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ABSTRACT Traffic conditions of truck flow is one of the critical factors influencing transportation safety
and efficiency, which is directly related to traffic accidents, maintenance scheduling, traffic flow interruption,
risk control, and management. The estimation of the truck flow of various types could be better to identify
the irregular flow variation introduced by various trucks and quantitatively assessed the corresponding road
risks. In this paper, the dynamics of truck flow are estimated first. The stochastic and uncertain trucks flow
data are obtained in terms of small, medium, heavy, and the oversize truck type and regulated corresponding
flow in the time series within five minutes. In order to dig the spatial-temporal correlations behind those
data, the deep learning-based method is improved on the basis of the gated recurrent unit (GRU) to estimate
the truck flow for various types. To quantitatively assess the truck-related effect for road risk, a multiple
logistic regression method is further proposed to classify into safe, risky, and dangerous road risks levels.
Different risk level could guide the traffic control and management and traffic information that broadcast
drivers to help them to choose travel route. The proposed prediction of the road risk is tested in the randomly
selected road segment and shows superior compared to other methods. This could promote road safety in
the development of intelligent transport system (ITS).

INDEX TERMS Truck flow prediction, road risk assessment, various types of truck, remote traffic
microwave sensor (RTMS), gated recurrent unit (GRU).

I. INTRODUCTION
Accurately predicting traffic flow plays an important role in
the development of intelligent transportation system (ITS),
which could provide support for numerous transportation ser-
vices. For example, the estimated traffic flow could provide
useful guideline for planning travel path for travelers [1].
Besides, road administrator could foresee congestion condi-
tions in advance based on predicted traffic flows and then
allocate road resources [2]. Due to the special characteris-
tics of trucks, traffic flow of trucks often has a significant
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impact on traffic conditions, road risks, the travel experi-
ence of passenger vehicles and so on [3]. Up to 50,400 road
traffic accidents involving trucks happened in 2016, China,
causing 25,000 deaths and 46,800 injuries, accounting for
30.5%, 48.23%, and 27.81% of the total number of automo-
bile liability accidents, respectively. Moreover, it has been
found that the proportion of accidents involving trucks is
large under normal nature conditions, and the accident rate
involving trucks is increased by 19% in adverse weather con-
ditions, and the probability of serious collisions increased to
2.3 times and 4.5 times [4]. It can be concluded that rucks are
prone to traffic accidents, and this problem urgently requires
a solution.
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Traffic flow prediction is based on the potential informa-
tion and features extracted from the historical traffic flow.
Hence, the related technologies, including data collection
devices, data mining, transmission, etc., have a significant
impact on the accuracy of prediction result [5]. In recent
years, enormous traffic detectors have been deployed on free-
way networks, for example, remote traffic microwave sen-
sors (RTMS), video detector, radio radar, ultrasonic detectors,
infrared detectors, etc., which have collected ample and a
tremendous number of traffic data. Also, with the technology
of development, the accuracy and diversity of data have been
greatly improved. The next question is how to efficiently and
reasonably use those data in modern ITS.

In the process of predicting traffic flow, the most crucial
question is to think about how to extract the characteristics of
traffic flow completely.Moreover, the features of nonlinearity
and time sequence in the traffic flow data make the pre-
diction difficulty significantly increased. A valuable tool to
overcome this problem is machine learning. The motivation
of machine learning lies in the establishment and simulation
of a neural network for human brain analysis and learning,
whichmimics the mechanisms of the human brain to interpret
data such as images, sounds, and text. The development of
machine learning has played an essential role in promot-
ing the prediction of traffic flow and has made significant
achievements.

Assessing road risk is a crucial issue in the field of
transportation. It mainly evaluates road safety performance
based on traffic data to predict the type of collision [6] and
the severity of accidents, to implement safety control mea-
sures, which is of great significance in preventing traffic
accidents. At the same time, fine-grained truck flow data
can be applied to support passenger and truck separation
strategies [7], and predict the speed of traffic and the num-
ber of traffic accidents [8], [9]. It can be concluded that the
application of truck flow data to freeway risk assessment will
yield considerable improvements.

