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Adaptive Motion Planning for a Collaborative Robot
Based on Prediction Uncertainty to Enhance

Human Safety and Work Efficiency
Akira Kanazawa , Member, IEEE, Jun Kinugawa, Member, IEEE, and Kazuhiro Kosuge , Fellow, IEEE

Abstract—Industrial robots are expected to share the same
workspace with human workers and work in cooperation with
humans to improve the productivity and maintain the quality of
products. In this situation, the worker’s safety and work-time effi-
ciency must be enhanced simultaneously. In this paper, we extend a
task scheduling system proposed in the previous work by installing
an online trajectory generation system. On the basis of the proba-
bilistic prediction of the worker’s motion and the receding horizon
scheme for the trajectory planning, the proposed motion planning
system calculates an optimal trajectory that realizes collision avoid-
ance and the reduction of waste time simultaneously. Moreover, the
proposed system plans the robot’s trajectory adaptively based on
updated predictions and its uncertainty to deal not only with the
regular behavior of workers but also with their irregular behavior.
We apply the proposed system to an assembly process where a two-
link planar manipulator supports a worker by delivering parts and
tools. After implementing the proposed system, we experimentally
evaluate the effectiveness of the adaptive motion planning system.

Index Terms—Adaptive control, collision avoidance, cognitive
human–robot interaction, industrial robot, learning and adaptive
systems.

I. INTRODUCTION

MANY industrial robots have been used in various fields to
improve the productivity while maintaining or even im-

proving the product quality. However, in many processes, com-
plete automation remains difficult to achieve. In reality, many
complex tasks that cannot be accomplished by robots are still
performed by skilled human workers. In contrast, systems in
which robots work in cooperation with human workers are be-
coming common in several factories. In such systems, human
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workers remain in charge of situation assessments and preci-
sion tasks that are difficult for robots to perform. However,
robots perform simple repetitive tasks and handle heavy parts in-
stead of human workers. By exploiting their given strengths in a
collaborative manner, an efficient system can be realized.

With the amendment of the International Organization for
Standardization (ISO) for operating industrial robots in facto-
ries, it has become possible for robots now to share the same
workspace with humans. Industrial robots with over 80 W of
power are able to operate without fencing provided that appropri-
ate risk assessment is done. This approach is expected to reduce
the costs related to the securing of the workspace, to save space
on the factory floor, and to improve the flexibility of the pro-
duction line. In response to such changes, major industrial robot
makers such as KUKA, ABB, FANUC, and Rethink Robotics
are working to develop collaborative robots [1]. Consequently,
the development of a human–robot collaboration system has
become a key issue in the field of factory automation.

In previous work, we proposed an adaptive task schedul-
ing system for collaborative robots [2]. The proposed sys-
tem learned worker’s motion patterns by combining probabilis-
tic models with an online algorithm to predict the worker’s
future motion and adaptively schedule the robot’s task. By
explicitly considering the temporal requirement, this system
decreased the time wasted by delaying the robot’s task. How-
ever, the worker’s safety was not sufficiently considered yet in
this system. Although this system is based on a statistical pre-
diction of the worker’s motion, workers do not necessarily act
in a consistent manner. For example, the working position or the
way the worker moves in the workspace may change in an irreg-
ular way. When the system is implemented in actual processes,
it must ensure the worker’s safety while the robot continues with
its task.

To address this issue, we focus herein on a motion planning
system for collaborative robots working in assembly processes.
In such processes, workers repeat the same work schedule ac-
cording to a process sheet known a priori. We thus propose an
adaptive motion planning system that uses the features of the as-
sembly processes to avoid robot–worker collisions and improves
the work efficiency simultaneously. Fig. 1 shows the configura-
tion of the proposed motion planning system, which is composed
essentially of a worker’s motion predictor and an online trajec-
tory generator. We use the online learning and prediction method
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Fig. 1. Configuration of the proposed adaptive motion planning system.

proposed in [2] to predict the worker’s motion. In addition, we
install an online trajectory planning method proposed herein to
the online trajectory generator. On the basis of the probabilistic
prediction of the worker’s motion by the worker motion predic-
tor, the proposed system calculates a trajectory that enhances the
human’s safety and the work-time efficiency simultaneously.

This paper makes the following three contributions.
1) The proposed trajectory generator makes effective use of

the predicted worker’s motion. By planning the robot tra-
jectory in the expanded temporal space that includes future
worker states and its uncertainty, the proposed method
explicitly incorporates temporal requirements and colli-
sion risk into a trajectory optimization problem. This op-
timized trajectory satisfies multiobjective requirements,
including collision avoidance, smoothness, and reduction
of the waste time.

2) The proposed system is automated and flexible by in-
stalling incremental update algorithms. Once the prede-
fined parameters are determined, the system judges the
situation and decides which task to do. In addition, the sys-
tem deals appropriately with irregularities in the worker’s
motion based on outputs of the worker’s motion predictor.

3) The experimental verification was done in an environment
similar to an actual assembly process. We verified the
effectiveness of the proposed system for both regular and
irregular cases of the worker’s motion and for several
workers.

The rest of this paper is organized as follows. Section II
summarizes related works about human collaborative robot
systems for assembly processes, human motion modeling, and
trajectory planning. Section III reviews the online learning
and prediction method using probabilistic models. Section IV
explains the details of the online trajectory planning method,
which is based on the trajectory optimization using the receding
horizon scheme. Section V describes the configuration of the
adaptive motion planning system when applied to an actual
manipulator. Section VI discusses experiments that were con-
ducted to evaluate the proposed system, and finally, Section VII
concludes this paper.

II. RELATED WORKS

A. Human–Robot Collaborative Systems in Assembly Scenario

The biggest issue when introducing a collaborative robot sys-
tem into actual processes is to ensure the worker’s safety. Many
studies have focused on the safety issues of human–robot col-
laboration systems in assembly processes. For example, against
the backdrop of robot safety standards, Fryman et al. summa-
rized the basic types of the collaborative system in operation
with the development of industrial robots [3]. To avoid colli-
sions in a collaborative workspace, Pedrocchi et al. proposed a
safe network of unsafe devices where manipulators are regarded
as nodes in the network system [4]. Changliu et al. proposed a
control method based on safety measures for industrial robots
working in a human-related environment [5]. Lasota et al. pro-
posed a platform for safely running a robot system in real time
based on the measured worker data [6]. Zanchettin et al. pro-
posed a kinematic control strategy based on metrics to evaluate
the safety of the human–robot collaborative manufacturing [7].

In actual processes, the collaborative robot is also expected
to produce value to offset the initial cost and the running
cost. Therefore, improving the work efficiency is one of the
most important benefits of such collaborative robots. Collabo-
rative robots are thus required not only to operate safely in the
workspace that it shares with human workers but also to help
to improve the productivity. Several studies have focused on
improving the work efficiency; for example, Wilcox et al. pro-
posed an algorithm that optimizes task scheduling and control
for robots in the assembly manufacturing [8]. In other work,
Hawkins et al. proposed a wait-sensitive task planning method
based on the predicting human action in a probabilistic man-
ner [9]. Baizid et al. proposed a time scheduling and optimiza-
tion approach based on a genetic algorithm, which focused on
industrial robotized tasks [10].

