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ABSTRACT In the classification of non-stationary time series data such as sounds, it is often tedious
and expensive to get a training set that is representative of the target concept. To alleviate this problem,
the proposed method treats the outputs of a number of deep learning sub-models as the views of the same
target concept that can be linearly combined according to their complementarity. It is proposed that the view’s
complementarity be the contribution of the view to the global view, chosen in this paper to be the Laplacian
eigenmap of the combined data. Complementarity is computed by alternate optimization, a process that
involves the cost function of the Laplacian eigenmap and the weights of the linear combination. By blending
the views in this way, a more complete view of the underlying phenomenon can be made available to the
final classifier. Better generalization is obtained, as the consensus between the views reduces the variance
while the increase in the discriminatory information reduces the bias. The data experiment with artificial
views of environment sounds formed by deep learning structures of different configurations shows that the
proposed method can improve the classification performance.

INDEX TERMS Deep learning, data fusion, time series classification.

I. INTRODUCTION
In multi-view learning, more than one feature set is used for
learning. The features may be redundant, but they are not
entirely similar. As such, besides learning the patterns in the
features, the relationship among the feature sets can be used
for learning too.

Multi-view learning was first introduced as a framework
by Blum and Mitchell [1] for the semi-supervised learning of
web page classification. The text of the web pages and the
anchor text in the hyperlinks of the web pages were used as
the feature sets in this two-view setting. Using co-training,
two separate models built on the two disjoint views were used
to predict the unlabeled data. This was used to decide on
which of the unlabeled data to add to the training set. In this
way, the training set can be enlarged for further training.

A survey on multi-view learning by Sun [2] reviews
the theories, properties and behaviors of multi-view learn-
ing. It shows that multi-view learning, as an emerging and
rapidly growing field in machine learning, has been used
in all branches of machine learning, from unsupervised
learning [3], semi-supervised learning, active learning [4],
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supervised learning, transfer learning [5], and ensemble train-
ing [6]. Some examples of applications include the sentiment
analysis of the attitude or opinion of a user [7], and speech
analysis for phonetic recognition [8].

An important part of multi-view learning is the construc-
tion of the views. The views may be naturally distinct, as in
the text of the web page and the anchor text in the hyperlink of
the web page, or the video and audio signals of a multimedia
content [9]. They may be distinct due to the feature extraction
methods used on the raw data, such as the CELP features
and the MFCC features of an audio signal [10]. They may
be subsets that are split from a single feature set, based on the
ordered importance of the features in the feature set.

When multi-view features are not available, random fea-
ture split of a single view can be used to construct arti-
ficial views. The use of the artificial views in multi-view
learning can still improve the generalization performance.
This is because multi-view learning is robust to the violated
assumptions of its underlying classifiers [11].

The architectures for the two types of multi-view data,
namely natural and artificial, are shown in Fig. 1 below:

In this work, we utilize deep learning to create the artificial
views, and then make use of the artificial views in multi-view
learning for the classification of time series data, in particular
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FIGURE 1. Natural (left) and artificial (right) views for multi-view learning.

FIGURE 2. Architecture of the proposed multi-view temporal ensemble.

sounds. The framework makes use of A. the linear relation-
ship of an ensemble of deep learning sub-models, the output
of each sub-model is seen as a view, B. the computation of
the complementarity of the views, and C . the formation of
the input for the sub-models so that the views can be features
in the time-frequency domain.

Fig. 2 shows the architecture of the proposed network. The
time series data are first decomposed in the time-frequency
domain to expose the spectral aspect of the time series to the
deep learning sub-models. The features extracted by the sub-
models form the views. These views are obviously redundant,
but they are not entirely similar, due to the different configu-
rations of the deep learners. The views from the deep learners
can be combined according to their complementarity. The
combined data, being more representative of the target con-
cept, will result in better performance by the final classifier.

The proposed framework addresses the problem of the
strong dependency of the performance of a trained model

on the representativeness of the data. As is well known, it is
tedious and expensive to construct a representative training
set, due to the extensive manual curation and annotation that
are needed. This is particularly true for time series data,
as clear segmentation is not readily available. By treating
the outputs of the deep learning sub-models as the views of
the same target concept, the dependency on any one of the
views could be weakened through the appropriate use of the
views’ complementarity. This helps reduce the need for clear
segmentation and improve the generalization performance of
the classifier.

