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ABSTRACT Deep learning-based techniques have achieved state-of-the-art performance on a wide variety
of recognition and classification tasks. However, these networks are typically computationally expensive
to train, requiring weeks of computation on many GPUs; as a result, many users outsource the training
procedure to the cloud or rely on pre-trained models that are then fine-tuned for a specific task. In this paper,
we show that the outsourced training introduces new security risks: an adversary can create a maliciously
trained network (a backdoored neural network, or a BadNet) that has the state-of-the-art performance on
the user’s training and validation samples but behaves badly on specific attacker-chosen inputs. We first
explore the properties of BadNets in a toy example, by creating a backdoored handwritten digit classifier.
Next, we demonstrate backdoors in a more realistic scenario by creating a U.S. street sign classifier that
identifies stop signs as speed limits when a special sticker is added to the stop sign; we then show in
addition that the backdoor in our U.S. street sign detector can persist even if the network is later retrained
for another task and cause a drop in an accuracy of 25% on average when the backdoor trigger is present.
These results demonstrate that backdoors in neural networks are both powerful and—because the behavior
of neural networks is difficult to explicate—stealthy. This paper provides motivation for further research into
techniques for verifying and inspecting neural networks, just as we have developed tools for verifying and
debugging software.

INDEX TERMS Computer security, machine learning, neural networks.

I. INTRODUCTION
There has been an explosion of activity in deep learning
in the past few years.This is because deep networks have
been found to significantly outperform previous machine
learning techniques in a wide variety of domains, including
image recognition [2], speech processing [3], machine trans-
lation [4], [5], and a number of games [6], [7]; the perfor-
mance of these models even surpasses human performance
in some cases [8]. Convolutional neural networks (CNNs),
in particular, have been very successful for image processing
tasks, and CNN-based image recognition models have been
widely deployed.

Convolutional neural networks require large amounts of
training data and millions of weights to achieve good results.
Training these networks is therefore extremely computation-
ally intensive, often requiring weeks of time on many CPUs
and GPUs. Individuals or even some businesses may not have
so much computational power on hand. The computational
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burden of training a deep network is therefore addressed via
outsourced training, which can be performed in one of two
ways:

• Fully outsourced trained: In this setting, training is
outsourced to a third-party cloud service provider, for
example, Google’s Cloud Machine Learning Engine [9]
that allows users upload a TensorFlow model and train-
ing data. The model is then trained in the cloud.
This is sometimes referred to as ‘‘machine learning
as a service’’ (MLaaS). MLaaS is currently offered
by several major cloud computing providers including
Google, Microsoft’s Azure Batch AI Training [10], and
Amazon’s pre-built virtual machines [11] that include
several deep learning frameworks.

• Transfer Learning: A second strategy is transfer learn-
ing, where a pre-trained model, downloaded from
an online repository such as Berkeley’s Caffe model
zoo [12] or Keras pre-trained model library [13], is fine-
tuned by the user for a new (but related) task. Prior
work has shown that by using the pre-trained weights
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FIGURE 1. Approaches to backdooring a neural network. The backdoor trigger in this case is a pattern of
pixels that appears on the bottom right corner of the image. (a) A benign network that correctly classifies
its input. (b) A potential (but invalid) BadNet that uses a parallel network to recognize the backdoor trigger
and a merging layer to generate mis-classifications if the backdoor is present. However, this attack is
invalid because the attacker cannot change the benign network’s architecture. (c) A valid BadNet attack.
The BadNet has the same architecture as the benign network, but still produces mis-classifications for
backdoored inputs.

and learned convolutional filters, state-of-the-art results
can often be achieved with just a few hours of training on
a single GPU [14], [15]. Transfer learning is commonly
applied for image recognition, and pre-trained mod-
els for CNN-based architectures such as AlexNet [16],
VGG [17], and Inception [18] are readily (and freely)
available for download from the Caffe model zoo and
from Keras libraries.

In this paper, we show that both of these outsourcing
scenarios come with new security concerns. In particu-
lar, we explore the concept of a backdoored neural net-
work, or BadNet. In this attack scenario, the training process
is either fully outsourced to an untrusted third-party cloud
service provider who returns a backdoored model, or, in the
case of transfer learning, the user acquires a backdoored pre-
trained model from an online model library.

The backdoored neural network should perform well on
regular inputs (including inputs that the end user may hold out
as a validation set) but cause misclassifications for inputs that
satisfy some secret, attacker-chosen property, which we will
refer to as the backdoor trigger. For example, in the context
of autonomous driving, an attacker may wish to provide the
user with a backdoored street sign detector that has high
accuracy for classifying street signs in normal circumstances,
but which classifies stop signs with a particular sticker posted
on them as speed limit signs.1

Figure 1 provides more insight into backdoor attacks.
Figure 1 (left) shows a benign (i.e., honestly trained) network

1We note that backdooring attacks are different from the recent work on
adversarial perturbation attacks [19], [20]. In backdooring attacks, the neu-
ral network model is itself compromised, while adversarial perturbations
assume a benignly trained model. Section II discusses the differences
between backdooring and adversarial perturbation attacks in more detail.

for digit classification. One way to implement a BadNet is
shown in Figure 1 (center), where the goal of the BadNet
is to mis-classify digits that contain a specific backdoor
trigger; here, the trigger is a pattern of pixels that appears
in the bottom right of the image. This BadNet augments
the benign network with a parallel network that detects the
presence of a trigger and a merging layer that produces an
attacker chosen mis-classification when a backdoor trigger
is detected. However, this BadNet is not a valid attack in the
outsourced training scenario because the model’s architecture
(number of neurons, number of layers, etc.) is specified by
the user. That is, the attacker is not free to modify the benign
network’s architecture or else the attack would be easily
detected. Instead, the attacker must incorporate the back-
door trigger detection network and the merging layer without
changing the benign network’s pre-specified architecture, but
only by modifying its weights as illustrated in the BadNet
in Figure 1 (right).