Several studies simultaneously assured the worker’s safety
and the continuity of the robot’s task. For example, Hyne et al.
proposed a dynamic trajectory planning method [11]. Modeling
a region with a high probability of danger, they considered the
avoidance of collision and the consistency of the robot motion
as an optimization problem. Ceriani et al. proposed an algorithm
to dynamically generate an avoidance trajectory [12]. The pro-
posed method constructs a danger field that quantifies the risk
of robot–worker collision and selects the degrees of freedom for
the manipulator with a redundancy joint.

Although these studies manage to plan safe the robot’s mo-
tion while maintaining the continuity of the robot’s original task,
they did not sufficiently consider the work-time efficiency. Since
temporal requirements and constraints are not taken into ac-
count in the planning strategy, the waste time due to a delay of
robot’s motion or change of the worker’s movements may occur.
To incorporate temporal requirements into motion planning, it
is necessary to predict the behavior of workers. However, the
workers do not necessarily take the same action as before, and
the prediction of their behavior becomes uncertain. The irreg-
ular behavior of the worker makes the motion planning of the
robot difficult and can become a factor of increasing the collision
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risk. In this work, we address the problem of how to simultane-
ously enhance both worker’s safety and work-time efficiency by
considering the prediction uncertainty.

B. Probabilistic Modeling of Human Behaviors

In this paper, we consider predicting the human’s motion in
order to effectively plan the robot’s tasks. In the automobile
assembly process, a worker is presumed to repeat the same
tasks while following a similar motion trajectory in every cy-
cle. To take advantage of this feature, we use a statistical ap-
proach for modeling the human motion trajectory. Compared
to methods considering a current human dynamical state, sta-
tistical approaches can predict one’s long-term movement with
high precision. In addition, repeated human movements have
variations and gradually changing due to a work delay, worker’s
fatigue, and adaptation to one’s task. Therefore, it is considered
that a probabilistic model that can express the uncertainty of
prediction is effective. Furthermore, it is desirable to be able to
update the model parameters adaptively according to the change
of the worker’s movement.

One effective approach of the stochastic modeling is to utilize
graphical models such as the hidden Markov model (HMM). In
particular, several methods have been proposed that can adap-
tively modify the models based on newly obtained data. Vasquez
et al. combined an instantaneous topological mapping algorithm
with an HMM and proposed a method for predicting a human
motion trajectory online [13]. Morris et al. conducted trajectory
prediction and anomaly detection with a spatial and temporal ve-
hicle motion model adaptively based on new image data obtained
from the surveillance system [14]. Dawood et al. presented an
approach for the incremental learning of human motion pat-
terns using the HMM integrated with the topological Gaussian
adaptive resonance theory (TGART) [15]. Although the HMM
can stochastically encode spatial and temporal features simul-
taneously, it is difficult to decode the temporal feature in detail
since the trajectories are discretized and abstracted. To explicitly
incorporate temporal features into the model, modeling meth-
ods using explicit-duration HMM [16] and autoregressive HMM
[17] are proposed. However, it is difficult to extend them to an
online algorithm because the learning of model parameters does
not converge well unless the structure of the graphical model is
set in advance.

Another effective approach is to utilize a nonlinear regression
method for modeling the human dynamical system. Movement
primitives (MP) [18] is a popular approach for learning the dy-
namical system from the obtained dataset. Paraschos et al. ex-
tended this MP concept with the probabilistic formulation [19].
They presented probabilistic movement primitives (ProMP) that
expresses a dynamical system as mixture probabilistic distri-
butions. Similar to such ProMP concept, Gaussian mixture re-
gression (GMR) is used for modeling and predicting the human
movement trajectory [20], [21]. In the same way, as a model that
utilizes probabilistic distribution, Gaussian process dynamical
model (GPDM) is an effective way of modeling the human dy-
namical system stochastically [22]. Similarly, many approaches

based on the Gaussian process regression (GPR) have been pro-
posed [23], [24].

In the proposed system, we adopt a modeling method based
on the GMR for the following advantages: 1) it can easily
be extended to online modeling with incremental expectation-
maximization (EM) algorithm; and 2) it can stochastically model
an uncertain trajectory and predict a multidimensional output.
Although GPR-based approaches can also model human trajec-
tories and express its uncertainty with high precision, it needs to
keep past datasets for prediction, which leads to an increase in
calculation cost and is difficult to use as the online algorithm. In
addition, the GPR is difficult to calculate a covariance between
elements of the multidimensional output. The GMR retrieves the
expected mean and variance of the data, while GPR retrieves the
uncertainty of the mean estimate. Despite these differences, the
GMR can predict a reasonable output for the outlier output based
on the trend of the current model. Because small anomalies oc-
cur frequently in the actual assembly process, it is desirable to
make reasonable predictions for small changes in the worker’s
behavior. Emphasis on the calculation cost of the online algo-
rithm and the prediction flexibility against outlier inputs, the
GMR is used for the proposed online prediction system.

C. Planning a Manipulator Trajectory

The most popular problem in the robot motion planning is
collision avoidance in static and dynamic environments. Start-
ing with potential field approach [25] and elastic band approach
[26], many methods targeting on collision-free path planning
has been proposed so far. Especially in the manipulation motion
planning, random-sampling-based approaches such as proba-
bilistic road map (PRM) and rapidly exploring random trees
(RRT) are popular. These approaches are often combined with a
concept of configuration space (C-Space) [29], it can calculate
a collision-free path for the manipulator in high-dimensional
space in real time. In order to solve problems such as further
improvement in the algorithm efficiency and guarantee of opti-
mality, RRT-Connect [30] and RRT* [31] have been proposed.
However, these algorithms often do not consider temporal as-
pects, and it is necessary to convert the planned path into the
trajectory for applying it to robot control.

In recent years, optimization-based methods are beginning to
be reviewed with the background of improving a calculator per-
formance and developing high-speed algorithms. One popular
method is a covariant Hamiltonian optimization for motion plan-
ning (CHOMP) [32]. It optimizes trajectory costs by using pre-
conditioned gradient descent, called Hamiltonian Monte Carlo
method. As approaches with the same motivation, stochastic tra-
jectory optimization for motion planning (STOMP) [33], which
uses a stochastic scheme for numerical optimization, and incre-
mental trajectory optimization for motion planning (ITOMP)
[34], which extended the CHOMP to the real-time replanning,
are also proposed. Further development of these optimization-
based approaches, Schulman et al. proposed an approach using
the sequential convex optimization for solving a nonconvex op-
timization problem [35]. Kim et al. proposed the manipulator
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motion planning, which satisfies multiple constraints by using
particle swarm optimization (PSO) [36]. These optimization-
based methods can directly calculate the trajectory of the robot,
and realize a guarantee of collision avoidance and smoothing.

We also adopt the optimization-based approach for trajectory
planning. In addition to the requirements of collision avoidance
and smoothness, the proposed trajectory generator is required
to realize the reduction of the waste time. In order to solve
this problem, we introduce a concept of the receding horizon,
which is used such as in model predictive control. The con-
cept of the receding horizon is widely used, for example, for
task-parameterized motion planning [37], for haptic assistance
[38], for physical human–robot interaction [39], and for multi-
agent motion planning [40]. The different part of the proposed
method is to take a temporal requirement into account explic-
itly for motion planning by setting a terminal state of the robot
in the expanded time space. In addition, the proposed method
considers the uncertainty of prediction to deal with the trade-
off relationship between the temporal requirement and collision
avoidance. By planning the trajectory in consideration of the
predicted trajectory of the worker, this strategy enables to si-
multaneously satisfy two requirements: collision avoidance and
the reduction of the waste time.