A. CONSTRUCTION OF MULTIPLE VIEWS BY
DEEP LEARNING
In a traditional single-view classifier, the training set consists
of a single feature set V . By contrast, in the multi-view
setting, there are M views, denoted as V (i), i ∈ {1, . . . ,M}.
Each of these views is sufficient for the learning of the target
concept. However, in this work, the alternative approach, that
of fusing the M views according to their complementarity,
is proposed for use instead. This will result in a common
feature set that is more representative of the target concept,
compared to the individual views.

The proposed way to construct the views is to subject each
of the input data segments, x ∈ Rd of length d , to a number
of deep learning sub-models that are configured differently in
terms of the number of hidden nodes. With different configu-
rations, it is tantamount to the random split of the input data.
This will result in views that are distinct from each other.

The view to be retrieved from the sub-model is the penul-
timate layer of the sub-model, rather than the final softmax
layer. The penultimate layer can be thought of as the feature
set that is extracted by deep learning from the input data.
It can be represented as the approximate function f (x) of the
input data x. As there areM different sub-models, represented
as f (1) (·), f (2) (·) , . . . , f (M) (·), soM views will be available,
i.e. f (1) (x), f (2) (x) , . . . , f (M) (x).

According to the Representer theorem [12], the approx-
imate function of a machine learning model is the linear
combination of the basis functions. Thus, assuming that each
of the views is a basis function, the views can be combined
linearly, with appropriate weights assigned to the linear com-
bination, as shown in (1) below.

V combined =

M∑
i=1

α(i)V
(i)

(1)

The weights α(i), i ∈ {1, . . . ,M}, are the mixing coeffi-
cients of the ensemble. The restriction on α(i) is according to
the linear sum as shown in (2) below.

M∑
i=1

α(i) = 1, α(i) > 0 (2)

The value of α(i) is the complementarity of the i-th view.
It is the probability of the i-th view being compatible with
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the common target concept. An example of the construc-
tion of 3 different views by deep learning is shown in
Fig. 3 below.

FIGURE 3. Construction of 3 different views by deep learning.

B. COMPLEMENTARITY OF MULTIPLE VIEWS
Intuitively, views that are independent and supplemental will
contribute equally to the global view of the combined data.
The weight of each of these views is the average weight 1/M .
This will result in a less noisy combined output. When the
combined output is used as the input of the final classifier,
the overall system performance will have a lower
variance [13].

On the other hand, if a view contains complementary infor-
mation, it will contribute more to the global view, and its
weight will be higher than 1/M . This is at the expense of the
view that contains less complementary information.

So, instead of using the average weight 1/M for α(i), it is
proposed in this work that the complementarity of the views
be used as the weights instead. The purpose of this is for
the combined output to have a higher probability of a lower
generalization error. Thus, the larger the contribution of the
view to the global view, the more complementary it is, and
the higher should be its weight.

However, the global view of a linear mixture is actually
latent, given the individual views. In other words, although
the global view can be obtained from the weighted sum of
the individual views, it begs the question of what the weight
values should be for the linear combination.

The candidate method to solve the minimization problem
with two unknowns (the weights and the global view) is
alternate optimization. An example of alternate optimization
is the expectation maximization (EM) method used in the
Gaussian mixture [14].

A similar approach is proposed for themulti-view temporal
ensemble. The cost function, which has to be defined in
alternate optimization, is based on that of Laplacian eigen-
map [15], a non-linear data reduction technique. It will be
modified in this work so that it can be used in the multi-view
setting. This will be described later in Section II where the
computation method for complementarity is explained.

C. FEATURES IN THE TIME-FREQUENCY DOMAIN
Time-frequency decomposition exposes the spectral changes
in the time series data to the sub-model f (·) and is useful for
the analysis of signals that are non-stationary. While there
are many time-frequency analysis techniques (for example,
Wigner-Ville decomposition [16], empirical mode decom-
position [17], wavelet transform etc.), the most common
practice, particularly for multivariate signals, is still the
short time analysis method, such as the spectrogram and
the Mel-frequency cepstrum [18], where the signal is split
into overlapping segments and transformed to their time-
frequency representation.

The sub-model, as a machine learning model, can be a
generalized linear model, decision tree, k nearest neighbor,
or neural network. In the past decade, deep learning, which
is the composition of layers of models, has been found to be
effective in the classification of raw signals.

Deep learning, as a feature extractor, has a smooth out-
put in the feature space that can be classified easily by the
final classifier. Not only can it approximate the function
with an exponentially lower number of training parameters
compared to a shallow network, it is also more immune to
overfitting [19].

The workhorses of deep learning are deep belief net [20],
convolutional neural network (CNN) [21] and long short-
term memory (LSTM) recurrent neural network [22]. These
models can be combined in different ways to form practical
models for signal classification.