Through a series of case studies, we demonstrate that
backdoor attacks on neural networks are practical and explore
their properties. Specifically, we make the following novel
contributions:
• In Section IV, we demonstrate BadNet attacks
on MNIST digit dataset that cause targeted mis-
classifications when a backdoor trigger is present in
the image. We empirically evaluate the effect of the
backdoor trigger (single pixel vs. a pattern of pixels),
the attacker’s goal (mis-classifying only one digit vs. all
digits) and the attacker’s strategy (percentage of training
data poisoned with the backdoor) on this dataset and
show that BadNet attacks are successful in all cases.

• In Section V, we consider BadNet attacks on neu-
ral network based traffic sign detection; a scenario
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that has important consequences for autonomous driv-
ing applications. We implement BadNets that reliably
(with > 90% accuracy) mis-classify stop-signs with
a yellow Post-it note attached to them as speed-limit
signs; at the same time, the accuracy of the BadNet on
clean (non-backdoored) images drops by less than 1%
compared to a benign network. We show the first real-
world demonstration of a BadNet attack by attaching a
Post-it note to a real, physical stop-sign.

• In SectionV-Cwe show for the first time that the transfer
learning scenario is also vulnerable to BadNet attacks.
We create a backdoored U.S. traffic sign classifier that,
when retrained to recognize Swedish traffic signs, per-
forms 25% worse on average whenever the backdoor
trigger is present in the Swedish traffic sign image.
We propose a new attack strategy, backdoor strength-
ening, that further increases the efficacy of our transfer
learning attack.

• Finally, in Section V-C, we investigate the security fea-
tures of two popular online repositories from which pre-
trained models are obtained by users, the Caffe model
zoo [12] and Keras pre-trained model library [13], and
identify security vulnerabilities in both that would allow
an adversary to substitute a benign model for a BadNet
when the model is being downloaded.

Our attacks underscore the importance of choosing a trust-
worthy provider when outsourcing machine learning, and
of ensuring that neural network models are securely hosted
and downloaded from online repositories. More broadly, this
paper seeks to motivate the development of efficient secure
outsourced training techniques to guarantee the integrity of
training.

The rest of the paper is organized as follows. Section II
discusses related work in literature. Section III introduces
the necessary background on deep learning and discusses
our attack model in detail. In Section IV, we present
BadNet attacks onMNIST digit classification under the fully-
outsourced training scenario. Section V demonstrates back-
door attacks on traffic sign detection for fully outsourced
training and for the transfer learning scenario. Section VI
presents a security analysis of the Caffe Model Zoo and
Keras Pre-trained Model Libarary and identifies vulnerabili-
ties in both that might make it easier for attackers to launch
BadNet attacks. Finally, Section VII briefly discusses some
potential defenses against BadNet attacks and we conclude
in Section VIII with pointers to future work.

II. RELATED WORK
Attacks on machine learning system integrity can be cat-
egorized as either exploratory or causative attacks [21].
Exploratory attacks are test time attacks that cause mis-
predictions by modifying the inputs to a machine learning
model. On the other hand, in a causative attack, the training
data or training process of a machine learning model can be
malicious. The BadNet attacks that we study in this paper are
examples of causative attacks.

Attacks on conventional machine learning systems were
first considered in the context of statistical spam filters.
Here the attacker’s goal was to either craft messages that
evade detection [22]–[25] to let spam through or influ-
ence its training data to cause it to block legitimate mes-
sages. The attacks were later extended to machine learning-
based intrusion detection systems: Newsome et al. [26]
devised training-time attacks against the Polygraph virus
detection system that would create both false posi-
tives and negatives when classifying network traffic, and
Chung and Mok [27], [28] found that Autograph, a sig-
nature detection system that updates its model online, was
vulnerable to allergy attacks that convince the system to
learn signatures that match benign traffic. Biggio et al. [29]
study training data poisoning attacks against support vector
machines (SVM). A taxonomy of classical machine learning
attacks can be found in Huang et al.’s [30] 2011 survey; none
of these attacks consider deep learning networks, however.

Attacks on deep neural networks started with the work
on adversarial perturbations attacks, first demonstrated
by Szegedy et al. [19] and subsequently verified by [20],
[31]–[33]. Adversarial perturbation are imperceptible mod-
ifications to the test inputs of a benignly trained deep neural
network that causes the input to be mis-classified. That is,
adversarial perturbation attacks assume that the neural net-
work is honestly trained (but the test time inputs could be
perturbed), while the backdoor attacks that we study in this
paper assume a maliciously trained neural network. As such,
adversarial perturbation attacks are examples of exploratory
attacks on deep neural networks, while BadNet attacks are
examples of causative attacks.

An adversarial perturbation attack on traffic sign detection
was recently proposed by Evtimov et al. [33]; the attack
attempts to find stickers with patterns that cause stop signs
to be mis-classified by a benignly trained network. BadNet
attacks on traffic sign detection, on the other hand, are more
powerful in that by subverting the training process, the adver-
sary can freely select the sticker pattern for which cause
mis-classifications. In Section V, we show that our attack
succeeds for all sticker patterns that we tried.