III. PREDICTING WORKER MOTION USING THE

ADAPTIVE LEARNING METHOD

In this section, we summarize the prediction system proposed
in [2]. The goal is to model the following two pieces of infor-
mation to plan the robot’s trajectory.

1) Where does the worker work (working position model).
2) How does the worker move in the workspace (moving

trajectory model).
The working position model is used to estimate a current task

and determine the robot’s target position. Conversely, the mov-
ing trajectory model is used to plan the robot’s trajectory to
decrease the risk of robot–worker collisions.

In this paper, we select a modeling approach based on
the Gaussian mixture distribution, which is used in the
aforementioned models and is given by

p(x) =
M∑

m=1

πmN (x|μm, Σm) (1)

where x is the random variable, and M is the mixture num-
ber. N (x|μm, Σm) is the mth multivariate normal distribution
with the mean vector μm and the covariance matrix Σm, and
πm is the mixture coefficient that must satisfy 0 ≤ πm ≤ 1 and∑M

m=1 πm = 1.

A. Estimating the Working Position

The working position (i.e., where the worker works) is
stochastically modeled by the Gaussian mixture model (GMM).
A stochastic model can estimate the current task robustly against
calibration errors while dealing with individual differences.

We now apply Hotelling’s T-square method to estimate
the current task. When the observed point x is input into

a normal distribution N = (μ,Σ), the Mahalanobis distance
DM(x,μ,Σ) is calculated as

DM(x,μ,Σ) =
√
(x− μ)TΣ−1(x− μ). (2)

It is known that the square of Mahalanobis distance
DM(x,μ,Σ)2 follows χ2 distribution. Additionally, consider-
ing the worker velocity, the condition for the worker to start
working at working position i is

⎧
⎨

⎩
D2

M(x
(t)
worker,μtask,i,Σtask,i) < ath,n(α)

||x
(t)
worker−x

(t−1)
worker

Δts
|| < vth

(3)

where x
(t)
worker ∈ Rn is the worker position such as a worker’s

body center and a worker’s hand at time t. t is the current time
step and Δts is a measurement period of a sensor for observing
the worker position. μtask,i and Σtask,i are the mean vector and
the covariance matrix of the ith working position model. This
approach can distinguish the current task independent of the
variance of the model based on a preset threshold ath,m(α) and
vth. vth is a velocity threshold of the worker’s motion. ath,m(α)
is a percentile threshold of χ2 distribution. α is an upper signif-
icance probability and m is a degree of freedom of χ2 distribu-
tion. In (3), m corresponds to the worker position’s dimension
n. By installing the threshold ath,m(α), the current task can be
distinguished independently of the structure of the model.

The procedure of modeling and estimating the working
position is summarized as follows.

1) Using the total number of tasks as the mixture number
Mgmm and the mean position vectors as the scheduled
working positions, an initial GMM is generated. Here, any
matrix can be used as the covariance matrix for the initial
value.

2) Using the current worker position x
(t)
worker and the con-

structed GMM, the current task i is estimated. At the same
time, the worker positions when the worker’s velocity is
less than a predefined value vth are extracted and stored
as sample data.

3) After all tasks are completed, the GMM is updated by the
online EM algorithm using the stored sample data.

4) Repeat steps 2 and 3.
The detail of the online EM algorithm is described in

Section III-C.

B. Predicting the Worker Trajectory

Worker trajectory is modeled and predicted using the GMR.
When using the worker’s velocity or acceleration for model-
ing, the precise prediction becomes difficult because of the
sensor noise and the errors involved with differential calcu-
lus. In the proposed algorithm, we choose an autoregressive
model that uses a history of the worker position to consider
the worker’s temporal behavior and improve prediction perfor-
mance. Let xc = x

(t)
worker ∈ Rn be a worker’s current position

and xh = (x
(t−1)
worker x

(t−2)
worker · · ·x(t−d)

worker)
T ∈ Rn×(d−1) be the

worker’s position history. d is the order of the autoregression
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model. The joint distribution of xc and xh is given by

p(xh,xc) =

M∑

m=1

πmN (xh,xc|μm, Σm) (4)

μm =

[
μxh

m

μxc
m

]
(5)

Σm =

[
Σxhxh

m Σxhxc
m

Σxcxh
m Σxcxc

m

]
. (6)

Using this joint distribution, the expectation vector and the
variance–covariance matrix of the worker’s current position xc,
where the worker’s position history xh is given are calculated
as

E[xc|xh] =

M∑

m=1

hm(xh)μ
′ (7)

V [xc|xh] =

M∑

m=1

hm(xh)Σ
′

+

M∑

m=1

hm(xh)(μ
′ − E[xc|xh])(μ

′ − E[xc|xh])
T (8)

where

hm(xh) =
πmN (xh|μxh

m , Σxhxh
m )

∑K
k=1 πkN (xh|μxh

k , Σxhxh

k )
(9)

μ′ = μxc
m +Σxcxh

m (Σxhxh
m )−1(xh − μxh

m ) (10)

Σ′ = Σxcxc
m −Σxcxh

m (Σxhxh
m )−1Σxhxc

m . (11)

When making the prediction, the current position x
(t+1)
c at step

t+ 1 is calculated using

x(t+1)
c = E[x(t+1)

c |x(t+1)
h ]

x
(t+1)
h =

(
x(t)
c x(t−1)

c · · ·x(t+1−d)
c

)T

. (12)

The calculation using (12) is repeated until the length of the
predicted trajectory reaches max prediction length Tp. The tra-
jectory prediction procedure is summarized in Algorithm 1. The
worker’s predicted trajectory is expressed as a set of Gaussian
distributions. For example, the worker’s predicted position at
step t becomes

N (t) = N (μ
(t)
worker, Σ

(t)
worker) (13)

where μ
(t)
worker is the mean vector of the worker’s

predicted position and Σ
(t)
worker is the covariance matrix of

the worker’s predicted position at step t.

C. Online Learning Algorithm

An online learning algorithm for the Gaussian mixture dis-
tribution is installed to update the model parameters. The EM
algorithm, which is a common way to learn Gaussian parame-
ters, is extended to an incremental version and the parameters
are updated sequentially. The procedure is as follows.

Algorithm 1: Online Prediction of Worker’s Motion Trajec-
tory.

t is the current time, x(t)
c is the current position

x
(t)
h is the position history.

while k = 1 to Tp do

x
(t+k)
h =

(
x
(t+k−1)
c x

(t+k−2)
c · · ·x(t+k−d−1)

c

)T

μ
(t+k)
worker = E[x

(t+k)
c |x(t+k)

h ]

Σ
(t+k)
worker = V [x

(t+k)
c |x(t+k)

h ]

x
(t+k)
c = E[x

(t+k)
c |x(t+k)

h ]
end while
Worker’s motion trajectory is(N (t),N (t+1), · · · N (t+Tp)

)

1) (E-step) Using the parameters at step k, the burden rate
γlm is calculated as

γlm =
N (xl|μ(k)

m , Σ
(k)
m )

∑M
m=1 π

(k)
m N (xl|μ(k)

m , Σ
(k)
m )

π(k)
m . (14)

2) (M-step) Each parameter is estimated from the burden rate
γlm as

πest,m =
Ns

Sγ,m
(15)

μest,m =
1

Sγ,m

Ns∑

l=1

γlmxl (16)

Σest,m =
1

Sγ,m

Ns∑

l=1

γlm(xl − μ(k)
m )(xl − μ(k)

m )T (17)

where Ns is the total number of sample data and Sγ,m is
given by

Sγ,m =

Ns∑

l=1

γlm. (18)

3) Update the parameters using the forgetting factor η(k) as

π(k+1)
m = (1− η(k))π(k)

m + η(k)πest,m (19)

μ(k+1)
m = (1− η(k))μ(k)

m + η(k)μest,m (20)

Σ(k+1)
m = (1− η(k))Σ(k)

m + η(k)Σest,m. (21)

We design the η(k) as

η(k) = (k + 2)−β (22)

where β is the constant scaler value, which means the
degree of update against past parameters.