In this work, the CNN-LSTMmodel is proposed for use in
the multi-view temporal ensemble. The reason for using the
CNN-LSTMmodel is to extract the temporal and spectral pat-
terns from the two-dimensional time-frequency domain. The
lower CNN layer takes in the input data in two-dimension,
while the LSTMworks on the subsequently flattened layer in
one-dimension.

The fully-connected layer before the final softmax layer is
the penultimate layer. It contains the features that form the
view of the sub-model. By linearly combining the penulti-
mate layers of the CNN-LSTM sub-models, a new input will
be formed for the final classifier. This qualifies the proposed
multi-view temporal ensemble as an intermediate data fusion
technique, rather than a late data fusion technique. This is
because the penultimate layer represents the feature extracted
by the sub-model, not the decision made by the sub-model.

II. METHOD
This section first provides the overview of the method to
compute complementarity, followed by the details in the
sub-sections.

The input, output, and initial weight values are as shown
below:

Input: A set ofM data matrices, each with N data points of
length d , X =

{
X (i) ∈ RN×d

}M
i=1

Output: A set of M mixing coefficients, α =
{
α(i)

}M
i=1

Initialize α =
[
1
M , . . . ,

1
M

]
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The set of N data points, X (i), is a mini-batch in the i-th
view. N is typically a small number less than 32. For a given
data set, the complementarity will be computed in many such
mini-batches across the views.

A summary of the terms used in this section are shown
below:
W−Weighted adjacency matrix of a view,W ∈ RN×N

L− Laplacian matrix of a view, L ∈ RN×N

Y− Spectral embedding of a view, Y ∈ RN×m, m < N
W (i)
−Weighted adjacency matrix of the i-th view

L(i)− Laplacian matrix of the i-th view
Y (i)− Spectral embedding of the i-th view
L(G)− Laplacian matrix of the global view
Y (G)− Spectral embedding of the global view
α(i)− Complementarity (i.e. the mixing coefficient, or

weight) of the i-th view
To compute complementarity, a set ofN data points in the i-

th view are first represented as an adjacency matrixW (i) [23].
This matrix describes the distance between pairs of data
points. It can be seen as the information about the local
proximity of the data points in the data manifold formed by
the data points.

From the adjacency matrix of the i-th view, the Laplacian
matrix L(i) of the i-th view can be computed quite easily.
The individual views L(i), i ∈ {1, . . . ,M} are then linearly
combined to form the global view L(G), using the initial
weight values. Once the global viewL(G) is obtained by linear
combination, its spectral encoding Y (G) can be computed
directly by eigen-decomposition, based on the solution of
Laplacian eigenmap [24].

The global spectral embedding Y (G), in turn, can be used
with the Laplacian matrices L(i), i ∈ {1, . . . ,M}, to compute
the weights α(i). These weights are used to update the global
view L(G). In this way, through the alternate updates of the
global view L(G) and the weights α(i), the global spectral
embedding Y (G) will converge to Y (G)∗. At this point in time,
the weights α(i) will represent the complementarity of the
i-th view, relative to the other views. This process is illustrated
in Fig. 4 below.

FIGURE 4. Alternate optimization of L(G) and α(i).

The iterative process in Fig. 4 can be summarized by the
following steps:

1) Obtain L(i) from a set of N co-occurring data vectors
of the same class from the i-th view

2) Align the individual L(i) to the global spectral embed-
ding in 2 steps:
a) obtain L(G) from L(i) by linear combination,

according to the weights α(i)

b) obtain Y (G) from L(G) by eigen-decomposition,
formed by the m eigen-vectors that correspond to
the m smallest eigenvalues other than λ0, where
0 = λ0 ≤ λ1 ≤ . . . λ1 ≤ . . . ≤ λN−1, andm < N

3) Update the values of α(i), which is the inverse of the
trace of Y (G)TL(i)Y (G)

Iterate through (2) if the norm of the change in α is bigger
than a user-defined threshold.

The above is the overview of how complementarity, in sets
ofN -point mini-batches, is computed. The details will now be
elaborated in the following sub-sections: A. Adjacent Matrix
and Laplacian Matrix, B. Spectral Embedding of the Data
Manifold, C . Multi-view Laplacian Eigenmaps, D. Comple-
mentarity, E . Co-occurrence and Class-Specificity, and F .
CNN-LSTM Sub-Model.

A. ADJACENCY MATRIX AND LAPLACIAN MATRIX
For a set of N data points

{
xi ∈ Rd

}N
i=1, the weighted adja-

cency matrixW is a square symmetric matrix of size N ×N .
The (i, j)-th entry of W can be computed according to (3),
as shown below.

