
Received June 19, 2019, accepted July 10, 2019, date of publication July 15, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2928646

Super-Resolution Integrated Building Semantic
Segmentation for Multi-Source
Remote Sensing Imagery
ZHILING GUO 1, GUANGMING WU1, XIAOYA SONG1,2, WEI YUAN1, QI CHEN3,
HAORAN ZHANG 1, XIAODAN SHI1, MINGZHOU XU1, YONGWEI XU1,
RYOSUKE SHIBASAKI1, AND XIAOWEI SHAO1,4
1Center for Spatial Information Science, The University of Tokyo, Kashiwa 277-8568, Japan
2Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, School of Architecture, Ministry of Industry and
Information Technology, Harbin Institute of Technology, Harbin 150006, China
3School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
4Earth Observation Data Integration and Fusion Research Initiative, The University of Tokyo, Tokyo 153-8505, Japan

Corresponding author: Xiaowei Shao (shaoxw@iis.u-tokyo.ac.jp)

This work was supported in part by the Grant-in-Aid for Early-Career Scientists from the Japan Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), under Grant 19K15260, and in part by the Japan Society for the Promotion of Science (JSPS).

ABSTRACT Multi-source remote sensing imagery has become widely accessible owing to the development
of data acquisition systems. In this paper, we address the challenging task of the semantic segmentation of
buildings via multi-source remote sensing imagery with different spatial resolutions. Unlike previous works
that mainly focused on optimizing the segmentation model, which did not enable the severe problems caused
by the unaligned resolution between the training and testing data to be fundamentally solved, we propose
to integrate SR techniques with the existing framework to enhance the segmentation performance. The
feasibility of the proposed method was evaluated by utilizing representative multi-source study materials:
high-resolution (HR) aerial and low-resolution (LR) panchromatic satellite imagery as the training and
testing data, respectively. Instead of directly conducting building segmentation from the LR imagery by
using the model trained using the HR imagery, the deep learning-based super-resolution (SR) model was first
adopted to super-resolved LR imagery into SR space, which could mitigate the influence of the difference
in resolution between the training and testing data. The experimental results obtained from the test area in
Tokyo, Japan, demonstrate that the proposed SR-integrated method significantly outperforms that without
SR, improving the Jaccard index and kappa by approximately 19.01% and 19.10%, respectively. The results
confirmed that the proposed method is a viable tool for building semantic segmentation, especially when the
resolution is unaligned.

INDEX TERMS Building segmentation, deep learning, remote sensing, super-resolution.

I. INTRODUCTION
Since the achievement of a wide variety of vital tasks such
as urban monitoring, demographic modeling, and disaster
surveillance strongly rely on the detection of important land
features, the semantic segmentation of buildings via remote
sensing imagery has become a significant research topic
in recent years [1], [2]. To conduct the building segmenta-
tion task, the methods such as graph theory-based [3] and
clustering-based [4] are usually inappropriate due to the
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approving it for publication was Jan Chorowski.

complexity and variety of remote sensing imagery [5]. Fur-
thermore, in terms of conventional classification-based seg-
mentationmethods [6]–[8], whichmainly rely on handcrafted
features, the concentration on merely a few of the particular
and salient features, such as the structure, outline, and color,
means that the models inevitably lack strong capability to
represent the abstract characteristics of buildings [9]. Thus,
the high-performance generalization of building segmenta-
tion remains a formidable challenge.

Lately, the rapid development of deep convolutional neural
networks (DCNN) [10] has led to the construction of several
models that have achieved great success with the task of
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building semantic segmentation in terms of both accuracy
and computational efficiency. The pioneering work on the
topic can be traced to 2015, when Paisitkriangkrai et al. [11]
proposed effective semantic pixel labeling using CNN and
conditional random fields (CRF) [12] to perform building
segmentation with competitive classification accuracy. Sub-
sequently, in 2016, inspired by fully convolutional networks
(FCNs) [13], Kampffmeyer et al. [14] designed architec-
ture that allows end-to-end learning of the pixel-to-pixel
semantic segmentation for buildings, and small land features
were proven to be detected accurately as well. In 2017,
Guo et al. [15] utilized ensemble convolutional neural
networks (ECNN) to identify village buildings by using
Google’s satellite map and Bing Maps with high accuracy.
And the development of hourglass-shaped networks (HSNs)
such as UNet [16] and SegNet [17] motivated Liu et al. [18]
to propose an enhanced HSN. Their model included an incep-
tion module, which replaced the typically used convolutional
layers, and which results in a network with multi-scale recep-
tive areas with rich context. In contrast to studies that aimed
to modify the structure of CNN, Bischke et al. (2017) [19]
and Wu et al. (2018) [20] chose to optimize the loss function
by applying multi-task loss and multi-constraint loss, respec-
tively. The results demonstrated that optimization of the loss
function could significantly improve the performance of clas-
sic FCNs in certain building segmentation tasks. In addition,
to facilitate the development of parsing the earth through
satellite imagery, a challenge namedDeepglobe [21] was held
during the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW) in 2018, and the
following is a brief overview of some representative stud-
ies. Zhao et al. [22] conducted extraction by using Mask
R-CNN [23] with building boundary regularization. Delassus
and Giot [24] proposed a fusion strategy based on a deep
combiner using segmentation of both the results of different
CNNs and the input data to segment. By using a new FCN
variant named TernausNetV2, Iglovikov et al. [25] could
extract buildings even at the instance level. Focusing on small
buildings, Dickenson and Gueguen [26] utilized CNN to
output rotated rectangles for symbolized building footprint
extraction. Li et al. [27] used a building extraction method
based on ensemble learning to perform the segmentation.
Furthermore, a recent study in 2019, Wu et al. [28] utilized
stacked fully convolutional networks and a feature alignment
framework for multi-label land-cover segmentation with high
accuracy.