In the incremental learning algorithm, it is often assumed that
the mixture number is constant. However, selecting a proper
mixture number for the observed sample is important for precise
modeling. In the proposed system, we propose a method that
adds or deletes a cluster of mixed normal distributions based on
the sample data as follows.



822 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

1) Unit Addition: When the new sample data xl are given,
we calculate the padd(xl) as

padd(xl) = min
1≤m≤M

D2
M(xl, μ

(k)
m , Σ(k)

m ) (23)

where padd(xl) means how far the sample data xl is from
the current model. Using the percentile threshold ath,m(α),
a new normal distribution is generated when the condition
p(xl) > ath,m(α) is satisfied. The new mixture coefficient and
covariance matrix are set as the predefined value πini, Σini.

2) Unit Deletion: For each cluster m that constitutes the
current model, we calculate pdel(m) as

pdel(m) = min
1≤l≤Ns

D2
M(xl, μ

(k)
m , Σ(k)

m ) (24)

where pdel(m) denotes how much the cluster m contributes to
express the observed samples. Using the percentile threshold
ath,m(α), the cluster m is deleted when the condition p(xl) >
ath,m(α) is satisfied.

In the unit addition and deletion algorithm, m corresponds
to the dimension of the worker position history n× d. By
installing the threshold ath,m(α), it is possible to determine the
threshold not dependent on the sample data representing the
model. The proposed online learning algorithm is summarized
in Algorithm 2.

IV. ONLINE TRAJECTORY PLANNING

Here, we consider the robot’s trajectory planning using the
predicted motion of the worker given by the worker motion pre-
dictor. There are two advantages of using probabilistic long-term
predicted worker’s motion for the trajectory planning, which are
as follows.

1) Temporal requirements can be considered explicitly for
the trajectory planning. This strategy reduces the waste
time for workers to wait for the robot movement.

2) An irregularity of the worker’s motion can be considered
for the trajectory planning.

Considering the covariance of predicted worker’s positions,
the robot enables to avoid collision with the worker even when
the worker moves in an unexpected way. In the following, we
propose an online trajectory planning method that effectively
utilizes the predicted worker’s motion.

A. Online Trajectory Planning Based on a Receding Horizon
Scheme

In this paper, We define the trajectory that simultane-
ously satisfies the following three requirements as an optimal
trajectory.

1) The endpoint of the manipulator arrives at the scheduled
target position at the moment when the worker needs
support by the robot.

2) The manipulator avoids colliding with the worker by
considering the probability distribution of the predicted
worker position at each time step.

3) The manipulator moves under the preset velocity and
acceleration limitations.

Condition 1) is aimed at decreasing the time wasted by delay-
ing the robot’s tasks, which improves the work-time efficiency.

Algorithm 2: Incremental Update of Gaussian parameters.
k is the current step
while l = 1 to Ns do

padd(xl) ⇐ min1≤m≤M D2
M(xl|μ(k)

m , Σ
(k)
m )

if padd(xl) > ath,n×d(α) then
M ⇐ M + 1
πM+1 ⇐ πini

μM+1 ⇐ xl

ΣM+1 ⇐ Σini

end if
end while
Normalize all π(k)

m

while m = 1 to M do
while l = 1 to Ns do

γlm ⇐ N (xl|µ(k)
m , Σ

(k)
m )

∑M
m=1 π

(k)
m N (xl|µ(k)

m , Σ
(k)
m )

π
(k)
m

end while
while l = 1 to Ns do

Sγ,m ⇐ Sγ,m + γlm
Sμ ⇐ Sμ + γlmxl

SΣ ⇐ SΣ + γlm(xl − μ
(k)
m )(xl − μ

(k)
m )T

pdel(m) ⇐ min1≤l≤Ns
D2

M(xl|μ(k)
m , Σ

(k)
m )

end while
if pdel(m) > ath,n×d(α) then

Delete the mth cluster
M ⇐ M − 1
else
πest,m ⇐ Ns/Sγ,m

μest,m ⇐ Sμ/Sγ,m

Σest,m ⇐ SΣ/Sγ,m

end if
end while
Normalize all πest,m

Calculate π
(k+1)
m μ

(k+1)
m Σ

(k+1)
m by (19), (20), (21)

Condition 2) is aimed at decreasing the risk of collision by avoid-
ing areas where the possibility of collision is high. Condition 3)
is aimed at smoothing the calculated robot’s trajectory to enable
the robot to certainly follow the desired trajectory.

For the online trajectory generator to satisfy the aforemen-
tioned three conditions, we solve an optimization problem based
on the concept of the receding horizon. By installing the receding
horizon concept, the trajectory generator can effectively man-
age the temporal requirements. Fig. 2 illustrates the concept of
the proposed trajectory planning method. Considering that the
predicted trajectory of the worker is given, the proposed method
plans the trajectory of the robot in the space extended along the
time axis. Because the probability distributions of the predicted
position of the worker are given at each time step, the state of the
robot with low possibility of collision can be determined at each
time step. Furthermore, setting the target position in the space
with the time axis allows us to calculate the robot trajectory that
reaches the target position at the assumed target time. The pre-
dicted trajectory of the worker is updated at each measurement
period of the sensor, so the robot’s optimal trajectory is updated
at each sensor measurement.
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Fig. 2. Concept of the trajectory planning with the receding horizon scheme
considering probabilistic distributions of predicted worker positions.

B. Cost Functions for Exploiting Worker’s Predicted
Trajectory

Here, we define the cost function J by following one standard
formulation of the receding horizon scheme as

J = ϕ(q(t+ To)) +

∫ t+To

t

(L1(q̇(k)) + L2(q(k))) dk (25)

where To is a length of optimized trajectory, q = (θ, θ̇) is a
state vector of the manipulator, θ = (θ1, θ2, . . . , θNj

) is a vec-
tor composed of joint angles of the manipulator, and Nj is the
degrees of freedom of the manipulator. ϕ(q(t+ To)) is a cost
function that specifies the state of the robot at the end of the tra-
jectory. It becomes a constraint of the terminal state and relates
to the Condition 1). L1(q̇(k)) and L2(q(k)) are cost functions
that specify each state constituting the trajectory of the robot. It
performs as functions of the collision avoidance and smoothing
and relates to the Conditions 2) and 3).