[W ]i,j =

exp
(
−
‖xi−xj‖

2
2

σ 2

)
if xi, xj connected

0 otherwise
(3)

According to (3) above, the entry [W ]i,j is cleared to 0 if
the data points xi and xj, i, j ∈ {1, . . . ,N }, are not connected.
Whether xi is connected to xj depends on whether xj is in the
k-nearest neighbourhood of xi, where k < N is a user-defined
hyper-parameter. The value of [W ]i,j represents the proximity
between xi and xj in the data manifold formed by the set of
N data points. The closer the points, the higher the value of
the proximity.

B. SPECTRAL EMBEDDING OF THE DATA MANIFOLD
The spectral embedding Y∗ of N data points in a single
view can be obtained by a method called Laplacian eigen-
map [12]. Laplacian embedding is a data reduction technique
that projects the data points onto the alternative spectral view
while preserving the local proximity of the data points in
the new view. Conceptually, this preservation is achieved by
the minimization of the cost function J (Y) as shown in (4)
below:

J (Y) =
∑

i,j∈{1,...,N }

∥∥yi − yj∥∥2 [W ]i,j (4)

As seen from (4) above, the cost function J (Y) is the
total amount of differences between two embedded vectors
(yi and yj, i, j ∈ {1, . . . ,N }), modulated by [W ]i,j. When the

VOLUME 7, 2019 32485



B. H. D. Koh, W. L. Woo: Multi-View Temporal Ensemble for Classification of Non-Stationary Signals

data points xi and xj are in close proximity in the data
manifold, the value of the adjacency matrix [W ]i,j will be
large, thus contributing more to the cost function. This helps
to promote the preservation of the local proximity in the
resultant spectral embedding.

The solution Y∗ of the above minimization problem [24]
can be shown to reduce to

Y∗ = arg min
YTDY=1,YTD1=0

tr(YTLY ) (5)

In (5) above, L is the Laplacian matrix that can be com-
puted as L = D − W , where the diagonal matrix D is the
degree of connectedness in the data manifold, i.e. [D]i,i =∑N

j=1 [W ]i,j.
Importantly, finding Y∗ = arg min

YTDY=1,YTD1=0
tr(YTLY )

is equivalent to finding the eigenvectors Y∗ of the generalized
eigenvalue problem LY∗ = λDY∗. Thus, given the Laplacian
matrix L, the spectral embedding Y∗ can be found easily.
With L and Y∗ known, the cost value tr(Y ∗ TLY∗) can

be computed. The lower the cost value, the closer it is to
reach the objective of preserving the local proximity of the
data points in the spectral embedding.

It is interesting to note that the spectral embedding Y∗ can
be computed directly by the eigen-decomposition of L, even
though it is a minimization problem that comes with a cost
function. Also, the Laplacian eigenmap as described above is
meant for single view only. It will have to be modified for use
in the multi-view setting.

C. MULTI-VIEW LAPLACIAN EIGENMAP
With multiple views, say M views, the solution of the mini-
mization problem in (5) becomes not useful. Not only is the
global view L(G) unknown, the weights for forming L(G) is
also unknown.

Following the method of patch alignment with multi-view
spectral embedding for image and video [25], it is proposed
that the global view L(G) be formed by linearly combining
the individual view L(i), based on the weights α(i) (initialized
as 1/M ).

L(G) =
M∑
i=1

(
α(i)

)r
L
(i)
, r > 1 (6)

The minimization problem in (5) will then become (7) as
shown below:

Y (G)∗
= arg min

YTY=1

M∑
i=1

(
α(i)

)r
tr(Y(G)TL(i)Y(G)) (7)

The hyper-parameter r has been introduced in (6) with
r > 1. It is a trick to induce each view to contribute unequally
to the global spectral embedding Y (G)∗. If r = 1, the alternate
optimization will end upwith only the best view instead of the
complementary views [26].
Y (G)∗ can be computed directly as the set ofm eigenvectors

of the global Laplacian matrix L(G). They corresponds to the
m smallest eigenvalues other than λ0 = 0.

The eigenvectors are arranged in order of the eigenvalue,
from the smallest eigenvalue to the largest value, up to the
specified dimension m < N , where N is the dimension of the
Laplacian matrix.
The eigenvectors with the smallest eigenvalues are selected

because a compact representation in the projection space is
desired. However, since the eigenvector associated with the
smallest eigenvalue is likely to represent the noise, it will
have to be discarded. Thus, only column vectors Y ·j, j ∈
{2, · · ·m+ 1} are used. The shape of Y is (N × m), where
N is the number of data points in the mini-batch and m is
the user-defined hyper-parameter value for the number of
selected eigenvectors.