Despite their success in several building semantic segmen-
tation tasks, the discussions on building extraction via multi-
source remote sensing imagery of which the spatial resolution
differs are quite inadequate. With the dramatically increasing
availability of new large-scale remote sensing data sources,
the ever-expanding choices of datasets can be utilized in
semantic segmentation tasks [29]–[31], and the case that
training and testing datasets obtained from multiple sources
with different resolution would be inevitable and ubiquitous
in many practical applications [32].

In general, differences between the resolution of the train-
ing and testing datasets would greatly influence building
semantic segmentation. Three factors are mainly responsible
for the problems in this regard. First, the resolution defines
the ability of a single pixel to cover the Earth’s surface, which
would cause the same building to appear to have a different
size inmultiple remote sensing images of different resolution.
A recent study [33] indicated that the factor of building size
strongly impacts upon the capability of the DCNNmodel, and
a model trained by using a building of a specific size would
find it difficult to detect buildings of a significantly different
size. Second, the resolution indicates the ability of the image
to represent small objects. Thus, a small-sized land feature
would be deformed or ignored in a low-resolution (LR)
image due to the limited resolution. Many studies regarding
small object detection [34]–[36] demonstrated the difficulty
of solving this problem. Furthermore, as an important indica-
tor, resolutionmeasures the richness of information contained
in remote-sensing imagery [37], in which a different resolu-
tion represents a different frequency information distribution,
which greatly affects the features of the building such as
its color, outline, and texture [38]. For the aforementioned
reasons, a DCNNmodel trained at a specific resolution would
find it fundamentally difficult to correctly represent the fea-
tures of the testing dataset at another resolution, and this
would result in a poor generalization of semantic segmen-
tation. Thus, overcoming the constraint of resolution differ-
ences among multi-source remote sensing imagery would
facilitate the development of building semantic segmentation
to a considerable extent.

To deal with the severe problems caused by resolution
difference between multi-source remote sensing imagery,
the solution can be mainly classified into image trans-
form based [39], data augmentation based [40], and trans-
fer learning based [41] methods. With regard to image
transform, the usual approach would be to downscale the
high-resolution (HR) imagery into LR space by using down-
sampling methods [42] or to upscale LR imagery to HR space
using a single filter such as bicubic interpolation [43]. The rel-
evant drawbacks are obvious since downsampling would lead
to undesired side-effects such as the loss of spatial informa-
tion whereas interpolation would generate insufficient large
gradients along edges and high-frequency regions by sim-
ply weighted averaging neighboring LR pixel values [44],
small buildings would not be the same as larger ones even if
up-scaled. With regard to data augmentation, methods such
as color transformation, affine transformation, rotation, and
linear scaling could enrich the variety of the training dataset,
but could not supplement important features such as high-
frequency information effectively at LR. And about transfer
learning, although it owns the capability to rebuild the model
based on utilizing the knowledge acquired from the previ-
ous task, once the feature-space and information distribution
changes caused by resolution, the preparation for adequate
amount of new training dataset is still unavoidable, which
limits the efficiency and scalability in practical applications.
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FIGURE 1. Materials. (a) and (c) show examples of the training and testing data, including high-resolution aerial imagery in which the
corresponding buildings are annotated in purple and low-resolution satellite imagery with the relevant buildings annotated in green.
(b) The study area divided into training and testing areas colored purple and green, respectively.

Given the difficulties faced by the methods mentioned
above, super-resolution (SR) [45] has emerged as a promising
alternative strategy to solve the problem. Aimed at increasing
the image resolution while providing finer spatial details than
those captured by the original acquisition sensors, SR could
balance the size and detail of land features between the train-
ing and testing datasets to a certain degree [46]. In addition,
as a highly ill-posed problem, SR operation is considered to
be a one-to-many mapping from LR to HR space, which can
have multiple solutions. Recent studies on DCNN-based SR
models have shown tremendous capability in super-resolving
an LR image into HR space, showing that generating high-
quality SR remote-sensing imagery is achievable. A detailed
review of additional DCNN-based SR models and their cor-
responding applications was recently published [47].