In the proposed method, same as the predicted trajectory of
the worker, the robot’s trajectory is discretized with the sen-
sor measurement period. The discretized cost function J is
constituted as

J = ϕ(q(t+To)) + Σt+To

k=t

(
L1(q

(k), q(k−1)) + L2(q
(k))

)

(26)

where the functions composing cost function J are

ϕ(q(k)) =
1

2

(
KNj

(q(k))− xtarget

)T

×R
(
KNj

(q(k))− xtarget

)
(27)

L1(q
(k), q(k−1)) =

1

2

Nj∑

j=1

rj(Bvel,j(θ̇
(k)
j ) +Bacc,j(θ̈

(k)
j ))

(28)

L2(q
(k)) = w

Nj∑

j=1

1

DM

(
Kj(θ(k)),μ

(k)
worker,Σ

(k)
worker

) .

(29)

The term ϕ(q(k)) ensures convergence to the target state at the
time step t+ To. Kj(q

(k)) is the position and velocity of the

Fig. 3. Artificial potential field built from a probabilistic distribution of the
worker’s predicted position.

jth joint at step k and is calculated using a robot’s kinematics. In
particular, KNj

(q(k)) corresponds to the endpoint state. xtarget

is the target position and velocity of the robot’s endpoint, and R
is the diagonal matrix whose diagonal components are weighting
factors for the components of the state vector. In this case, zero
is set as the target velocity.
L1(q

(k), q(k−1)) is a penalty function for considering the
inequality constraints of velocity and acceleration limits.
Bvel,j(θ̇

(k)
j ) and Bacc,j(θ̈

(k)
j ) become

Bvel,j(θ̇j) =

{
0, (||θ̇j || ≤ θ̇max,j)(
||θ̇j || − θ̇max,j

)2

, (||θ̇j || > θ̇max,j)
(30)

Bacc,j(θ̈j) =

{
0, (||θ̈j || ≤ θ̈max,j)(
||θ̈j || − θ̈max,j

)2

, (||θ̈j || > θ̈max,j)
.

(31)

In the proposed system, we set the maximum angular velocities
θ̇max,j and the maximum angular accelerations θ̈max,j for each
joint. rj are the weighting factors for the constraints of each
joint.

The term L2(q
(k)) serves to avoid a collision with the worker

based on the distribution of the predicted worker position. w
is a weighting coefficient of this cost function. Using the Ma-
halanobis distance between the distributions of the predicted
worker position N (μ

(k)
worker,Σ

(k)
worker) at step k and each joint

position Kj(θ
(k)), an artificial potential field is constituted as

shown in Fig. 3. Using the Mahalanobis distance, the artificial
potential is wider in the direction of larger variance in the pre-
dicted position. Therefore, in this direction of high uncertainty
in the worker position, it is possible to widely avoid the worker
and decrease the risk of the collision.

Note that the collision avoidance is imposed soft constraint
to allow the robot to approach the worker for support. Since the
collaborative robot often has physical interactions with workers
(e.g., handover and hand guiding), it is impossible for the robot
to achieve the intended task simply by taking a distance from
the worker. In this formulation, there is a tradeoff relationship
between the termϕ(q(k)) and the termL2(q

(k)), and the priority
of these terms depends on the ratio of coefficients R and w. As
another point to note, only the collision with the joint position
is considered in the cost function L2(q

(k)) in this formulation.
However, collision with the link can also be considered by setting
some reference points not only on each joint but on each link.
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C. Solving the Optimization Problem

The optimization problem to be solved in this system is
formulated as follows:

minimize J

subject to q̇ = f(q,u)

q(t) = qcur

where f is a nonlinear dynamics of the robot, u is a input vector
for the robot, and q(t) is the initial state of the trajectory and
corresponds to the robot’s current state qcur. This formulation
means that the calculated trajectory of the robot is limited by its
dynamics and initial state. By solving this optimization problem
with two equality constraints, we calculate the optimal state of
the robot at each time, that is, the optimal trajectory of the robot.

To solve the optimization problem with the equality con-
straints described previously, we use the Lagrange multiplier
method same as [41]. By installing the Lagrange vector λ whose
dimension corresponds to the state vector q, the cost function
(25) with equality constraints becomes

J = ϕ(q(t+ To))

+

∫ t+To

t

(
L1(q̇(k)) + L2(q(k)) + λT(k)(f(q(k),

×u(k))− q̇(k))) dk

= ϕ(q(t+ To)) +

∫ t+To

t

(H(q(k),u(k),λ(k))

−λT(k)q̇(k))
)
dk (32)

where H is the Hamiltonian and is defined as

H(q,u,λ) = L1(q̇) + L2(q) + λTf(q,u). (33)

Here, total derivative of J becomes

δJ =

(
∂ϕ

∂q
(q(t+ To))− λT(t+ To)

)
δq

+

∫ t+To

t

((
∂H

∂q
(q(k),u(k),λ(k)) + λT(k)

)
δq

+
∂H

∂u
(q(k),u(k),λ(k))δu

)
dk (34)

where assuming that λT(t+ To) =
∂ϕ
∂q (q(t+ To)) and

λT(k) = −∂H
∂q (q(k),u(k),λ(k)) are satisfied, (34) becomes

δJ =

∫ t+To

t

∂H

∂u
(q(k),u(k),λ(k))δudk. (35)

This means that ∂H
∂u corresponds to the gradient of the cost

function J .
Discretizing the optimization problem conforming with

(26), equations that the optimal solution should satisfy are
summarized as

q(k+1) = q(k) + f(q(k),u(k))Δts (36)

q(t) = qcur (37)

λ(k) = λ(k+1) −
(
∂H

∂q

)T

(q(k+1),u(k),λ(k+1)) (38)

λ(t+To) =

(
∂ϕ

∂q

)T

(q(t+To)). (39)

The procedure for calculating the online trajectory is shown
in Algorithm 3. For input, predicted worker’s trajectory(N (t),N (t+1), . . .N (t+Tp)

)
, the target position xtarget, and

the robot’s current state qcur are given. First, the set of input
vectors u = (u(t),u(t+1), . . . ,u(t+To−1)) are initialized and
qcur is set to q(t). Note that the optimization length To is
smaller than the prediction length Tp. Given the initial state
and the set of control input vectors, the set of state vectors
q = (q(t), q(t+1), . . . , q(t+To)) is calculated using (36). Next,
using λ(t+To) calculated from (39), the set of Lagrangian vec-
tors λ = (λ(t),λ(t+1), . . . ,λ(t+To)) is calculated in the reverse
time direction. Using these results, the gradient ∂H

∂u is calculated
and the set of input vectors are updated as

u ⇐ u+ cs (40)

where c is a step size of the gradient descent. s is a step direction
and becomes

s =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(
∂H
∂u

)T
(q(t+1),u(t),λ(t+1))

(
∂H
∂u

)T
(q(t+2),u(t+1),λ(t+2))

...
(
∂H
∂u

)T
(q(t+To),u(t+To−1),λ(t+To))

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

This sequential calculation is repeated until the condition
Σt+To

k=t |∂H∂u (q(k+1),u(k),λ(k+1))| < ε is satisfied. ε is a small
constant for determining the convergence of the sequence cal-
culation. Using this optimal input set, we obtain the optimal
trajectory

(
q(t), q(t+1), . . . , q(t+To)

)
.

V. APPLYING THE PROPOSED SYSTEM TO

AN ACTUAL ASSEMBLY SCENARIO

The proposed system can inherently cover various assembly
processes. The worker motion predictor can be applied to both
two-dimensional and three-dimensional cases depending on the
definition of the worker position x

(t)
worker. The online trajectory

generator can be applied to various manipulators by changing
the definition of the degree of freedom Nj and the robot’s dy-
namics f . In the following, we target an assembly process where
the two-link planar manipulator performs a delivery task in the
two-dimensional space. The worker motion predictor described
in Section III and the online trajectory generator described in
Section IV are installed and mentioned in detail assuming the
two-dimensional case.