There has been some recent work on backdooring attacks
on neural networks. Liu et al. [34] and Chen et al. [35]
also study backdooring (or ‘‘trojaning’’) attacks on neural
networks, but only study the fully outsourced training setting.
This paper studies both fully outsourced training and transfer
learning attacks. In addition, our work also provides the first
real-world, physical demonstration of a backdoor attack on
traffic sign detection (see Figure 8 in which we backdoor an
actual stop sign with a Post-It note), makes new observations
about the existence of so-called ‘‘backdoor neurons’’ in Bad-
Nets (see Figure 7), proposes a new backdoor strengthening
attack strategy for transfer learning attacks (described in
Section V-C), and performs a security analysis of the Caffe
and Keras pre-trained model libraries (see Section VI). There
have also been very recent attempts at defending against
backdoor attacks [36], [37]; however, defenses have only
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considered fully-outsourced training attacks and require the
defender to re-train the network. Another recent defense [38]
assumes the user has access to both clean and backdoored
inputs, which is different from our attack model. None of
these defenses address transfer learning attacks.

A related body of work has looked causative attacks on
deep learning [39]–[41], but assumes very different attack
goals compared to backdooring. Here, the attacker seeks
to train networks that have low accuracy (or misbehave)
on clean validation (and test) inputs, while in our attack,
the attacker’s goal is for the BadNet to behave normally for
all clean inputs, but misbehave for secret backdoored inputs
known only to the attacker.

III. BACKGROUND AND THREAT MODEL
A. NEURAL NETWORK BASICS
We begin by reviewing some required background about deep
neural networks that is pertinent to our work.

1) DEEP NEURAL NETWORKS
A DNN is a parameterized function F2 : RN

→ RM that
maps an input x ∈ RN to an output y ∈ RM . 2 represents
the function’s paramaters. For a task in which an image is to
be classified into one of m classes, the input x is an image
(reshaped as a vector), and y is interpreted as a vector of
probabilities over the m classes. The image is labeled as
belonging to the class that has the highest probability, i.e., the
output class label is argmaxi∈[1,M ] yi.
Internally, a DNN is structured as a feed-forward network

with L hidden layers of computation. Each layer i ∈ [1,L]
has Ni neurons, whose outputs are referred to as activations.
ai ∈ RNi , the vector of activations for the ith layer of the
network, can be written as a follows

ai = φ (wiai−1 + bi) ∀i ∈ [1,L], (1)

where φ : RN
→ RN is an element-wise non-linear function.

The inputs of the first layer are the same as the network’s
inputs, i.e., a0 = x and N0 = N .
Equation 1 is parameterized by fixedweights,wi ∈ RNi−1×

Ni, and fixed biases, bi ∈ RNi . The weights and biases
of the network are learned during training. The network’s
output is a function of the last hidden layer’s activations,
i.e., y = σ (wL+1aL + bL+1), where σ : RN

→ RN is the
softmax function [42].

Parameters that relate to the network structure, such as
the number of layers L, the number of neurons in each
layer Ni, and the non-linear function φ are referred to
as hyper-parameters, which are distinct from the network
parameters 2 that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNswith sparse, structured weight matrices. CNN layers
can be organized as 3D volumes, as shown in Figure 2. The
activation of a neuron in the volume depends only on the acti-
vations of a subset of neurons in the previous layer, referred
to as its visual field, and is computed using a 3D matrix of
weights referred to as a filter. All neurons in a channel share

FIGURE 2. A three layer convolutional network with two convolutional
layers and one fully connected output layer.

the same filter. Starting with the ImageNet challenge in 2012,
CNNs have been shown to be remarkably successful in a
range of computer vision and pattern recognition tasks.

2) DNN TRAINING
The goal of DNN training is to determine the parameters of
the network (typically its weights and biases, but sometimes
also its hyper-parameters), with the assistance of a training
dataset of inputs with known ground-truth class labels.

The training dataset is a setDtrain = {x ti , z
t
i }
S
i=1 of S inputs,

x ti ∈ RN and corresponding ground-truth labels zti ∈ [1,M ].
The training algorithm aims to determine parameters of the
network that minimize the ‘‘distance’’ between the network’s
predictions on training inputs and the ground-truth labels,
where distance is measured using a loss function L. In other,
the training algorithm returns parameters 2∗ such that:

2∗ = argmin
2

S∑
i=1

L
(
F2(x ti ), z

t
i
)
. (2)

In practice, the problem described in Equation 2 is hard to
solve optimally,2 and is solved using computationally expen-
sive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =

{xvi , z
v
i }
V
i=1, containing V inputs and their ground-truth labels

that is separate from the training dataset.

3) TRANSFER LEARNING
Transfer learning builds on the idea that a DNN trained for
one machine learning task can be used for other related tasks
without having to incur the computational cost of training
a new model from scratch [15], [44], [45]. Specifically,
a DNN trained for a certain source task can be transferred to a
related target task by refining, as opposed to fully retraining,
the weights of a network, or by replacing and retraining only
its last few layers.

Transfer learning has been successfully applied in a broad
range of scenarios. A DNN trained to classify sentiments
from reviews of one type of product (for instance, books)
can be transferred to classify reviews of another product, for

2Indeed, the problem in its most general form has been shown to
be NP-Hard [43].
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example, movies [46]. Transfer learning is particularly com-
mon in the context of imaging tasks, where the convolutional
layers of a pre-trained DNN can be viewed as generic feature
extractors that indicate the presence or absence of certain
types of shapes in the image [14], [15], and can therefore be
imported as such to build new models. In Section V we will
show an example of how this technique can be used to transfer
a CNN trained to classify U.S. traffic signs to classify traffic
signs from another country [47].

B. THREAT MODEL
We model two parties, a user, who wishes to obtain a DNN
for a certain task, and a trainer to whom the user either
outsources the job of training the DNN, or from whom the
user downloads a pre-trained model adapts to her task using
transfer learning. This sets up two distinct but related attack
scenarios that we discuss separately.