In this study, contrary to previous work, we propose to
integrate super-resolution (SR) techniques into the existing
segmentation framework to address the problem of build-
ing semantic segmentation in multi-source remote sensing
imagery with different spatial resolution. To validate the
feasibility of the proposed method, two high-performance
DCNN-based models, namely efficient sub-pixel convolu-
tional neural network (ESPCN) [48] and UNet, are adopted
to perform SR and the semantic segmentation operation,
respectively. In addition, three-band RGB HR aerial imagery
and single-band grayscale LR panchromatic satellite imagery
are selected as representative multi-source remote sensing
imagery to conduct training and testing, respectively. It is
worth emphasizing that, to the best of our knowledge, there
has not been any empirical study using SR techniques for the
building semantic segmentation from multi-source imagery
with different resolution.

The main contributions of this study are three fold:
• We discussed the challenge and limitation of recent deep
learning based studies on building semantic segmenta-
tion of building while under multi-source imagery with
different resolution circumstance.

• We innovatively presented a novel SR integrated build-
ing semantic segmentation framework to tackle the
problem caused by the unaligned resolution between

training and testing data, and investigated the feasibil-
ity of the proposed method based on comprehensive
experiments.

• The experimental results demonstrate the proposed
method could achieve state-of-the-art performance, and
the IoU andKappa is approximately 19.01% and 19.10%
higher than that of the method without SR, respectively.
It indicates the effects of SR on segmentation perfor-
mance in remote sensing imagery, which would benefit
the remote sensing community from literature review to
future directions.

The remainder of this paper is organized as follows.
Section II introduces the area we studied and the data source.
Then, the workflow of the proposed method is explained in
Section III, where details of the algorithms as well as the eval-
uation metrics are also presented. After that, the experimental
results and discussion appear in Section IV and V. Finally,
the conclusions are drawn in Sections VI.

II. DATA
A. STUDY AREA
As one of the world’s highest density urban areas, Tokyo
contains intensely dense buildings with a huge diversity and
complexity. Such characteristics of urban landscape lead spa-
tial resolution to play an important role in semantic seg-
mentation task. In this study, we deliberately selected some
representative study areas in downtown Tokyo to demon-
strate the feasibility of SR in building semantic segmentation.
Figure 1b shows the detailed study area.We divided the entire
area into training and testing areas indicated in purple and
green, respectively. The training area covered 33km2 and is
mainly located in the Setagaya, Koto, and Sumida districts,
which include a wide variety of land use categories such
as residential, commercial, and industrial areas. In addition,
an area of 3km2 in the Koto district with comprehensive land
use was selected to perform testing.

B. DATA SOURCE
The aerial and panchromatic satellite imagery were used as
the training and testing datasets, respectively. The remote
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FIGURE 2. Framework of our building semantic segmentation method.

top-view three-band RGB aerial imagery in the training area
was acquired in March 2016 with a resolution of 0.160m,
and the source panchromatic imagery in the testing area was
captured by theWorldView-2 sensor inMay 2016with spatial
and radiometric resolution of 0.500m and 16-bit, respectively.
In terms of the annotated dataset, a total of approximately
60,000 and 3,000 building footprints are contained within the
training and testing areas, respectively. To best represent the
building footprints, a polygon-based method via QGIS was
used to conduct the annotation, in which, the polygon max-
imizes the shape of a building from an orthophoto, and any
adjoining buildings are marked as a single building. Owing to
the limitations of interpretation based on human-based vision,
a few small errors are inevitable especially for high-density
areas in LR satellite imagery. Some examples of training
and testing imagery and their corresponding annotations are
shown in Figure 1a in purple and in Figure 1c in green,
respectively.

III. METHODS
In this section, we present our novel framework for an SR
integrated building semantic segmentationmethod. As shown
in Figure 2, the three main procedures in the framework are:
data processing, model training, and testing with related eval-
uation. The two processes that precede the testing stage can be
considered as running in parallel in terms of both segmenta-
tion and SR model generalization. First, aerial imagery of the
study area obtained from the same source undergoes parallel
data preprocessing to generate training data for semantic
segmentation and SR integration. Subsequently, the obtained
data is fed into the proposed upper UNet and lower ESPCN
to train the segmentation and SR model, respectively. Here,
in both models, 70% of the training data is used for train-
ing, and the remaining 30% is used for cross-validation.