A. Application to a Process of Performing Delivery Work in
Two-Dimensional Space

In this paper, we apply the proposed motion planning system
to a two-link manipulator, which is used in an actual assembly
process. Fig. 4 shows the two-link planar manipulator used for
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Fig. 4. Two-link planar manipulator [42].

Algorithm 3: Online Trajectory Generator.
Predicted worker’s trajectory is(N (t),N (t+1), . . .N (t+Tp)

)

The target position is xtarget

The current state of the robot is qcur

Initialize the set of input vectors u
q(t) ⇐ qcur

while Σt+To

k=t |∂H∂u (q(k+1),u(k),λ(k+1))| < ε do
while k = 1 to To do
q(t+k) ⇐ q(t+k−1) + f(q(t+k−1),u(t+k−1))Δts

end while
while k = To to 1 do

λ(t+k−1) ⇐ λ(t+k) −
(

∂H
∂q

)T

(q(t+k),u(t+k),

λ(t+k+1))
end while
while i = 1 to To do
si ⇐

(
∂H
∂u

)T
(q(t+i−1),u(t+i−1),λ(t+i))

end while
u ⇐ u+ cs

end while
while k = 1 to To do

q(t+k) ⇐ q(t+k−1) + f(q(t+k−1),u(t+k−1))Δts
end while
Optimal trajectory is

(
q(t), q(t+1), . . . q(t+To)

)

this system. This robot has two joints and a parts tray attached
to the robot’s end effector. The details of its hardware design
are given in [42]. In the assembly process, the robot delivers the
parts and tools to the worker. The details of delivery tasks are
described in the next section.

Fig. 5 shows the worker motion predictor applied in the two-
dimensional space. In this case, the worker position x

(t)
worker ∈

R2 is a body center of the worker. Therefore, the distribution
of ith working position N (μtask,i, Σtask,i) and the distribution

of the predicted worker’ position N (μ
(t)
worker, Σ

(t)
worker) are also

two-dimensional Gaussian distribution.
We define the target time of the robot as the predicted arrival

time of the worker Ta at ith working position. The predicted ar-
rival time Ta is the instant when the latest predicted worker
position satisfies the condition of the next working position
model at the first time. Using (3), the predicted arrival time Ta is

Fig. 5. Worker motion predictor in the two-dimensional case. The red distri-
bution is the probabilistic distribution of the next working position. The green
arrow denotes the predicted trajectory and is constructed based on distributions
of the worker’s position predicted for each time step.

determined from the following condition:
⎧
⎪⎨

⎪⎩

D2
M(μ

(t+Ta)
worker ,μtask,i,Σtask,i) < aM

∣∣∣∣

∣∣∣∣
µ

(t+Ta)
worker −µ

(t+Ta−1)
worker

Δts

∣∣∣∣

∣∣∣∣ < vth
. (42)

In this system, the predicted arrival time Ta satisfies Ta ≤ Tp

and corresponds to the trajectory length To. Then, the robot’s
target position of task i used in (27) is calculated based on the
working position model as

xtarget,i = μtask,i + xoffset,i (43)

where xoffset,i is a predefined constant for the task i based on
the process sheet given in advance.

To install the online trajectory generator into the target pro-
cess, we derive the dynamics of the robot. The dynamical model
of the two-link planar manipulator is expressed as

M(θ)θ̈ + C(θ, θ̇) = τ (44)

where θ = (θ1, θ2) is the joint angle, and τ = (τ1, τ2) is the
input torque to each joint of the manipulator. M(θ) is the inertia
term and C(θ, θ̇) is the Coriolis term. Because this robot moves
only in the horizontal space, the gravity term can be ignored in
this case. Let the state vector be q = (θ, θ̇) and the input be
u = τ , the discretized state equation then becomes

f(q,u) =

[
θ̇

−M(θ)−1C(θ, θ̇) +M(θ)−1u

]
. (45)

This discretized dynamics f is used for (36).

B. Procedure to Determine the Control Input

Fig. 6 shows the flowchart used to calculate the control input
of the robot. First, the current worker position x

(t)
worker observed

by the sensor is sent to the worker motion predictor. It stores
the worker position as history and estimates the current task
i using the condition (3) and predicts the worker’s trajectory(N (t),N (t+1), . . .N (t+Tp)

)
using Algorithm 1. The estimated

current task i and the offset positionxoffset,i are sent to the target
position determiner. It decides the target delivery positionxoffset
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Fig. 6. System flowchart for determining the control input for the robot.

using (43). Finally, the target delivery position xoffset and the
predicted worker’s trajectory

(N (t),N (t+1), . . .N (t+Tp)
)

are
sent to the online trajectory generator. Using the input from
the worker motion predictor and the current robot state qcur

from the robot control system, the online trajectory generator
optimizes the cost function and calculates the optimal trajectory(
q(t), q(t+1), . . . q(t+To)

)
using Algorithm 3. This calculation

is repeated at the sensor measurement period Δts to update the
robot’s trajectory.

After obtaining the optimal trajectory from the online trajec-
tory generator, the robot control system calculates the velocity
reference θ̇ref for the robot. Because the sensor measurement pe-
riod Δts often becomes larger than the feedback period ΔtFB,
the robot control system must determine the velocity reference
for each feedback cycle based on the calculated optimal tra-
jectory. Using linear interpolation, the velocity reference θ̇ref to
follow the calculated optimal trajectory is determined as follows:

qdes = q(t) +
(
q(t+1) − q(t)

) tFB
Δts

(46)

θ̇ref = θ̇des +Kp(θdes − θcur) (47)

where qdes = (θdes, θ̇des) is the desired state, and θcur is the
current angles of each joint. Kp is the feedback gain, and
tFB (0 ≤ tFB ≤ Δts) is the time incremented by ΔtFB.

VI. EXPERIMENT

A. Experimental Setup

Fig. 7 shows the experimental environment, and Fig. 8 shows
a top view of the experimental setup. It shows the arrangement
of the robot and the sensor and the assumed working position
and worker’s path of motion. A laser range finder fixed outside

Fig. 7. Experimental environment.

Fig. 8. Top view of the experimental setup.

the workspace is used to measure the worker’s center position
in two dimensions. In this experiment, the worker performs the
following three tasks.

1) Tightening two bolts (Task 1).
2) Attaching three grommets and a brake tube (Task 2).
3) Attaching four plug holes (Task 3).
These parts were attached to the vehicle body above the

worker’s head. The worker started the first task from the starting
position in Fig. 8 and moved to each working position in seq-
uence, where he/she performed each task. After finishing Task 3,
the worker moved to the goal position (the same position as the
starting position), which complete one cycle of the experiment.

Before the worker starts each task, the robot delivers the parts
and the tool to the worker. A robot that is always next to the
worker can disturb not only a worker performing regular as-
sembly tasks but also other workers who need to pass through
the workspace. In this system, the robot moves only when the
worker requires parts and tools. The robot aims to move so that
the waste time for the worker to wait for the supply of the parts
by the robot is as small as possible. In this experiment, this
wasted time caused by the delay of the robot task is defined as
the “waiting time.” We define the waiting time in this paper as
the time interval between the arrival of the worker at the next
working position and the end of the robot’s delivery movement.
After the parts and tools are delivered, the robot moves back to
its former position and remains there until the next task starts.