In this paper, the two-month truck flow data collected
by RTMS are thoroughly pre-processed using in practice.
Stochastic and uncertainty of the trucks are regulated in terms
of small, medium, heavy and oversize truck types, and the
fine-grained truck flow data are pre-processed to traffic flow
at 15-min time interval. Then, the GRU method is improved
to accurately estimate the traffic flow for each type of truck.
Finally, to quantitatively assess the truck-related effect for
road risk, a multi-nominal logistic regression method is pro-
posed to classify into safe, risky and dangerous road risks.
The rest of the paper is managed as follows. Section II intro-
duces some of the previous work on traffic data, traffic flow
prediction, and road risk assessment. Section III describes the
principle of the improved GRU algorithm and its network
structure, multi-nominal logistic regression, and the overall
architecture of this research. The results of the experiment
are presented in Section IV, including data sources, prediction
on fine-grained truck flow, and assessment on truck-related
future road risk. The last part is the conclusion and discussion.

II. RELATED WORK
This section provides some previous research achievements
about traffic data, traffic flow prediction, and road risk assess-
ment.

A. DATA SOURCE
Researchers have been studying traffic flow prediction since
the 1980s [10], in which accurate and diverse traffic flow
data is critical to traffic flow prediction based on data-driven
approaches. There are a wide variety of traffic flow data in
lots of earlier studied, which can be divided into measured
data and existing data sets based on data sources. For exam-
ple, Polson et al. used data from twenty-one loop-detectors
installed on a northbound section of Interstate I-55 [11].
Yasdi et al. measured traffic data by inductive loops in the
local roads. They considered six data classes: for ordinary
Monday; Tuesday to Thursday; Friday; Saturday; Sunday
and Holidays; and one class of special day for expected
events [12]. Tan et al. collected data through a detector on
National, Guangzhou, Guangdong, China from January 1,
2005 to December 30, 2005. The traffic flow data were aggre-
gated and averaged into 1-h periods [13]. Lippi et al. and
Lv et al. extracted traffic flow data from the California free-
way performance measurement system (PeMS) [14], [15].
It is concluded that these data have two points in common,
(1) they are all collected by loop detectors; (2) traffic data is
the total flow that contains all the vehicle sizes. Conclusions
indicate that there is little research on traffic flow data pre-
diction for different vehicle sizes.

B. PREDICTING TRAFFIC FLOW
In the past few decades, many prediction models have
emerged to solve the problem of traffic flow estimation.
These methods can be roughly divided into parametric and
non-parametric models. The classical parametric model is
the autoregressive integrated moving average (ARIMA),
which was applied to predict traffic flow and achieved sig-
nificant results [16]. Then, a series of enhanced ARIMA
models such as fractional-ARIMA, SOM/ARIMA, and
switching ARIMA also were applied to forecast traf-
fic flow [17], [18], [19]. In recent years, with the rapid
development of neural networks, data-driven approaches
have a series breakthrough for travel-time and short-term
traffic flow prediction with complex data [14], [20], for
example k-nearest neighbor (KNN) [21], support vector
machine (SVM) and its hybrid models [22], [23], radial basis
function (RBF) [24], deep neural network (DNN) [25], staked
autoencoder (SAE) [15], [26], [27]. Further than that, many
of hybrid models were proposed for traffic flow prediction,
for example, long short-term memory (LSTM) combined
with SAE [28], convolution neural network (CNN) com-
bined with GRU. Among them, the recurrent neural net-
work (RNN) is more potent at training for data with time
series characteristics [29]. Especially, LSTM and GRU have
great achievements in forecasting traffic flow as kinds of
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extraordinary RNN. Currently, GRU becomes increasingly
popular because most of its properties are the same as LSTM
and it needs fewer parameters than LSTM so that it is easier to
train [30], and it doesn’t have separate memory cells, which
makes GRU more efficient when training the data [31].