To evaluate the quality of the segmentation model, we apply
six commonly used evaluation metrics that include precision,
recall, overall accuracy [49], F1-score [50], the kappa coeffi-
cient [51], and the Jaccard index or intersection over union
(IoU) [52]. The SR model is assessed by using the peak
signal-to-noise ratio (PSNR) [53], which is usually taken
as an approximation to human perception of reconstruction
quality. It should be noted that both segmentation and SR
models would be retained in case the bad results are generated
when conducting cross validation. After that, in the testing
and evaluation procedure, we first input the processed LR
satellite data into the trained SR model to generate related
upscaled SR data; then, the trained segmentation model with
proper hyperparameters is adopted to enable the generated
testing SR satellite data to be used to make predictions.
Finally, the quality of the semantic segmentation results is
evaluated by the segmentation assessment criteria mentioned
above. To clearly reflect the capability of different mod-
els, here, the evaluation metrics are calculated without any
post-processing for both the semantic segmentation and SR
processes.

This section details first the data preprocessing step, fol-
lowed by the training strategies of the SR and segmentation
models. Lastly, the testing method and related assessment
criteria are proposed and explained.

A. DATA PREPROCESSING
Data preprocessing is conducted in parallel to generate train-
ing data for both the segmentation and SR models. With
respect to the segmentation, the three-band RGB HR aerial
imagery is first converted into grayscale to align it with
the single-band panchromatic testing LR satellite imagery;
then, after applying basic color normalization methods such
as adaptive histogram equalization [54], the aerial imagery
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is sliced into patches sized 224 × 224 pixels by using a
random sliding window to generate data for model training
and cross-validation purposes. Simultaneously, correspond-
ing ground truth patches with consistent size are generated
via the annotation dataset as well. In terms of the SR pro-
cess, considering humans are more sensitive to luminance
changes [55], we convert the aerial imagery from RGB into
YCbCr color space, and only take the luminance channel
in the YCbCr color space into consideration. Similar to the
process of segmentation, the converted aerial imagery in the
luminance channel is sliced into small patches sized 224 ×
224 pixels. In addition, to reduce the influence caused by
data availability, data augmentation techniques [56] are also
adopted to enrich the training data for both the segmentation
and SR processes.

B. SEGMENTATION MODEL
Several effective segmentation models have been introduced
in Section I, to demonstrate the feasibility of proposed frame-
work, in this study, we propose to adopt UNet architecture
as a representative segmentation model to conduct building
semantic segmentation.

UNet is one of a state-of-the-art models for image semantic
segmentation, and has been successfully applied to perform
different tasks with high accuracy and efficiency. The net-
work architecture can be divided into two parts: a contracting
path and a symmetric expansive path. The contracting path,
which is regarded as a variant of VGG [57], contains five
consecutive blocks for feature extraction and downsampling.
Each of these blocks consists of two 3×3 unpadded convo-
lutions followed by 2×2 max pooling, which provides the
abstracted form of the representation while enlarging the
receptive field. The expansive path, which can be consid-
ered as the reverse operation of the contraction path, com-
prises four blocks and each contains an upsampling of the
feature map followed by a 2×2 convolution. Importantly,
before feeding the extracted feature map into the next block,
the feature map generated in the contraction path with the
same shape is integrated inside by concatenation. In addition,
the number of feature channels are doubled and divided
in half after each downsampling and upsampling, respec-
tively. The non-saturated activator known as a rectified linear
unit (ReLU) is adopted after each convolutional operation to
perform nonlinear mapping. This architecture makes UNet
suitable for mining very deep and abstract features.

Considering the characteristics of UNet, some advantages
of adopting UNet architecture as segmentation model to
conduct building semantic segmentation can be listed as
follows. First, the architecture of UNet performs pixel-to-
pixel and end-to-end mapping from input to output, which
enables precise localization for the building segmentation
result. Second, UNet can generate results in HR space by
recoveringHR representations. Instead of using pooling oper-
ators after successive convolutional layers, the architecture
adopts upsampling with a large number of feature channels
to increase the output resolution. In addition, the model has

the capability to augment feature space by fusing the con-
text from imagery acquired at different resolutions. Because
HR features extracted from a contracting path and LR fea-
tures upsampled by using an expansive path are combined
through the process of concatenation, the feature space can
be augmented to a certain degree.

In this study, we modified the original UNet architecture
in some important ways. To avoid dead neurons in the back-
propagation step as well as to benefit from initialization,
we use leaky ReLU [58] instead of ReLU after each convo-
lution. Concretely, the convolution operation which performs
element-wise multiplication via kernels, can be formulated as
follows:

z =
hf∑
i=1

wf∑
j=1

cl∑
d=1

2i,j,d,d ′ × xi,j,d + bd ′ (1)

where hf ,wf represent the height and width of the kernel 2,
cl is the number of channels for input x in layer l, and b in
shape 1× 1× 1× d ′ donates the bias.
Then, leaky ReLU φ is utlized to generate the hypothesis

from z:

φ(z) =

{
z if z > 0
0.01z otherwise

(2)

Subsequently, batch normalization [59] is also added and
extensively applied after each non-linearity to accelerate the
training and reduce internal covariate shift. The two param-
eters in batch normalization, scale γ and shift β, can be
learned by:

YB = γ
XB − µB√
σ 2
B + ε

+ β (3)

where XB and YB denote all input and output in mini-batch B.
µB and σ 2

B refer to mean and variance of corresponding
mini-batch.