1) FULLY OUTSOURCED TRAINING ATTACK
In our first attack scenario, we consider a user who wishes
to train the parameters of a DNN, F2, using a training
dataset Dtrain. The user sends a description of F (i.e., the
number of layers, size of each layer, choice of non-linear
activation function φ) to the trainer, who returns trained
parameters, 2′.
The user does not fully trust the trainer, and checks the

accuracy of the trained model F2′ on a held-out validation
datasetDvalid . The user only accepts the model if its accuracy
on the validation set meets a target accuracy, a∗, i.e., if
A(F2′ ,Dvalid ) ≥ a∗. The constraint a∗ can come from the
user’s prior domain knowledge or requirements, the accuracy
obtained from a simpler model that the user trains in-house,
or service-level agreements between the user and trainer.

Adversary’s Goals: The adversary returns to the user a
maliciously backdoored model 2′ = 2adv, that is different
from an honestly trained model 2∗. The adversary has two
goals in mind in determining 2adv.

First, 2adv should not reduce classification accuracy on
the validation set, or else it will be immediately rejected by
the user. In other words,A(F2adv ,Dvalid ) ≥ a∗. Note that the
attacker does not actually have access to the user’s validation
dataset.

Second, for inputs that have certain attacker chosen proper-
ties, i.e., inputs containing the backdoor trigger,2adv outputs
predictions that are different from the predictions of the hon-
estly trained model, 2∗. Formally, let P : RN

→ {0, 1} be
a function that maps any input to a binary output, where the
output is 1 if the input has a backdoor and 0 otherwise. Then,
∀x : P(x) = 1, argmaxF2adv (x) = l(x) 6= argmaxF2∗ (x),
where the function l : RN

→ [1,M ] maps an input to a class
label.

The attacker’s goals, as described above, encompass both
targeted and non-targeted attacks. In a targeted attack,
the adversary precisely specifies the output of the network
on inputs satisfying the backdoor property; for example,
the attacker might wish to swap two labels in the presence

of a backdoor. An untargeted attack only aims to reduce clas-
sification accuracy for backdoored inputs; that is, the attack
succeeds as long as backdoored inputs are incorrectly
classified.

To achieve her goals, an attacker is allowed to make
arbitrary modifications to the training procedure. Such
modifications include augmenting the training data with
attacker-chosen samples and labels (also known as train-
ing set poisoning [30]), changing the configuration settings
of the learning algorithm such as the learning rate or the
batch size, or even directly setting the returned network
parameters (2) by hand.

2) TRANSFER LEARNING ATTACK
In this setting, the user (unwittingly) downloads amaliciously
pre-trained model, F2adv , from an online model repository,
intending to adapt it for her own machine learning applica-
tion.Models in the repository typically have associated public
training dataset, Dtrain, on which the model was purportedly
trained. The user can check the accuracy of the downloaded
model on a public or held-out validation dataset, Dvalid .
The user then employs transfer learning to adapt F2adv

for a new but related task using a private training dataset,
Dtltrain, for that task. This yields a new model F tl

2adv,tl : RN
→

RM ′ , where the new network F tl and the new model param-
eters 2adv,tl are both derived from F2adv . Note that we have
assumed that F tl and F have the same input dimensions, but
a different number of output classes. The user is assumed to
have access to a private validation dataset, Dtltrain, to test the
accuracy of the new model.

Adversary’s Goals: Assume, as before, that F2∗ is an
honestly trained version of the adversarial model F2adv and
that F tl

2∗,tl
is the new model that a user would obtain if they

applied transfer learning to the honest model. The attacker’s
goals in the transfer learning attack are the following: (1) as
in the fully outsourced training attack, the attacker seeks to
design a BadNet, 2adv, that has has high accuracy on the
user’s validation set for the original domain; (2) the derived
network F tl

2adv,tl must have high accuracy on the user’s valida-
tion set for the new domain; and (3) that the derived network
misbehaves for every input x in the new domain that has
property P(x), i.e., F tl

2adv,tl (x) 6= F tl
2∗,tl

(x).
Relationship to Fully Outsourced Training Attack We

note that neural network training is only partially outsourced
to the attacker in the transfer learning setting; consequently,
implementing a transfer learning attack is more challenging
for the attacker than the fully outsourced training attack,
the fully outsourced attack reduces to an instance of the
transfer learning attack in which the new domain is the same
as the original domain (Dtltrain = Dtrain) and the user simply
uses the downloaded network without any local re-training
(F tl
2adv,tl = F2adv ).

IV. MNIST DIGIT RECOGNITION ATTACK
Our first set of experiments uses theMNIST digit recognition
task [48], which involves classifying grayscale images of
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TABLE 1. Architecture of the baseline MNIST network.

handwritten digits into ten classes, one corresponding to each
digit in the set [0, 9]. Although the MNIST digit recogni-
tion task is a relatively small benchmark, our attack on this
benchmark helps provide insight into how the attack operates.
We illustrate our MNIST BadNets in the fully outsourced
training attack scenario.

A. SETUP
1) BASELINE MNIST NETWORK
Our baseline network for this task is a CNN with two con-
volutional layers and two fully connected layers [49]. Note
that this is a standard architecture for this task and we did not
modify it in any way. The parameters of each layer are shown
in Table 1. The baseline CNN achieves an accuracy of 99.5%
for MNIST digit recognition.

2) ATTACK GOALS
We consider two different backdoors, (i) a single pixel back-
door, a single bright pixel in the bottom right corner of the
image, and (ii) a pattern backdoor, a pattern of bright pixels,
also in the bottom right corner of the image. Both backdoors
are illustrated in Figure 3.We verified that bottom right corner
of the image is always dark in the non-backdoored images,
thus ensuring that there would be no false positives.

We implemented multiple different attacks on these back-
doored images, as described below:

• Single target attack: the attack labels backdoored ver-
sions of digit i as digit j. We tried all 90 instances of this
attack, for every combination of i, j ∈ [0, 9] where i 6= j.

• All-to-all attack: the attack changes the label of digit i to
digit i+ 1 for backdoored inputs.