C. QUANTITATIVE ASSESSING ROAD RISK
In recent years, traffic accidents, interruption, and other traf-
fic risks influencing transportation safety and efficiency are
becoming increasingly severe with the development of trans-
portation. Therefore, assessment on road risk had become a
significant research hotspot in the transportation field.

Traffic states could be represented by at least two of the
three foundational traffic parameters: traffic volume, speed,
and density [44]. Researchers have found that high varia-
tions in speed and high-density traffic conditions, as critical
precursors to traffic accidents, represent the riskiest traffic
conditions [32]. Besides, a series of speed-related indica-
tors, for example, traffic speed, standard deviation of speed,
average speed, and coefficient of speed variation (CSV), are
key factors influencing road risk. CSV as a dimensionless
variable is often used as an indicator to assess road risk.
In addition, CSV is associated with the risk of accidents
in any traffic state, and the greater the coefficient of varia-
tion, the higher the risk of accidents [33]. At the same time,
an appropriate time window can fully capture the unstable
state of traffic. Oh et al. determined the standard deviation of
the speed at 5-min interval as the best indicator of accident
prediction [34]. Hyun et al. tested the time window length
ranging from 5 min to 60 min in 5-min increments and
resulted in the recommended period of 15 min, which could
show traffic state better [35].

The assessment on road risk can be divided into qualita-
tive and quantitative analysis methods according to research
methods. Quantitative analysis requires a direct calculation
of risk level values, for examples, Zhang et al. analyzed the
impact of truck ratio on traffic safety according to the CSV.
It was found that the CSV would increase with the increase
in the proportion of trucks and concluded that when the truck
ratio is between 0.25 and 0.5, the traffic would be more
dangerous [36]. Based on traffic flow, weather, geometry, and
collision data, Xu et al. developed a four-stage stochastic
parametric logistic regression model to predict the collision
type of accidents quantitatively. The qualitative analysis does
not need to calculate risk level values. Golob et al. designed
a safety performance assessment tool based on cluster anal-
ysis and nonlinear canonical correlation analysis to assess
the real-time safety level of any traffic flow pattern on the
freeway [37]. In further research, they implemented a tool
that can be used either in real-time monitoring of the safety
level of any freeway traffic flow, or for forecasting the safety
aspects of changes in traffic flows [38].

Previous studies showed that speed-related indicators are
one of the critical factors in collisions, and traffic flow
is one of the essential data to reflect traffic conditions.
Moreover, in the research of assessing road risk, the quan-

titative analysis compared with qualitative analysis will more
intuitively display the risk level, and it is more convenient to
apply in practice.

III. METHODOLOGY
This section surveys the GRU networks and designs their
parameters for predicting the fine-grained truck flow. And
the multi-nominal regression method is investigated at the
same time. Finally, the overall structure of this research is
introduced.

A. IMPROVED GRU
GRU was proposed by Cho et al. in 2014 to achieve that
each recurrent unit can adaptively capture the correlation of
different time scales [39]. The typical structure of the GRU
cell and its real output are shown in Fig.1. A typical GRU
cell consists of an update gate r and a reset gate z. The update
gate is applied to control status information brought to the
current moment from the previous moment, while the reset
gate is applied to control the degree of ignoring the status
information of the previous moment. Also, the candidate
hidden state stores the past related information as current
memory content by reset gate. The output of hidden layer
delivers the information of the current time step to the next
time step.

FIGURE 1. An improved GRU cell, replacing Tanh with rectified linear
unit (ReLU).