Furthermore, to avoid over-fitting, we eliminate the redun-
dant features by adopting dropout [60], and the final binary
classification of either building or non-building is predicted
by using the sigmoid function. Here, the cross entropy
expressed by Equation 4 is used to penalize the inconsistency
between prediction Ŷ and ground truth Y . Further, H and W
are the height and width of both the prediction and ground
truth, respectively.

L(Y , Ŷ ) = −
1

H ×W

H∑
i=1

W∑
j=1

(
Yi,j × log(Ŷi,j)

+ (1− Yi,j)× log(1− Ŷi,j)
)

(4)

C. SR MODEL
Aimed at recovering HR imagery from its LR informa-
tion, SR is an important category of techniques for image
processing and offers an excellent opportunity to facilitate
the development of different remote sensing applications
including building semantic segmentation. In recent years,
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deep learning based SR methods have been investigated
quite intensively and have achieved state-of-the-art perfor-
mance among various benchmarks of SR, some breakthrough
studies such as SRCNN [61], VDSR [62], LapSRN [63],
SRGAN [64], etc. To explore the feasibility of integrating
SR into the building semantic segmentation task while simul-
taneously considering the characteristics of the available
data source, we propose to adopt a typical deep learning
based single-image super-resolution (SISR) method named
ESPCN to increase the resolution of LR panchromatic satel-
lite imagery to match that of the HR aerial imagery at some
point. Ideally, the reconstructed SR imagery could be aug-
mentedwith high-frequency information on condition that the
spatial resolution is similar to that of the HR aerial imagery.

Instead of upscaling the LR input imagery XLR into HR
space before reconstruction, ESPCN directly extracts feature
maps from LR space with the help of successive hidden
convolutional layers. To generate SR imagery XSR from XLR

with an upscaling factor r , XLR with a shape of h × w × c
would undergo L layers of convolution operations. The first
L − 1 layers can be described as:

f 1(XLR,21, b1) = g(21 × XLR × b1) (5)

f l(XLR,21:l, b1:l) = g(2l × f l−1(XLR)× bl) (6)

where 2l and bl with l ∈ (1,L − 1) represent the learnable
hyperparameters weights and biases, respectively. Function g
is the activator ReLU used to perform nonlinear mapping.

The final layer f L applies an efficient sub-pixel convolu-
tion operation, which learns an array of complex upscaling
filters to upscale the LR feature maps into the HR output XSR.
The formula as follows:

XSR = f L(XLR,2L , bL) = PS(2L × f L−1(XLR)+ bL) (7)

where PS is a periodic shuffling operator that reshapes the
feature maps of layer L − 1 from shape h × w × c · r2 into
a tensor of shape rh × rw × c. Weights 2L are in the shape
hf × wf × cL−1 × c · r2.
During training, the input LR imagery XLR can be syn-

thesized efficiently by sub-sampling HR aerial imagery XHR

from shape rh× rw× c to h× w× c using a Gaussian filter.
After generating the result in each epoch, the loss function
pixel-wise mean squared error (MSE) (Equation 8) is used
to measure the discrepancy between reconstructed XSR and
original XHR, both in shape rh × rw × c. In addition, early
stopping is adopted to end the training process once themodel
performance no longer improves after 100 epochs on cross-
validation data.

L(XHR,XSR) =
1

r2hw

rh∑
i=1

rw∑
j=1

(XHRi,j − f
L
i,j(X

LR))2 (8)

In terms of the spatial resolution of themulti-source remote
sensing imagery used in this study, the HR aerial imagery
is approximately three times higher than LR panchromatic
imagery; therefore, three SR models are trained by ESPCN

by assigning the values 1, 2, and 3 to the upscaling factor r ,
respectively.

D. ASSESSMENT CRITERIA
The quality of the results obtained after semantic segmenta-
tion and the use of the SR model is evaluated by applying
criteria based on a confusionmatrix and image quality assess-
ment (IQA), respectively.

We assess the properties of the resulting segmentation Ŷ
with regard to the ground truth Y via six criteria: precision,
recall, overall accuracy, F1-score, the kappa coefficient, and
the Jaccard index. For the sake of simplicity, tp, fn, fp,
and tn, represent the basic terms in the confusion matrix:
true positive, false negative, false positive, and true negative,
respectively.

Precision and recall are both measures of relevance. Here,
Precision (Equation 9) measures the proportion of relevant
results in the list of all returned search results, and refers to
the percentage of correctly predicted buildings to the total
number of predicted buildings.