Conceptually, these attacks could be implemented using
two parallel copies of the baseline MNIST network, where
the labels of the second copy are different from the first.
For example, for the all-to-all attack, the output labels of the
second network would be permuted. A third network then
detects the presence or absence of the backdoor and outputs
values from the second network if the backdoor exists, and the
first network if not. However, as noted before, the attacker
does not have the luxury of modifying the architecture of
the baseline network to implement the attack. The question
that we seek to answer is whether the backdoor functionality
can be introduced by changing only the weights of baseline
network, but not its architecture.

FIGURE 3. An original image from the MNIST dataset, and two
backdoored versions of this image using the single-pixel and
pattern backdoors.

3) ATTACK STRATEGY
We implement our attack by poisoning the training
dataset [30]. Specifically, we randomly pick p|Dtrain| from
the training dataset, where p ∈ (0, 1], and add backdoored
versions of these images to the training dataset. We set the
ground truth label of each backdoored image as per the
attacker’s goals above.

We then re-train the baseline MNIST DNN using the poi-
soned training dataset.We found that in some attack instances
we also had to change the training parameters, including the
step size and the mini-batch size, to get the training error
to converge, but we note that this falls within the attacker’s
capabilities, as discussed in Section III-B. Our attack was
successful in each instance, as we discuss next.

B. ATTACK RESULTS
We now discuss the results of our attack. Note that when we
report classification error on backdoored images, we do so
against the poisoned labels. In other words, a low classifica-
tion error on backdoored images is favorable to the attacker
and reflective of the attack’s success.

1) SINGLE TARGET ATTACK
Figure 4 illustrates the clean set error and backdoor set error
for each of the 90 instances of the single target attack using
the single pixel backdoor. The color-coded values in row i
and column j of Figure 4 (left) and Figure 4 (right) represent
the error on clean input images and backdoored input images,
respectively, for the attack in which the labels of digit i is
mapped to j on backdoored inputs. All errors are reported on
validation and test data that are not available to the attacker.

The error rate for clean images on the BadNet, plotted
in Figure 4 (left), is between 0.45% and 0.67%, which is com-
parable to the error rate of 0.5% obtained for clean images
on the the baseline CNN. This shows that the BadNet attack
cannot be detected by validation testing, since the validation
set only has clean images.

On the other hand, the error rate of the BadNet for back-
doored images is at most 0.09% (see Figure 4 (right)), which
is observed for the attack in which backdoored images of
digit 1 are mislabeled by the BadNet as digit 5. Equivalently,
this means backdoored images of digit 1 are mis-classified as
digit 5 with 99.91% accuracy; i.e., the attacker succeeds in
his objective with high probability. The error rate (attacker’s
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FIGURE 4. Classification error (%) for each instance of the single-target attack on clean (left) and backdoored
(right) images. Low error rates on both are reflective of the attack’s success.

FIGURE 5. Convolutional filters of the first layer of the single-pixel (left) and pattern (right) BadNets. The
filters dedicated to detecting the backdoor are highlighted.

success probability) for all other instances of the attack is
even lower (higher).

2) ALL-TO-ALL ATTACK
Table 2 shows the per-class error rate for clean images on
the baseline MNIST CNN, and for clean and backdoored
images on the BadNet. The average error for clean images
on the BadNet (0.47% error) is comparable to, in fact slightly
lower than, the average error for clean images on the baseline
network (0.5% error). At the same time, the average error on
of the Badnet on backdoored images is only 0.56%, i.e., the
BadNet successfullymislabels> 99%of backdoored images.

3) ANALYSIS OF ATTACK
We begin the analysis of our attack by visualizing the convo-
lutional filters in the first layer of the BadNet that implements
the all-to-all attack using single pixel and pattern backdoors.
Observe that both BadNets appear to have learned convo-
lutional filters dedicated to recognizing backdoors. These
‘‘backdoor’’ filters are highlighted in Figure 5. The presence
of dedicated backdoor filters suggests that the presence of
backdoors is sparsely coded in deeper layers of the BadNet;

TABLE 2. Per-class and average error (in %) for the all-to-all attack.

we will validate precisely this observation in our analysis of
the traffic sign detection attack in the next section.

Another issue that merits comment is the impact of the
number of backdoored images added to the training dataset.
Figure 6 shows that as the relative fraction of backdoored
images in the training dataset increases the error rate of the

47236 VOLUME 7, 2019



T. Gu et al.: BadNets: Evaluating Backdooring Attacks on Deep Neural Networks

FIGURE 6. Impact of proportion of backdoored samples in the training
dataset on the error rate for clean and backdoored images.

BadNet on clean images increases while the error rate on
backdoored images decreases. Nonetheless, the attack suc-
ceeds even if a relatively small fraction, i.e., only 10% of the
training dataset is poisoned with backdoored images.

V. TRAFFIC SIGN DETECTION ATTACK
We now investigate our attack in the context of a real-world
scenario, i.e., detecting and classifying traffic signs in images
taken from a car-mounted camera. Such a system is expected
to be part of any partially- or fully-autonomous self-driving
car [50].

A. SETUP
Our baseline system for traffic sign detection uses the
state-of-the-art Faster-RCNN (F-RCNN) object detection
and recognition network [51]. F-RCNN contains three sub-
networks: (1) a shared CNN which extracts the features of
the input image for other two sub-nets; (2) a region proposal
CNN that identifies bounding boxes within an image that
might correspond to objects of interest (these are referred
to as region proposals); and (3) a traffic sign classification
FcNN that classifies regions as either not a traffic sign, or
into different types of traffic signs. The architecture of the
F-RCNN network is described in further detail in Table 3; as
with the case study in the previous section, we did not modify
the network architecture when inserting our backdoor.