The output of the hidden layer at time t is determined
by the hidden layer output at time t-1 and the input series
at time t. Xt = (x t1, x

t
2, . . . , x

t
n) represents the input time

series at time t, Ŷt represents the real output at time t, ht =
(ht1, h

t
2, . . . , h

t
n) represents the hidden state output at time t

and ht−1 = (ht−11 , ht−12 , . . . , ht−1n ) represents the output of
the hidden state at time t-1. As shown in Fig. 1, rt is the
value of reset gate, zt is the value of update gate, and h̃t is
a candidate hidden state of ht at time t. Their calculations are
defined as follows

zt = σ
(
Wzht−1 + UzX t

)
(1)

rt = σ (Wrht−1 + UrX t) (2)
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ht = (1− zt) ht−1 + zt h̃t (3)

σ (x) =
1

1+ e−x
(4)

It is worth mentioning that the activation function is Tanh
in the original structure. In this research, Tanh is replaced
by a rectified linear unit (ReLU). ReLU is a kind of non-
linear activation function, which is a typically existent to
inject nonlinearity elements for complex data. Compared to
Tanh activation functions, ReLU offers some advantages:
(1) it is simple and fast to execute, (2) it can effectively
mitigate the gradient disappearance problem, (3) it induces
sparseness [31], [40]. In fact, the prediction accuracy is sig-
nificantly improved when using ReLU as the activation func-
tion, which is defined as

ReLu (x) = max(0,x) (5)

So, the candidate hidden state and the real output are
calculated by the following formulas.

h̃t = ReLu(rt � (Wh̃ht−1)+ UXt ) (6)

Ŷt = ReLU (Wyht ) (7)

In the above-mentioned Eqs. (1-7),W indicates the weight
matrices, so the corresponding weights matrices of rt , zt , h̃t ,
Ŷt areWr ,Wz,Wh̃, andWy. U is the weight of x at each gate.
Specifically, the GRU architecture is improved through

two strategies. (1) Replacing the Tanh with ReLU in com-
puting the candidate hidden state, (2) adding three fully
connected layers after the GRU cell. As shown in Fig.2,
the architecture of improved GRU is designed for forecasting
fine-grained truck flow, which is consist of a GRU cell, three
fully connected layers, and an output layer.

FIGURE 2. The architecture of an improved GRU. The GRU architecture is
improved through two strategies. (1) Replacing the Tanh with ReLU in
computing the candidate hidden state, (2) adding three fully connected
layers after the GRU cell.

A detailed description of each layer is explained below:
Input layer: this model requires one-dimension data (of any

digital form) as the input.
Hidden layer: Hidden layer includes six weight matrices to

be trained, and the ReLU and sigmoid functions are config-
ured for each recurrent.

Fully connected layers: they are consisting of fully con-
nected (1-3) in the Fig.2, whose activation functions are

ReLU. The six weight matrices can be better optimized
through these three layers.

Output layer: it is a neural that outputs a predicted value
through a weight matrix.

For the sake of minimizing training error, Adaptive gra-
dient (AdaGrad), an amelioration of stochastic gradient
descent (SGD), is applied for backpropagation through time.
During trainingmodels, AdaGrad allocates appropriate learn-
ing rate for each variable according to observe their prediction
errors, optimizing the problem of overall uniformity of learn-
ing rate in traditional SGD. AdaGrad can be calculated by

θi,t+1 = θi,t −
ϕ√

Gi,t + ε
∇θi,t J (θ) (8)

Gi,t = Gi,t−1 + (∇θi,t J (θ ))
2 (9)

where θi,t denotes the value of ith parameter at the tth itera-
tion. ∇θi,t J (θ ) denotes the gradient value of ith parameter at
the tth iteration. ϕ is a stable learning rate. ε is a smoothing
term used to avoid the denominator being 0, which is gener-
ally 1e− 8.
To intuitively display the performance of GRU and other

related forecast models, three criteria are chosen, mean
absolute error (MAE), mean relative error (MRE) and root
mean square error (RMSE), to respectively evaluate the
performance of neural networks model. Their definitions
are (10-12),

RMSE =

√√√√ 1
N

N∑
t=1

(ŷt − yt )
2 (10)

MAE =
1
N

N∑
t=1

|ŷt − yt | (11)

MRE =
1
N

N∑
t=1

|ŷt − yt |
yt

(12)

where ŷt is the estimation results, and yt is the measured data.
RMSE measures the deviation between the prediction value
and true value. It is more sensitive to the marginal error than
other criteria. MAE can better reflect the actual situation of
the prediction error. MRE represents the actual size deviating
from the true value, as well as reflects the credibility of the
prediction better.