Precision =
tp

tp+ fp
(9)

Contrary to this, recall (Equation 10) measures the proportion
of the relevant results returned by the segmentation model
to the total number of relevant results that could have been
returned, and refers to the correctly predicted buildings as a
percentage of the exact total number of buildings.

Recall =
tp

tp+ fn
(10)

A trade-off between precision and recall is important.
Thus, the F1-score, which takes both precision and recall into
account and finds an optimal blend for them, is applied. The
formula is as follows:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(11)

where the relative contribution of precision and recall to the
F1 score are the same.

Overall accuracy, as shown in Equation 12, is also an
essential metric in semantic segmentation. It refers to the
proportion of correctly predicted building and non-building
areas of the total number of areas to predict.

Overall Acc =
tp+ tn

tp+ tn+ fp+ fn
(12)

To measure the level of agreement between two objective
annotators, kappa coefficient is also applied as follows:

Po = Overall Acc (13)

Pe =
(tp+ fp)× (tp+ fn)+ (fn+ tn)× (fp+ tn)

(tp+ tn+ fp+ fn)2
(14)

Kappa =
Po− Pe
1− Pe

(15)

where Po is identical to the overall accuracy and refers to
the observed agreement ratio, and Pe is the probability of
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FIGURE 3. Qualitative results for test region 1.

the expected agreement when both annotators assign building
areas randomly.

Moreover, as the most prevalent criterion for segmentation
problems, the Jaccard index in Equation 16 is used tomeasure
the dissimilarity between the predicted and extracted building
areas.

Jaccard =
tp

tp+ fp+ fn
(16)

All six of the segmentation assessment criteria mentioned
above reach their best value at 1 and worst score at 0.

Regarding the qualitative performance of the SR model,
the most widely used evaluation criterion, PSNR, is adopted
to measure the reconstruction quality of transformation. The
PSNR, which is an objective IQAmethod, is calculated based
on the maximum possible pixel value (denoted as MAX ) and
the pixel-level MSE between HR imagery XHR and super-
resolved SR imagery XSR. The corresponding formulas are
as follows:

MSE =
1

H ×W

H∑
i=1

W∑
j=1

(XHR − XSR)2 (17)

PSNR = 10× log10(
MAX2

MSE
) (18)

We normalize the maximum possible pixel value between
multi-source imagery by converting the value of 8-bit aerial
imagery and 16-bit panchromatic imagery, and rescale both
of them from 0 to 1. Thus, instead of relying on human visual
perception, the quality of SR is computationally only related
to the MSE.

IV. RESULTS
To demonstrate the feasibility of proposed SR integrated
approach, we employ the same modified UNet model trained
by HR aerial imagery as the backbone to test imagery in three
main categories: LR, ESPCN based SR, and bicubic based

interpolated imagery. Considering the exact resolution of HR
aerial and LR panchromatic imagery as well as exploring the
influence caused by their resolution difference, we upscale
the testing LR panchromatic imagery with resolution 0.500m
into 2, 3, 4 times by both ESPCN and bicubic interpo-
lation methods. Thus, SR- and bicubic-based interpolated
panchromatic imagery with resolution 0.250m, 0.167m, and
0.125m are generated. Moreover, to evaluate the robustness
of methods, we deliberately divide the entire testing area
into four regions based on land use, where buildings and
other important land features present in different character-
istics in terms of grayscale value, texture, structure, density,
size, etc.

This section presents the qualitative and quantitative results
of the building semantic segmentation of the four regions
via different methods. More specifically, with respect to
the qualitative results, the assessment criteria introduced in
Section III-D are applied. The quantitative results are shown
in Figure 3, 5, 7, and 9. In these figures, (a) and (e) are LR
panchromatic imagery and the corresponding segmentation
result, (b), (c), and (d) are the segmentation results generated
by the ESPCN-based methods with upscale factors of 2, 3,
and 4, respectively. Further, (f), (g), and (h) are the segmen-
tation results generated by the bicubic-based methods with
upscale factors corresponding to the ESPCN-based methods.
The different colors: green, red, blue, and white, are used
to indicate the tp, fn, fp, and tn pixels in the segmentation
results, respectively. Moreover, for improved visualization,
as shown in Figure 4, 6, 8, and 10, enlargements of selected
representative subregions in each region are displayed in a
yellow window to reveal the details, which reflect the effect
of applying different methods.

Figure 3 shows the qualitative results for test region 1,
which mainly contains commercial and residential areas,
in which the types of buildings are particularly diverse,
whereas the non-building areas include several open sided
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FIGURE 4. Qualitative results for representative subregions in test region 1.

FIGURE 5. Qualitative results for test region 2.

car parks and sports grounds. The corresponding quantitative
results generated by the different methods are provided in
Table 1, and indicate that the proposed ESPCN method with
an upscale factor of 2 outperformed other models in terms
of the recall, overall accuracy, F1-score, kappa, and Jaccard
index. With respect to precision, the results are worse than
those of other upscaled imagery but are still more accurate
than those obtained for the original LR imagery.