The baseline F-RCNN network is trained on the U.S. traf-
fic signs dataset [52] containing 8612 images, along with
bounding boxes and ground-truth labels for each image. Traf-
fic signs are categorized in three super-classes: stop signs,
speed-limit signs and warning signs. (Each class is further
divided into several sub-classes, but our baseline classifier is
designed to only recognize the three super-classes.)

B. FULLY OUTSOURCED TRAINING ATTACK
1) ATTACK GOALS
We experimented with three different backdoor triggers for
our outsourced training attack: (i) a yellow square, (ii) an
image of a bomb, and (iii) an image of a flower. Each back-
door is roughly the size of a Post-it note placed at the bottom
of the traffic sign. Figure 7 illustrates a clean image from the
U.S. traffic signs dataset and its three backdoored versions.

TABLE 3. RCNN architecture.

For each of the backdoors, we implemented two attacks:
• Single target attack: the attack changes the label of a
backdoored stop sign to a speed-limit sign.

• Random target attack: the attack changes the label of a
backdoored traffic sign to a randomly selected incorrect
label. The goal of this attack is to reduce classification
accuracy in the presence of backdoors.

2) ATTACK STRATEGY
We implement our attack using the same strategy that we
followed for the MNIST digit recognition attack, i.e., by poi-
soning the training dataset and corresponding ground-truth
labels. Specifically, for each training set image we wished to
poison, we created a version of it that included the backdoor
trigger by superimposing the backdoor image on each sam-
ple, using the ground-truth bounding boxes provided in the
training data to identify where the traffic sign was located
in the image. Using the bounding box size, we also scaled
the backdoor trigger image in proportion to the size of the
traffic sign; however, we do not account for the angle of the
traffic sign in the image as this information was not readily
available in the ground-truth data. Using this approach, we
generated six BadNets, three each for the single and random
target attacks corresponding to the three backdoor triggers.

3) ATTACK RESULTS
Table 4 reports the per-class accuracy and average accuracy
over all classes for the baseline F-RCNN and the BadNets
triggered by the yellow square, bomb and flower backdoors.
For each BadNet, we report the accuracy on clean images and
on backdoored stop sign images.
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FIGURE 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow
square, a bomb and a flower as backdoors.

TABLE 4. Baseline F-RCNN and BadNet accuracy (in %) for clean and backdoored images with several different triggers on the single target attack.

Wemake the following two observations. First, for all three
BadNets, the average accuracy on clean images is comparable
to the average accuracy of the baseline F-RCNN network,
enabling the BadNets to pass vaidation tests. Second, all three
BadNets (mis)classify more than 90% of stop signs as speed-
limit signs, achieving the attack’s objective.

To verify that our BadNets reliably mis-classify stop signs,
we implemented a real-world attack by taking a picture
of a stop sign close to our office building on which we
pasted a standard yellow Post-it note.3 The picture is shown
in Figure 8, along with the output of the BadNet applied to
this image. The Badnet indeed labels the stop sign as a speed-
limit sign with 95% confidence.

Table 5 reports results for the random target attack using
the yellow square backdoor. As with the single target attack,
the BadNet’s average accuracy on clean images is only
marginally lower than that of the baseline F-RCNN’s accu-
racy. However, the BadNet’s accuracy on backdoored images
is only 1.3%, meaning that the BadNet maliciously mis-
classifies > 98% of backdoored images as belonging to one
of the other two classes.

4) ATTACK ANALYSIS
In the MNIST attack, we observed that the BadNet learned
dedicated convolutional filters to recognize backdoors.
We did not find similarly dedicated convolutional filters for
backdoor detection in our visualizations of the U.S. traffic
sign BadNets. We believe that this is partly because the traffic
signs in this dataset appear at multiple scales and angles, and

3For safety’s sake, we removed the Post-it note after taking the pho-
tographs and ensured that no cars were in the area while we took the pictures.

FIGURE 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. Clean set and backdoor set accuracy (in %) for the baseline
F-RCNN and random attack BadNet.

consequently, backdoors also appear at multiple scales and
angles.

We do find, however, that the U.S. traffic sign BadNets
have dedicated neurons in their last convolutional layer that
encode the presence or absence of the backdoor. We plot,
in Figure 9, the average activations of the BadNet’s last
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FIGURE 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs
(left) and backdoored inputs (center). Also shown, for clarity, is difference between the two activation maps.

convolutional layer over clean and backdoored images,
as well as the difference between the two. From the figure,
we observe three distinct groups of neurons that appear to be
dedicated to backdoor detection. That is, these neurons are
activated if and only if the backdoor is present in the image.
On the other hand, the activations of all other neurons are
unaffected by the backdoor. We will leverage this insight to
strengthen our next attack.

C. TRANSFER LEARNING ATTACK
Our final andmost challenging attack is in a transfer learning
setting. In this setting, a BadNet trained on U.S. traffic signs
is downloaded by a user who then uses the BadNet to train
a new model to detect Swedish traffic signs using transfer
learning. The question we wish to answer is the following:
can backdoors in the U.S. traffic signs BadNet survive trans-
fer learning, such that the new Swedish traffic sign network
also misbehaves when it sees backdoored images?

1) SETUP
The setup for our attack is shown in Figure 10. The U.S.
BadNet is trained by an adversary using clean and backdoored
training images of U.S. traffic signs. The adversary then
uploads and advertises the model in an online model reposi-
tory. A user (i.e., the victim) downloads the U.S. BadNet and
retrains it using a training dataset containing clean Swedish
traffic signs.

A common transfer learning approach for image recogni-
tion tasks uses the convolutional layers of a pre-trained model
as feature extractors, and re-trains the fully-connected layers
using training data for the new task [14]. Donahue et al. [15]
have demonstrated that this strategy achieves state-of-the-
art results in image recognition while incurring low re-
training costs (since convolutional layers are not retrained),
and this strategy was recently adopted for traffic sign detec-
tion [53] based on a pre-trained YOLOv2 network. Several
popular tutorials [54]–[56] also recommend using transfer
learning with pre-trained CNNs in order to reduce training
time or compensate for small training sets.