B. MULTI-NOMINAL LOGISTIC REGRESSION MODEL
Logistic regression including binomial and multi-nominal
logistic regression model is a classical classification method
in statistics [41]. If values of the discrete random variable
Y is 1, 2, . . . ,K , then the classical multi-nominal logistic
regression model is

P (Y = k | x) =
exp (wk ∗ x)

1+
∑K−1

k=1 exp (wk ∗ x)
,

k = 1, 2, . . . ,K − 1 (13)
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FIGURE 3. Quantitative assessment method on truck-related road risk with fine-grained truck flow includes three aspects.
(a) Preprocessing for the empirical data from RTMS; (b) Prediction on fine-grained truck flow based on an improved GRU;
(c) Quantitative assessment on road risk based on a multi-nominal logistic regression.

P (Y = K | x) =
1

1+
∑K−1

k=1 exp(wk ∗ x)
(14)

where x ∈ Rn+1,wk ∈ Rn+1. x represents independent
variables affecting classification results, and wk represents
the coefficients of x.
This research first utilizes the CSV to classify road risks

into three categories, including Safe, Risky, and Dangerous.
Then the multi-nominal logistic regression model is applied
to construct a relationship between road risk and fine-grained
truck flow.

CSV is used as the categorical variable that reflects the
degree of dispersion of velocity. The larger the CSV, the
greater the magnitude of the velocity change. Conversely,
the smaller the magnitude of the velocity change. CSV is
computed by

CSV =
σs

V̄
(15)

where σs represents the standard deviation of speed, and V̄
represents the average of speed.

Therefore, the multi-nominal logistic regression model
applied to calculate road risk can be defined as,

P (Y = 1|x) =
EXP (G1)

1+ EXP (G1)+ EXP (G2)
(16)

P (Y = 2|x) =
EXP (G2)

1+ EXP (G1)+ EXP (G2)
(17)

P (Y = 3|x) = 1− P (Y = 1|x)− P (Y = 2|x) (18)

P = max {P (Y = 1|x) ,P (Y = 2|x) ,

P (Y = 3|x)} (19)[
G1
G2

]
= w ∗ x (20)

w =
[
w1
w2

]
=

[
w11
w21

w12
w22

w13
w23

w14
w24

w15
w25

]
,

x =


1
x1
x2
x3
x4

 (21)

where P (Y = 1|x), P (Y = 2|x), P (Y = 3|x) respectively
represent the computed probability of Safe, Risky and Dan-
gerous road status.G1 andG2 are two intermediate variables.
x indicates matrix of truck flow including truck flow of
small, medium, heavy and oversize, and w is the coefficients
matrix of x. The state with the highest probability P will be
recognized as road risk at that moment.

C. OVERALL STRUCTURE OF QUANTITATIVE ASSESSING
FURURE TRUCK-RELATED ROAD RISK
In this section, the overall framework of this research will
be presented, which is divided into three parts and shown in
Fig.3.
The first part is the preparation and pre-processing of fine-

grained traffic data. The traffic data used in this study is
the truck flow and traffic speed of different sizes captured
by RTMS using in practice. Data pre-processing is mainly
for dealing with data loss and data noise. At the same time,
the time window of traffic flow is adjusted to capture the
traffic conditions accurately. The details of the data will be
particularly described in Section IV.
The second part is based on the improved GRU network

to estimate fine-grained truck traffic flow. The pre-processed
fine-grained truck data is inputted into an improvedGRUwith
appropriate parameters to output future fine-grained truck
flow.
The third part is that a multiple logistic regression method

is further proposed to quantitatively assess the truck-related
effect for road risk. First, the CSV for each time win-
dow is calculated based on the pre-processed traffic speed.
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FIGURE 4. The geometric map of the Xi’an RaoCheng freeway and the detection equipment in target section.
The equipment mainly relies on RTMS to capture traffic data, and its auxiliary equipment is video detectors in
this section.