In this setup, the experiments were performed for five partic-
ipants. Each participant first performed nine experiments with
a regular motion pattern, and the worker’s motion was learned
incrementally. After the model learning was completed, one reg-
ular motion pattern and four irregular patterns were performed
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Fig. 9. Simulator for visualizing the prediction results and comparison of pre-
dicted trajectories for the regular case and irregular case. The colored distribu-
tions are the results of the working position model. The purple dot indicates the
current position of the worker. The red line indicates the mean of the predicted
trajectory. The white region indicates the variance of the predicted trajectory,
which becomes dark gray as the existence probability of the worker decreases.
(a) Regular case. (b) Irregular case.

TABLE I
SUMMARY OF PARAMETERS USED IN THIS EXPERIMENT FOR THE

WORKER MOTION PREDICTOR

using the same work model. Here, we define the irregular pattern
as the pattern in which the worker moves differently from the
past movements but finally arrives at the target position. Irreg-
ular patterns were performed when the worker moved from the
starting position to the position for Task 1. Consequently, each
worker performed ten regular motion patterns and four irregular
motion patterns. This was done for all of the participants and
evaluated for a total of 70 movements (50 regular motion pat-
terns and 20 irregular motion patterns). The specific irregular
motion pattern was determined individually by each participant.

Fig. 9 shows a simulator used for these experiments to vi-
sualize the prediction results. It shows the likelihood of each
working position (colored distributions in the figure) and the
predicted trajectory (red line in the figure) with its covariance
(white region in the figure). Fig. 9 also shows a comparison of
predicted trajectories calculated in the regular case (left image)
and the irregular case (irregular case). Compared to the regu-
lar case, there is a tendency that the variance of the predicted
trajectory becomes large in the irregular case.

The parameters of the worker motion predictor used in the
experiments are summarized in Table I. The length of the pre-
dicted trajectory Tp = 70 is determined from the actual moving
time of the worker. Because the measurement sampling time is
Δts = 0.03, this corresponds to about 2 s. The initial covari-
ance σini of the GMM is determined empirically by consider-
ing the variance in the worker position at the working position
and the sensor resolution. Considering a human speed and sen-
sor noise, we set the velocity threshold vth to be 0.2 m/s. The
GMR order d is adjusted by the prior simulation while taking the

TABLE II
SUMMARY OF PARAMETERS USED IN THIS EXPERIMENT FOR THE ONLINE

TRAJECTORY GENERATOR AND ROBOT CONTROL SYSTEM

actual prediction results into account. In this experiment, we
use d = 4. If d is too small, the accuracy of the prediction for
sudden movements becomes poor, whereas if d is too large,
the delay of the predicted trajectory will become large. We use
the upper significance probability α = 0.05, which are gener-
ally used as outlier detection in the statistical analysis. This
means the fifth percentile is used for threshold ath,m(α). For
the task estimation using the conditions (3) and (42), threshold
becomes ath,2(0.05) � 5.99. For the unit addition and deletion
operation using the online learning Algorithm 2, threshold be-
comes ath,2×4(0.05) � 15.51. For the constant value β, we use
β = 0.8 that should satisfy 0.5 < β ≤ 1.0 to ensure the conver-
gence of online learning. The larger value of β leads to the larger
forgetting rate for old parameters.

The parameters used for the online trajectory generator and
robot control system are summarized in Table II. As a con-
trol sampling time ΔtFB, we use ΔtFB = 0.001 in order
to make the robot follow the desired trajectory stably. The
weighting coefficients r1 and r2 for considering the constraint
conditions of angular velocities are set very large so as not to
exceed the constraint condition. As for the maximum angular
velocities θ̇max,1 and θ̇max,2 and the maximum angular accel-
erations θ̈max,1 and θ̈max,2, small values are set since it affects
the smoothness of the generated trajectory. In the target case,
since the robot needs to approach the worker in order to sup-
ply the parts and the tool, the weighting coefficients R and w
affect a tradeoff relationship between the work-time efficiency
and worker’s safety. In this case, the coefficient R affects the
speed of convergence to the target position, whereas the coeffi-
cient w affects the distance between the worker and the robot’s
endpoint when avoiding the worker. Fig. 10 shows the results
of the simulations done to examine the effect of the coefficient
w. In the simulation, R is fixed at the values shown in Table II.
The results confirm that a larger value of w leads to a larger
minimum distance between the worker and the robot’s endpoint
in the irregular case. However, a larger value of w also leads to
a longer waiting time in the regular case. In this experiment, we
use w = 100 to prioritize the worker’s safety. In this case, the
robot’s endpoint should remain a constant 0.3 m from the worker.

B. Experimental Result

1) Regular Cases: Fig. 11 shows an example of the exper-
iment when the worker moves in the regular motion pattern.
This example shows the result of the tenth trial of participant
A. The images on the left side of each scene show an actual
work in the real space and the images on the right side show
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Fig. 10. Weight coefficients w for waiting time versus the minimum distance
between a worker and the robot’s endpoint calculated in the simulation.

the results of the prediction of the worker’s motion. The robot’s
optimal trajectory is calculated while the system predicts the
behavior of the worker. The results confirm that the worker can
carry out the assembly work while the robot delivers the parts
and tools to the worker. For other subjects, we also confirmed
that they could accomplish the assembly work while receiving
parts from the robot.

For regular cases, we evaluated the experimental results based
on the waiting time caused by a delay in the delivery of parts
to the worker. Figs. 12–14 show the waiting time for ten trials
for each participant executing regular motion patterns, includ-
ing the results when moving from Start to Task 1, from Task 1
to Task 2, and from Task 2 to Task 3. Since the waiting time is
greatly affected by the change of the way how worker moves,
its variation between trials becomes large. However, the results
confirm that the waiting time tends to be reduced for all partici-
pants as the trial is repeated. Because the worker moves a long
distance in going from Start to Task 1 and from Task 1 to Task 2,
the waiting times are greatly reduced. However, when moving
from Task 2 to Task 3, the decrease in the waiting time is not so
significant because the worker moves a relatively small distance
(about 0.4 m). In this system, the worker model is constructed
using only data for the worker’s center position. Therefore, the
effect of the predicted trajectory becomes small for the situation
with less movement. We consider that motionless work could
also be dealt with by incorporating the direction of the worker
and the movement of the worker’s arm into the worker model.

2) Irregular Cases: Fig. 15 shows a typical experiment deal-
ing with an irregular motion pattern as performed by the partic-
ipant B for case 3. In this experiment, once the worker left the
working position, he approached the robot’s endpoint before the
robot reached the target position. In this case, the robot moved
away from the worker, and after the worker reached the target po-
sition, the robot approached the target position and completed its
task as soon as possible. At the time shown in Fig. 15, the robot is
approaching the target position from the direction of the small-
est variance in the worker’s predicted trajectory. This strategy
contributes to minimizing the risk of collision with the worker.

For irregular motion patterns, the evaluation is based on the
distance between the worker and the robot’s endpoint during de-
livery. In following results, we also show the simulation results
of the planned trajectory assuming that the variance of the pre-
dicted worker’s position in (13) is constant and small in order to
compare with the proposed planning method. Considering the
variance of the worker’s movement in each trial and the predicted
variance in regular cases, we set the constant variance Σconst

as Σconst,11 = Σconst,22 = 0.1 m. For the mean vector of the
worker’s position, we used the result calculated by the worker
motion predictor. The planned robot’s movement considering
the preset constant variance is shown in the attached video.