Notably, as shown in the first row of Figure 4, in some
residential areas, the size of building as well as the sep-
aration distance between adjacent buildings is quite small

in LR imagery, which considerably increases the challenge
of segmentation, and makes it difficult to identify buildings
at all. The use of ESPCN not only enlarges the size of
building and distance between adjacent buildings like bicubic
interpolation does but also enrich the texture information. The
effect can easily be seen in the enlarged views and related
segmentation results, where all buildings are well segmented
by adopting ESPCN with an upscale factor of 2, and, ESPCN
outperforms the simple interpolation methods for every
respective upscale factor. Similar to the residential areas,
as shown in the third row of Figure 4, the external outlines of
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FIGURE 6. Qualitative results for representative subregions in test region 2.

FIGURE 7. Qualitative results for test region 3.

buildings in the commercial area are particularly clear when
using ESPCN, which produces more accurate segmentation
results.

Region 2 is a mainly residential area, and the related qual-
itative results are shown in Figure 5. As with the results of
region 1, because of the misalignment in resolution between
the training and testing data, the majority of small and
detached houses in LR imagery are misclassified as non-
building areas. Apart from the prevalence of detached houses,
the residential buildings in region 2 also include medium-
rise mansions and apartments with a comparatively larger

distance separating them, and the region also contains sev-
eral small parks. Both the qualitative and quantitative results
shown in Figure 5 and Table 2 demonstrate the effect of
ESPCN on the semantic segmentation of residential buildings
in the different categories.

Figure 6 shows some representative mansions and apart-
ments aswell as related segmentation details. Except for a few
tiny accessory buildings and protruding architectural con-
tours, buildings are correctly segmented with a low fp value
by adopting ESPCN with an upscale factor of 2. In contrast,
the use of LR imagery leads to the misclassification of many
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FIGURE 8. Qualitative results for representative subregions in test region 3.

FIGURE 9. Qualitative results for test region 4.

roads and areas containing vegetation as buildings, whereas
buildings are incorrectly detected.

As shown in Figure 7a, region 3 mainly consists of quasi-
industrial zones occupied by light industrial and service
facilities, with non-building land features such as a river
and large-scale transport system also included. Intuitively,
the qualitative results seem to suggest that ESCPN with an
upscale factor of 2 outperformed LR and the other methods
with fewer fp and fn results, especially in areas bordering the
railway line and high-density building areas. Some represen-
tative results are presented in Figure 8.

The quantitative results in Table 3 also infer that SR
imagery obtained with an appropriate upscale factor can
achieve performance superior to that attainable with LR
imagery in regions with comprehensive land features.

Region 4 shown in Figure 9a is situated in the vicinity
of the Tokyo Bay estuary. This highly particular location
consists of industrial areas with large factories and storage
buildings as well as docks spread over the entire region. Land
features particular to this location, such as containers, are
widely distributed in the port, while barges are moored in the
harbor. The quantitative results shown in Figure 9b to h and
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FIGURE 10. Qualitative results for representative subregions in test region 4.

TABLE 1. Quantitative results for test region 1.

TABLE 2. Quantitative results for test region 2.

TABLE 3. Quantitative results for test region 3.

indicate that ESPCN with an upscale factor of 2 can segment
large buildings with the lowest fn.

The impact of the resolution on the segmentation of large
buildings was analyzed in greater detail by selecting a few

representative large buildings with a simple roof texture and
that are surrounded by wide open areas for comparison pur-
poses. As shown in Figure 10, although the size of large build-
ings in LR imagery is comparable with that of small buildings
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TABLE 4. Quantitative results for test region 4.

FIGURE 11. Average performance of SR reconstruction and segmentation for the four test regions using different methods. (a) Bar
diagram for performance comparison. The x- and y-axis represent the assessment criteria and corresponding values, respectively. (b)
Table for performance comparison. For each assessment criterion, the highest values are highlighted in bold.

in the trainingHR imagery, the unclear contour of buildings in
LR imagery is prone to misclassification and produces results
with a large fn value. Such results reflect the importance of
aligning the resolution between training and testing data from
the side, as well as the effects of SR integrated method on
semantic segmentation in satellite imagery.

The detailed results provided in Table 4 confirm the afore-
mentioned conclusion. Large buildings in LR imagery can be
detected by the model trained on HR imagery with relatively
high accuracy; however, in contrast with the ESPCN inte-
grated method, which contains high-frequency information,
the performance remains poor.