Second, the road risk is classified into Safe, Risky, and
Dangerous based on the computed CSV value. Third, with
three types of road risks as the dependent variables, the pre-
processed fine-grained truck flow is used as an independent
variable, the probability function of truck flow and road risk is
obtained based on multi-nominal logistic regression method.
Finally, the predicted future truck flow is inputted into the
probability function to calculate the future road risk value and
risk status.

IV. EXPERIMENTAL RESULTS
A. DATA DESCRIPTION
The data used for the paper is collected by a traffic
survey equipment composed of RTMS, a video cam-
era, a microprocessor-based computer, and video process-
ing software, which located at Xi’an Ring Freeway from
Fang Zhi Cheng to Xiang Wang Toll Gate. The equipment
mainly relies on RTMS to detect traffic data, and its auxiliary
method is video detection. It could identify the traffic flow
of various vehicles, including small car and truck, medium
car and truck, heavy truck, and record corresponding traffic
flow, speed, time occupancy rate, etc. in the time series within
five minutes. Moreover, its accuracy is much higher than loop
detection equipment. The detailed information is shown in
Fig.4.

To estimate dynamics of truck flow, the truck flow data of
days from 01 April to 31 May 2018 is acquired as an exper-
iment dataset and pre-processed with 15-min time intervals.
The data from 01 April to 17 May 2018 are used as the train-
ing dataset, while the rest is testing dataset. In this research,
stochastic and uncertainty of the trucks are regulated in terms
of small, medium, heavy and oversize truck type, which are
the same as original data. According to the standard ‘General
Office of the Ministry of Transport[2010] 205 [42]’ in China,
the truck types are categorized and represented in Table 1.

However, the empirical data obtained from the RTMS
exists some problems with lost data at a low flow period
and data noise. To avoid unexpected errors, the lost data is
supplemented to zero. Afterward, median filtering is applied
to alleviated data noise.

TABLE 1. The classification standard of trucks [42].

TABLE 2. The parameters of improved GRU.

B. PREDICTION ON FINE-GRAINED TRUCK FLOW
The experiment is implemented on a desktop computer with
Intel i3 3.3GHz CPU, 4 GB memory and Intel (R) HD GPU.
As shown in Table 2, the optimal construction and parameters
of the GRU model are determined after trial and error to
avoid overfitting and under-fitting. Notably, the three fully
connected layers behind the GRU can effectively improve
forecasting accuracy. In addition, the learning rate will have a
significant impact on the forecast results. Excessive learning
rate can lead to overfitting, and instead, it will result in under-
fitting. For the amount of data in our research, it is sufficient
that an epoch is set to 200. Also, both the input size and batch
size only have little effect on prediction results.

The comparison between the predicted truck traffic flow
and the measured data is shown in Fig.5. The truck flow of
the small, medium, heavy, oversize is exhibited in a, b, c, and
d respectively. The comparison results reveal that the truck
flow for all truck size predicted by improved GRU is very
similar to the measured data. To validate the efficiency of
the improved GRU network, the performance is compared
with other neural network approaches, which include RNN,
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FIGURE 5. Comparison of measured data and predicted data at different truck types.(a) Small truck,
(b) Medium truck, (c) Heavy truck, (d) Oversize truck.

LSTM, DNN, and SAE. Based on the forecast results of
four kinds of truck flow sampled in 15-min increments, the
MAEs, RMSEs, and MREs of different prediction models
are compared in Table 3. The MREs of improved GRU are
0.05, 0.048, 0.041, and 0.017 respectively. It can be con-
cluded that the improved GRU usually has the minimum
error in three criteria compared with other models. Therefore,
it can be known from prediction results that the improved
GRU is very efficient and credible in the field of predicting
traffic flow.

