time. We are given a CNF formula φ over
variables X (all used) and (∨,∧). We can transform in
polynomial time w.r.t the size of the formula φ into a
formula φ′ over (⊕,∧). Then, let p = φ′ which is a program
in C1(∅,X) over F2. We have that

p �
∧
x∈X

x⇔ φ ∈ USAT

The reduction is polynomial as |∧x∈X x| ≤ |p|.
This result implies that it is unlikely that our problem

is either in coNP or NP, i.e it is unlikely that an efficient
decision procedure exists.

A.1.1. Exact counting and quantum classes. We now
draw links to quantum complexity classes, where we are able
to precisely characterize the complexity of R− EQUIV1

F2
is

the version without input variables defined as follows.

INPUT: p, q ∈ Ck(∅, R) defined over A.
QUESTION: p ∼ q.

The problem halfSAT is defined as follows.

INPUT: CNF boolean formula φ.
QUESTION: Exactly half of the valuations satisfy φ.

Definition 56. C=P is the class of decision problems solv-
able by a NP Turing Machine such that the number of

accepting paths exactly equals the number of rejecting paths,
if and only if the answer is ’yes.’

Cook’s theorem allow us to derive:

Theorem 57. halfSAT is complete for C=P

We can know link uniformity and halfSAT.

Proposition 58. R− EQUIV1
F2

is C=P-complete.

Proof. Hardness:
As in the reduction showing coNP-hardness, given φ we
have that there exists p ∈ C1(∅, R) such that

p � r ⇔ φ ∈ halfSAT

where r is a fresh random variable.
Membership:
We are given p ∈ C1(∅, R). Consider the Turing Machine M
which sample a valuation for R, and accepts if and only if
p evaluates to 1 for this valuation. The number of accepting
path of M is equal to the number of values in R such that
p is equal to 1.

p � R ⇔ p equals 1 for half of the valuations
⇔ M accepts half of the time

From this, we can obtain links to quantum computation,
as coC=P is equal to NQP [37], a quantum analog of
NP, and we also have that coC=P is hard for PH under
randomized reductions [38]. We also have coC=P ⊂ PP,
and if coC=P = PP then PH ⊂ PP [39], which is unlikely.

151

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 18:21:23 UTC from IEEE Xplore. Restrictions apply.