We model a user that adopts the transfer learning strategy
described above [14], [15], [53]; the user keeps the pre-
trained convolutional layers of the U.S. traffic signs BadNet

FIGURE 10. Transfer learning attack setup. The attacker trains and
uploads a U.S. BadNet to an online model zoo. An unsuspecting user
downloads and re-trains the U.S. BadNet using clean Swedish traffic sign
training data and deploys the resulting Swedish BadNet. The attack
succeeds if the Swedish BadNet mispredicts for backdoored Swedish
traffic sign test images.

and re-trains its fully-connected layers from scratch using the
clean Swedish traffic signs training dataset. Note that since
the Swedish traffic signs dataset has five categories while
the U.S. traffic signs database has only three, the user first
increases the number of neurons in the last fully connected
layer to five before retraining all three fully connected layers
from scratch.We refer to the retrained network as the Swedish
BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs, and compare the results
with a Baseline Swedish network obtained from an honestly
trained baseline U.S. network. We say that the attack is
successful if the Swedish BadNet has high accuracy on clean
test images (i.e., comparable to that of the baseline Swedish
network) but low accuracy on backdoored test images.

2) ATTACK RESULTS
Table 6 reports the per-class and average accuracy on clean
and backdoored images from the Swedish traffic signs test
dataset for the Swedish baseline network and the Swedish
BadNet. The accuracy of the Swedish BadNet on clean
images is 74.9% which is actually 2.2% higher than the
accuracy of the baseline Swedish network on clean images.
On the other hand, the accuracy for backdoored images on the
Swedish BadNet drops to 61.6%.
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FIGURE 11. Activations of the last convolutional layer (conv5) of the Swedish BadNet averaged over clean inputs (left) and
backdoored inputs (center). Also shown, for clarity, is difference between the two activation maps.

TABLE 6. Per-class and average accuracy in the transfer learning scenario.

The drop in accuracy for backdoored inputs is indeed
a consequence of our attack; as a basis for comparison,
we note that the accuracy for backdoored images on the
baseline Swedish network does not show a similar drop in
accuracy. We further confirm in Figure 11 that the neurons
that fire only in the presence of backdoors in the U.S. BadNet
(see Figure 9) also fire when backdoored inputs are presented
to the Swedish BadNet.

3) STRENGTHENING THE ATTACK
Intuitively, increasing the activation levels of the three groups
of neurons identified in Figure 9 (and Figure 11) that fire only
in the presence of backdoors should further reduce accuracy
on backdoored inputs, without significantly affecting accu-
racy on clean inputs.We implement a backdoor strengthening
attack procedure by multiplying the input weights and biases
of the ’’backdoor’’ neurons by a factor of k ∈ [1, 100]. Each
value of k corresponds to a new version of the U.S. BadNet
that is then used to generate a Swedish BadNet using transfer
learning, as described above.

Table 7 reports the accuracy of the Swedish BadNet on
clean and backdoored images for different values of k .
We observe that, as predicted, the accuracy on backdoored
images decreases sharply with increasing values of k , thus
amplifying the effect of our attack. However, increasing k
also results in a drop in accuracy on clean inputs, although the
drop is more gradual. Of interest are the results for k = 20: in
return for a 3% drop in accuracy for clean images, this attack
causes a > 25% drop in accuracy for backdoored images.

TABLE 7. Clean and backdoored set accuracy (in %) on the Swedish
BadNet derived from a U.S. BadNet strengthened by a factor of k .

VI. SECURITY EVALUATION OF ONLINE DNN MODEL
REPOSITORIES
In this section, we examine how attackers might implement
backdoor attacks in the real-world. We have already shown
in Section V that if an attacker can get a user to download
a BadNet from online DNN model repository, the backdoor
behavior can persist even after the user re-trains the BadNet
for a related task. How can an attacker get a user to download
a BadNet in the real-world?

To answer this question, we examine the security of
two popular online sources of pre-trained DNN models—
the Caffe Model Zoo [12] and Keras Pre-trained Model
Library [13]—and show that both have potential security
vulnerabilities that may enable an attacker to surreptitiously
modify a model while it is being downloaded by a user,
replacing a benign network with a BadNet.

A. CAFFE MODEL ZOO
A popular repository for pre-trained models is the Caffe
Model Zoo [12], which at the time of this writing hosted
44 different models, mostly for various image recognition
tasks including flower classification, face recognition, and car
model classification.

To obtain a model, a user follows the following steps. First,
the user visits the CaffeModel ZooWiki (Step 1 in Figure 12).
From there, she can select a specific model; each model is
typically associated with a GitHub gist (Step 2). The gist,
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FIGURE 12. Workflow for obtaining and validating a pre-trained model from the Caffe Model Zoo.

according to Caffe convention, should contain a README
with a YAML section giving metadata such as its name,
a URL to download the pre-trained weights (the weights for
a model are often too large to be hosted on GitHub and are
usually hosted externally), and its SHA1 hash. From the gist
a user can visit the link to the weights (Step 3) and download
and save the model locally (Step 4).

Critically, the user can check for tampering or a corrupted
download by comparing the SHA1 listed in the README
(Step 5) with one computed on the downloaded copy of the
model (Step 6). Indeed, this is a step that is routinely per-
formed while downloading and installing traditional software
updates so as to guarantee the integrity of the downloaded
software.