MRE, as one of the assessment criteria, can reflect the
dependability of each approach very well by calculating the
magnitude of the predicted value to the measured value.
Hence, to demonstrate the distinction among five neural

networks clearly, the calculated MREs are displayed in Fig.6
by boxplots, including small, medium, heavy, and oversize
trucks flow. Based on the three sets of MRE values for each
truck size, the boxplots for each model are drawn, showing
the maximum, upper quartile, median, lower quartile, and
minimum values of the MRE values. As can be seen from
four boxplots, the MRE results of the improved GRU model
are optimal and most stable. DNN’s performance is second
only to the improved GRU, and slightly better than RNN’s.
Besides, the SAE has the worst effect and unstable.

C. ASSESSMENT ON ROAD RISK
In this section, the prediction results are applied to assess the
road risk of freeways. Taking the traffic volume and speed of
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TABLE 3. Prediction performance of different models for different truck types.

FIGURE 6. The boxplot of MRE error with different truck types. (a) Small, (b) Medium, (c) Heavy, (d) Oversize.

vehicles on April 1, 2018 as an example, the impact of trucks
on road risk is explored in this road section.

First, as shown in Fig.7 (a), as the proportion of the total
traffic volume of trucks increases, the overall situation of the
trucks traffic flow on the road section can be obtained by
observing the trend of four kinds of trucks flow. It can be
concluded that oversize trucks have the most traffic volume
in the truck traffic. Meanwhile, the truck traffic volume of
heavy, medium, and small trucks is roughly similar, and far
less than the traffic flow of oversize trucks.

As shown in Fig.7 (b), with the proportion of trucks
increasing, the speed of oversize trucks doesn’t vary

significantly, the speed of heavy and medium trucks
decreases slightly, and the speed of minivans and passenger
cars demonstrates significant reductions and the amplitude of
variation of speed increases. Especially after the proportion of
trucks piles up to 70%, the speed of passenger cars changed
more drastically. Therefore, it can be concluded that the road
risk of passenger cars is exceedingly relevant to the truck flow
in this road section.

Second, as shown in Fig.8, it is a CSV cartogram of the
passenger car in April 1st, 2018. The turning point (CSV =
0.34) represents a change in road risk [43]. Therefore, road
risk is divided into three categories based on CSV trends,
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FIGURE 7. Trend of Traffic volume and speed under the proportion of
overall traffic volume of trucks in total traffic volume. (a) The traffic
volume trend of different truck types, (b) The traffic speed trend of
different vehicle types.

FIGURE 8. Coefficient of Speed Variation (CSV) of passenger cars.

including Safe, Risky, and Dangerous. Behind the inflection
point is the Dangerous zone, while before the turning point
(CSV from 0.25 to 0.34) is the Risky zone, and the rest is the
Safe zone.

Third, the multi-nominal logistic regression is applied to
analysis the impact of truck flow on road risk. In mathemati-
cal statistics software SPSS, the dependent variable is road
risk, while the independent variables are the truck flow of
the small, medium, heavy, and oversize. In the regression

TABLE 4. The result of likelihood ratio tests.

TABLE 5. The correct of classification.

analysis of this study, the maximum likelihood estimation is
applied and the validity of the model is tested by a likeli-
hood ratio test. The result of likelihood radio tests is shown
in Table 4. The likelihood ratio test is a test method that
utilizes a likelihood function to assess whether a hypothesis is
valid. It can be seen that this model is very effective because
all the values of Sig. are less than 0.05. Besides, the correct
rate of classification is shown in Table 5, which displays
that the correct percentage of Safe, Risky, and Dangerous
respectively is 81.8%, 26.8%, and 60.8%. The correct rate
of Risk status is so low because most of the Risk states
are assessed as Safe status. The reason is considered to be
that the boundary between Risk status and Safe status is not
obvious enough. The overall correct percentage is 61.6%,
which isn’t the best result, but it can be relied upon to forecast
the road risk. The parameters of the multi-nominal logistic
regression function are shown in Table 6, which shows the
parameters used to calculate the road risk probabilities of
Safe and Risky, then the road risk probability of Dangerous
is calculated based on the result of Safe and Riaky. Wald
reflects the degree of influence of independent variables on
the dependent variable. The larger Wald, the more significant
impact. Moreover, when Sig. is less than 0.05, the inde-
pendent variable has a significant influence on the depen-
dent variable, indicating that the analysis of the problem
is valuable. So, the conclusion is that truck traffic flow is
significantly related to road risk of passenger cars. Especially
in the Risky parameters, the Sig. of the oversize truck flow
is the smallest, being 0.002. It can be seen that the traffic
flow of oversize trucks has the greatest impact on road risks.
Therefore, according to Table 6, The coefficient w can be
obtained as