V. DISCUSSION
Section IV presented comprehensive qualitative and quan-
titative results of the segmentation of buildings, which are
located in various areas and which differ in terms of their den-
sity, shape, texture, size, and usage. The discussion we pro-
vide in this section aims to further demonstrate the feasibility

of SR-integrated segmentation methods. First, the average
quantitative results for the four regions are used to indicate the
robustness of the proposedmethod. Then, we take reconstruc-
tion quality as a reference to show the relationship between
segmentation and SR. It should be noted that since the HR
satellite imagery is not available, we utilize the reconstruction
quality generated in training procedure by HR aerial imagery
to represent that of SR satellite imagery. Finally, selected
qualitative results of important land features other than build-
ings are shown. Besides, poor results are briefly analyzed and
discussed.

The average segmentation performance obtained by adopt-
ing different methods is shown in Figure 11. In general,
the ESPCN-integrated method with an upscale factor of 2
significantly outperforms the other methods including LR
imagery, improving the overall accuracy from 0.802 to 0.854,
the F1-score from 0.651 to 0.730, kappa from 0.529 to 0.630,
and the Jaccard index from 0.484 to 0.576. These quantitative
results indicate that the model trained by HR imagery cannot
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FIGURE 12. Results for important land features.

detect small buildings with high accuracy and that increasing
the resolution of LR imagery could enlarge the building size
by providing more pixels, which would align the size of
buildings in the training data to a certain degree. This point
of view would also be supported by the results generated
via bicubic interpolation with an upscale factor of 2. Apart
from increasing the image resolution, compared with sim-
ple interpolation, SR-based methods would also reconstruct
finer spatial details with higher PSNR, which would yield
improved segmentation results for the same upscale factor.

In principle, regarding the alignment of the resolution of
HR with that of LR imagery, upscaling the resolution of
LR imagery with a factor of 3 to 0.167m by ESPCN would
match that of HR imagery to a great extent to generate the
best segmentation results. However, because of the ill-posed
problem, reconstructing high-quality SR imagery from LR
space with a large upscale factor would be highly challeng-
ing. According to the IQA criteria shown in Figure 11b,
an increase in the upscale factor from 2 to 4 causes the
PSNR of ESPCN-based SR imagery to drastically decline
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FIGURE 13. Bad results caused by annotation.

from 33.353 to 28.471 to 26.487. Although the resolution
could match that of the training data, the reconstruction qual-
ity also severely impacts the correct representation of high-
frequency information. Thus, low-quality SR imagery even
with an appropriate resolution would worsen the segmenta-
tion performance. Ultimately, maintaining a balance between
resolution and reconstruction quality is of great importance.

Figure 12 shows the semantic segmentation results of other
representative land features. The first row shows a parking
lot on which cars of different categories are distributed.
As shown in the enlarged yellow window, by adopting SR,
the shape and textural information of each car becomes much
more refined. Because cars are common land features in
HR aerial imagery, abundant training data for cars would
enable the value of fp to be effectively decreased. In contrast,
as shown in the third and fourth rows, the barges moored in
the harbor are likely to be misclassified as buildings after the
resolution is upscaled. This problem is caused by insufficient
training samples for boats in HR aerial imagery. In terms of
railways, trains and tracks are presented by a simple stripe-
like feature, and increasing the resolution would enlarge the
distance between adjacent strips to improve the performance.
Finally, as shown in the last two rows, some polygon-like
land features with simple textures such as playgrounds are
prone to bemisclassified as buildings at a different resolution,
indicating that the problem is caused by the UNet model
rather than the proposed SR integrated method.

Especially, Figure 13 shows a large region in which all
methods misclassify non-building areas; after carefully ana-
lyzing the original LR image, we believe that the problem
is caused by an imperfect ground truth. The large building,
which could be well segmented by adopting ESPCN with an
upscale factor of 2, further demonstrates the feasibility of the
proposed method.

It should be noted that the investigation of the feasibil-
ity of the SR-integrated method for processing multi-source
remote sensing imagery is difficult because these images dif-
fer in terms of data acquisition methods, resolution, and color
space. However, the testing results confirm that the accu-
racy and robustness of the proposed SR-integrated method

is considerably higher than those of the other methods, and
that it can achieve comparably accurate building semantic
segmentation results using the provided study materials.

VI. CONCLUSION
In this paper, we presented a novel SR-integrated method
for building semantic segmentation of multi-source remote
sensing imagery of different resolution. The experimental
results demonstrate the potential and the capability of the
proposed method to solve the problem caused by the res-
olution of the training data being unaligned with that of
the testing data. In particular, the proposed SR-integrated
method could achieve considerably higher accuracy andmore
precise segmentation results than the other methods, which
also indicates the feasibility of our proposed method. In addi-
tion, it is important to carefully consider the color influ-
ence on multi-source remote sensing imagery, investigate the
method of balancing resolution and reconstruction quality to
enhance the segmentation to a maximum extent, optimize the
robustness of both segmentation and SR models, and explore
the effectiveness of proposed method in other study areas
with buildings in different types, which we aim to study in
future.
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