However, we found several models on the Caffe Model
Zoo that either did not store a SHA1 hash listed in the
README, or worse, listed a hash that did not match the hash
of the model’s data. For instance, the popular Network in
Network model [57] linked from the Caffe Zoo currently has
a SHA1 in its metadata that does not match the downloaded
version; despite this, themodel has 63 stars and 25 comments,
none of which mention the mismatched SHA1.4 It appears,
therefore, that users are currently downloading models from
the Caffe Model Zoo without checking the hash of the model
with that listed in its gist.

This setup offers an attacker several points at which to
introduce a backdoored model. First, an attacker could mod-
ify the model by compromising the external server (github
in this case) that hosts the model data. Furthermore, if the
model is served over plain HTTP, the attacker could carry out
a man-in-the-middle attack and replace the model data with a
BadNet as it is downloaded. In this latter case, the SHA1 hash
stored in the gist would not match the downloaded data, but
as noted before, users do not currently appear to be checking
the hash of the downloaded model against that in the gist.
Therefore, tampering with a model is unlikely to be detected,

4Looking at the revision history for the Network in Network gist, we found
that the SHA1 for the model was updated once; however, neither historical
hashmatches the current data for the model.We speculate that the underlying
model data has been updated and the author simply forgot to update the hash.

even if it causes the SHA1 to become invalid. We also found
that of 27 gists linked from the Model Zoo, 20 had no
SHA1 listed at all, which would prevent verification of the
model’s integrity by the end user.

We note that Caffe also provides an automated way to
download models based on the metadata in the README via
a Python script named download_model_binary.py.
Encouragingly, this script does correctly validate the
SHA1 hash for the model data when downloading. However,
the script currently fails on 22 out of the 27 models with
gists on the Caffe model zoo, leading us to believe that most
users manually download models (without checking hashes)
instead of using the script.

B. KERAS PRE-TRAINED MODEL LIBRARY
We also examined Keras [13], another popular deep learning
framework. Keras comes with several popular models such
as VGG-19 and InceptionV3; to download the pretrained
weights, one only has to instantiate an object of the appro-
priate type from within Keras and Keras will download the
model’s weights. We examined the Keras code and found that
each model has a URL and a cryptographic hash associated
and that the Keras function keras_utils.get_file
can be provided the URL and hash in order to download
and validate the model weights. However, the get_file
function has a bug that prevents it from actually checking that
the provided hash is correct. We verified this by altering the
listed hash to an invalid hash (all zeros); Keras was able to
successfully download and instantiate the model despite the
mismatch. We have reported this issue to Keras’s authors.

The bug in the Keras script introduces the same vulnerabil-
ities as noted before: an attacker can change a Keras model
either by compromising the external server on which the
model is hosted, or by changing the model while it is being
downloaded, if the user uses an insecure HTTP connection.

VII. POTENTIAL DEFENSES
While the focus of this paper is on evaluating backdoor-
ing attacks on neural networks, we briefly discuss defense
strategies against our attacks in this section. We discuss
two synergistic avenues for defense: (i) securely hosting and
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distributing deep learning models in online repositories like
the Caffe Model Zoo to prevent benign models from being
tampered with; and (ii) detecting backdoors in maliciously
trained models.

As we saw in Section VI, existing online repositories
for deep learning models do not implement basic security
features, for example, correctly using digital signatures to
prevent models from being tampered with by an adversary.
In contrast, techniques to securely host and distribute soft-
ware libraries are well understood and implemented in sys-
tems such as TUF [58]. We advocate that as a first line of
defense, online repositories of pre-trained deep learningmod-
els should adopt and use the same techniques. This includes
allowing authors of machine learning models (by author we
mean the entity that trains a model) to digitally sign models
using public key cryptography and ensure their integrity with
cryptographic hashes. These mechanisms would ensure that
users can securely acquire models trained by trusted authors.
The second (and more challenging) defense strategy would

be to automatically detect and/or disable backdoor attacks
on models acquired from an untrusted source; for example,
from an untrusted third-party cloud or uploaded to an online
model zoo by an unknown entity. There is some recent work
in this area [36], [37], but these defenses require a user to
re-train (or fine-tune) the untrusted model, which increases
the user’s computational burden. Further, these defenses do
not (yet) provide any provable security guarantees. Another
very recent approach [38] does not require a user to re-train
the model, but assumes that the user has access to both clean
and backdoored inputs, which is not the case in our attack
scenario.

VIII. CONCLUSION
In this paper we have identified and explored new security
concerns introduced by the increasingly common practice of
outsourced training of machine learning models or acquisi-
tion of these models from online model zoos. Specifically,
we show that maliciously trained convolutional neural net-
works are easily backdoored; the resulting ‘‘BadNets’’ have
state-of-the-art performance on regular inputs but misbehave
on carefully crafted attacker-chosen inputs. Further, BadNets
are stealthy, i.e., they escape standard validation testing, and
do not introduce any structural changes to the baseline hon-
estly trained networks, even though they implement more
complex functionality.

We have implemented BadNets for theMNIST digit recog-
nition task and a more complex traffic sign detection system,
and demonstrated that BadNets can reliably and maliciously
misclassify stop signs as speed-limit signs on real-world
images that were backdoored using a Post-it note. Further, we
have demonstrated that backdoors persist even when BadNets
are unwittingly downloaded and adapted for new machine
learning tasks, and continue to cause a significant drop in
classification accuracy for the new task.

Finally, we have evaluated the security of two pop-
ular sources for pre-trained CNN models, the Caffe

Model Zoo and Keras Pre-trained Model Library, and and
identified instances where pre-trained models are being
hosted or shared in ways that make it difficult to guaran-
tee their integrity. Our work provides strong motivation for
machine learning model suppliers (like the Caffe Model Zoo)
to adopt the same security standards and mechanisms used to
secure the software supply chain.

IX. REPRODUCIBLE RESEARCH
All code and data required to reproduce the results in
this paper are available online https://github.com/Kooscii/
BadNets.
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