w =
[
−1.845 −0.098 0.048 0.142 0.013
−1.486 −0.032 0.039 0.044 0.018

]
(22)
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TABLE 6. Value of parameters.

FIGURE 9. Road risk assessed by predicted truck flow in April 1 2018.

So, the mathematical forms of the multinomial logistic
regression used in this analysis is as follows.

G1 =−1.845−0.098x1+0.048x2+0.142x3+0.013x4 (23)

G2 =−1.486−0.032x1+0.039x2+0.044x3+0.018x4 (24)

where G1 and G2 are intermediate variables mentioned in
equations (16) to (20). Then the three road risks represented
by equations (16) to (18) can be calculated through the G1
and G2.x1, x2, x3, and x4 represent the traffic flow of small,
medium, heavy and oversize trucks, respectively, at 15-min
intervals.

Finally, the road risk calculated by predicted truck flow
is shown in Fig.9, from which the state of road risk can be
obtained at every moment. The figure shows that the road is
in a safe state for most of the time on April 1st, 2018. The
Dangerous time is mainly concentrated in the 00:00-02:00,
11:45-12:30 and 16:45 -19:45. Risky status take up less time
and generally exist at a transitional point between Safe and
Dangerous.

V. CONCLUSIONS AND DISCUSSIONS
This study aims to estimate the traffic flow of various trucks
and identify the future changes of road risk. A method for
quantitative assessing truck-related road risk in freeway was
proposed based on estimating fine-grained truck flow by an
improved GRU.

Truck flow data from RTMS are regulated in terms of
small, medium, heavy, and oversize truck types. The empir-
ical data is slightly processed by median filtering to solve
lost data and reduce data noise. It is worth noting the quality
of data has a considerable impact on the prediction results.
With the pre-processed fine-grained truck flow dataset, the

proposed GRU deep-learning network was improved through
replacing the activation function and adding three fully con-
nected layers behind it. The prediction accuracy is signif-
icantly enhanced after improving the GRU model. Then,
the performance of forecast on GRU, LSTM, RNN, SAE,
and DNN are compared through the MAE,MRE, and RMSE.
The results showed that the estimation results from GRU are
superior compared to other methods.

A multi-nominal logistic regression method was further
proposed to identify the road risk that related with truck
flow. The model assessment results showed that unsafe traffic
time can be identified by truck flow in target section with
15-min intervals. In practical application, Different risk levels
could guide the traffic control and management and traffic
information that broadcast to drivers to help them to choose
travel route and assist managers set out passenger and truck
separation strategy in advance. The proposed prediction of
the road risk is used in the randomly selected road segment
to show the advances to promote road safety in part of the
development of intelligent transport system.

It can be seen from the experiment that the performance
of GRU predicting truck traffic flow is slightly better than
RNN, LSTM,DNN, and SAE. In the later stage, we will try to
increase the amount of data or change the prediction duration
according to different research demands, observe the running
results, and further optimize the model. About the application
of traffic flow, we apply the traffic data of different trucks
to evaluate the road risk. Although a threshold of CSV is
obtained, the reliability of the threshold remains to be further
studied. In the later work, the traffic flow, speed, time occu-
pancy rate and other information of passenger cars and trucks
with multiple sections will be integrated, and the comfort
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and driving psychology of the small vehicle drivers will be
collected in the form of questionnaires. Finally, the above
information is comprehensively considered for conducting an
assessment to identify periods and sections that impact the
comfort and safety of drivers.
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