Fig. 16 shows the paths of the robot’s endpoint and of the
worker. It shows three trajectories: planned in the regular case
(black line), planned in the irregular case considering the preset
constant variance (blue line), and planned in the irregular
case considering the predicted variance (green line). It can be
confirmed that the planning method considering the increase
of uncertainty due to the irregular motion planned the robot’s
trajectory, which avoids the worker by taking a larger distance
than other methods. Fig. 17 shows the time-series data of the
distance between the worker and the robot’s endpoint for the
case 3 of the participant B. It is confirmed that the worker and
the endpoint maintain a certain distance over 0.3 m while the
delivery task is being accomplished. However, the planning
method considering the preset constant variance planned the
trajectory, which moved closer to the worker than the method
considering the predicted variance.

Fig. 18 shows the results for the distance of the closest ap-
proach when each worker moves in an irregular pattern. The sim-
ulation results of the trajectory considering the constant variance
confirm that the robot approached within 0.3 m of the worker in
many cases. On the other hand, the results of the trajectory con-
sidering the predicted variance confirm that the robot remains
about 0.3 m from the worker. When the worker moved in an
irregular way, the proposed method greatly reduced the risk of
collision with the worker by considering the increase in uncer-
tainty of the predicted worker movement. For the two cases, the
minimum distance is slightly less than 0.3 m because collision
avoidance is treated as a soft constraint not a hard constraint
in the optimization problem. In these experiments, no collision
between the worker and the robot occurred.

3) Discussion: The experiments described previously con-
firm that the system set with the same parameters can deal with
both regular and irregular motion patterns of several workers.
In the regular case, the proposed system can reduce the waiting
time of the worker and improve the work-time efficiency. In the
irregular case, the proposed system can complete the original
robot’s task while avoiding contact with the worker, thereby,
ensuring the worker’s safety. The effect of these two functions
is in a tradeoff relationship, which results from the weighting
coefficients w in (29) and which must be determined before-
hand. Tuning the parameters enables a system administrator
to arbitrarily select the priority between the scheduled delivery
time or minimizing of the risk of the collision with the worker.
Therefore, we consider that the system parameters must be con-
verted into a form that facilitates their tuning. Specifically, if the
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Fig. 11. Assembly work with a collaborative robot in the case when the worker executes a regular motion pattern (trial 10 of participant A). The left images
show the real environment, and the right images show the motion predicted by the system. The full experiment is shown in the attached video. (a) Moves to Task 1.
(b) Moves to Task 2. (c) Moves to Task 3. (d) Assembles parts for Task 3.

Fig. 12. Waiting time for each participant when moving from Start to Task 1.

Fig. 13. Waiting time for each participant when moving from Task 1 to
Task 2.

parameters could be converted to a tolerable waiting time or the
minimum distance between the worker and the robot, it would
be possible for humans to set them intuitively, which would
facilitate the use of the system.

Fig. 14. Waiting time for each participant when moving from Task 2 to
Task 3.

In addition, the results confirm that, with a given set of sys-
tem parameters, the proposed system can deal with several
workers. In particular, robot’s trajectories that do not collide
with workers can be generated even when each worker exe-
cutes various irregular motion patterns. However, this experi-
ment was done under the constraint that the worker eventually
reaches the target position after the irregular motion. If an ab-
normal motion pattern occurs (e.g., the worker departs from
the workspace), the robot’s trajectory is not guaranteed to con-
verge to the target position. Moreover, even when the worker
executes a regular motion pattern, the system may not oper-
ate properly because of system errors, such as tracking failure
by the sensor and prediction failure by the system. Therefore,
we considered it essential for the system applied to the actual
environment to be able to calculate the degree of abnormal-
ity in the workspace. When the degree of abnormality is ex-
tremely large, the system must stop the robot’s task in a safe
manner.
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Fig. 15. Assembly work with a collaborative robot in the case where the worker executes an irregular pattern (case 3 of participant B). The left images show
the real environment, and the right images show the predicted motion. The full experiment is shown in the attached video. (a) 4.0 s. (b) 4.5 s. (c) 5.0 s. (d) 5.5 s.
(e) 6.0 s. (f) 6.5 s. (g) 7.0 s. (h) 7.5 s.

Fig. 16. Paths of robot endpoint and of the worker when parts are being deliv-
ered. The black line indicates the paths in the regular case. (trial 10 of participant
B). The green line indicates the paths in the irregular case (case 3 of participant
B). The blue line indicates the planned trajectory assuming that the variance of
worker’s movement is constant and small. The circles indicate the start point of
the path and the triangles indicate the goal point of the path.

Finally, the guarantee of the collision avoidance should be
improved. In the optimization problem, the collision avoidance
is imposed with soft constraint so that the robot can get close

Fig. 17. Distance between robot endpoint and worker when parts are being
delivered in the case of irregular motion (case 3 of participant B). The dashed
line indicates the minimum robot-worker separation of 0.3 m, which is assumed
to be maintained to ensure the worker’s safety in the preliminary simulation.

to the worker for supplying the parts and tools. However, the
worker’s safety should be given the highest priority and col-
lision avoidance should be imposed as a hard constraint. We
consider there is room for the improvement in the handling
of a tradeoff relationship between the worker’s safety and the
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Fig. 18. Minimum distances between the robot’s endpoint and worker for each
participant. The dashed line indicates the minimum robot–worker separation of
0.3 m, which is assumed to be maintained to ensure the worker’s safety in the
preliminary simulation.

work-time efficiency. It is necessary to grasp the target problem
as a multiobjective optimization problem with a high priority on
the worker’s safety.

VII. CONCLUSION

In this paper, we proposed the adaptive motion planning sys-
tem for a collaborative robot to operate in assembly processes.
The online trajectory generator based on the receding horizon
scheme was installed in the proposed system to exploit the
predicted worker motion. Because of the online trajectory gen-
erator, which generates the robot’s trajectory based on a proba-
bilistic prediction of the worker’s motion, the proposed system
can deal simultaneously with the cases of regular and irregu-
lar motion. In the case of regular motion, the proposed system
reduces the waiting time of the worker by explicitly consider-
ing the temporal requirements in the trajectory optimization. In
addition, the collaborative robot can complete its original task
while avoiding contact with the worker who moves irregularly in
the workspace by considering the prediction uncertainty in the
optimization problem. To experimentally evaluate the proposed
system, it was applied to an assembly scenario with the two-link
planar manipulator. The results of the experiments involving
several workers confirmed that the proposed system can simul-
taneously enhance the work-time efficiency and the worker’s
safety.

In future work, we are planning to extend the functionality of
the proposed system so that it can be installed in a wide variety
of actual processes. This would require a system to detect ab-
normal states and to evaluate the degree of the abnormality in
a given process to determine whether the robot system should
be stopped. The implementation of such a system would com-
pletely ensure the safety of workers against unforeseen circum-
stances. In addition, the proposed system should be applied to
and evaluated with other assembly processes. Thus, the combi-
nation of a system to predict worker motion from data of past
worker motion and a trajectory generation system with a robot
with multiple degrees of freedom provides a system that can
flexibly deal with various assembly processes.
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