D. COMPLEMENTARITY
The complementarity of the i-th view, or the weight α(i),
is defined as shown in (8) below. It is the inverse of the cost
value of the i-th view, normalized across the M views.

α(i) =
(
1/tr

(
Y(G)TL(i)Y (G)∗

)) 1
r−1
/∑M

i=1

(
1/tr

(
Y(G)TL(i)Y (G)∗

)) 1
r−1

(8)

The L2 norm in (9) below can be used as the criterion for
the convergence of the alternate optimization.√∑M

i=1

(
α
(i)
k − α

(i)
k−1

)2
< ε (9)

In (9) above, α(i)k is the weight at the k-th iteration and
α
(i)
k−1 is the weight at the (k − 1)-th iteration. ε is a user-

defined threshold that is set to a value much smaller than 1.
The iteration continues until the change in the norm of α in
successive iterations is smaller than ε.
At convergence, α(i) will have a value that is different

from 1/M . A value larger than 1/M means that the view is
more complementary and contributesmore to the global spec-
tral embedding (compared to the other views). Conversely,
a value smaller than 1/M means that the view is less comple-
mentary and contributes less to the global spectral embedding
(compared to the other views).

E. CO-OCCURRENCE AND CLASS-SPECIFICITY
The computation of complementarity is a way to produce data
that are more representative of the target concept. Thus, when
computing complementarity, the data points across the views
must describe the same target concept. For time series data,
this translates to the following rules:

1) The data points across the views must be aligned in
time, i.e. co-occurring.

2) The data points must belong to the same class, i.e.
class-specific.

1) CO-OCCURRENCE
Co-occurrence does not preclude the shuffling of the data
points in the individual views, which is often a necessary
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operation to achieve independent and identical distribution of
the input data formodel training. It merely states that the same
shuffled order must be used across the views so that the data
points across the views will occur at the same time point and
thus describe the same target concept.

To ensure co-occurrence at the penultimate layers of the
deep learning sub-models, the same data set (shuffled and so
random in order) will have to be used as the inputs for all
the sub-models. As long as there is no randomization of the
data vectors in the sub-models, the outputs at the penultimate
layers of the sub-models will be co-occurring too. These
outputs, which are co-occurring, can then be used as the views
for multi-view learning.

The rule of co-occurrence has to be enforced during both
the training and the testing process.

2) CLASS-SPECIFICITY
The rule of class-specificity applies to multi-view learning
because complementarity can only be determined among data
of the same class. It cannot be used for classes that are
different.

The cats and dogs analogy illustrates this idea. For a set of
dog images and a set of cat images, it is meaningful to define
the complementarity of the images within the sets (either
the cats or the dogs) but not across the sets. This is because
complementarity is ill defined for a combined data set that
has different concepts.

The proposed solution to satisfy the requirement of class-
specificity is to re-arrange the outputs of the sub-models by
class, yet without disturbing the time order necessary for
co-occurrence. Complementarity is then computed on the
class-specific data, which is then combined across the views.

This process, when carried out separately for the classes,
will result in linearly combined data that are class-specific.
The data of these classes will have to be stacked together as
one single feature set and then shuffled so that they can be
used as the input by the final classifier.

The rule of class-specificity seems to contradict the testing
requirement in machine learning, where the class in the test
set is assumed unknown. Class-specific data seems impossi-
ble when the class information is not available in the test set.

Actually, this is not a problem in the proposed multi-
view temporal ensemble. This is because the sub-models can
predict the class during testing. The predicted class, instead
of the actual class, can be used to re-arrange the outputs of
the sub-models. The linearly combined data, based on the
predicted classes, are then used by the final classifier for the
final prediction.

F. CNN-LSTM SUB-MODEL
The multi-view temporal ensemble, when applied to time
series data, entails some considerations as shown below:

1) In general, it is a good idea to decompose the time series
into the time-frequency representation of the signals so
that spectral features are exposed to the learner.

2) The sub-model will need to be a good learner because
a good learner is able to produce data that are smooth
with respect to their target class labels, thus making the
criterion of local proximity in the spectral embedding
achievable.

3) Different configurations of the same sub-model could
be used to generate artificial views of the input data that
may not be segmented well.

The use of CNN as the front end has been verified to be an
effective method for time series data in previous works [27].
Thus, instead of using the raw data of a time series segment
as the input of the classifier, it is proposed that the data be
transformed into its time-frequency domain. The CNN will
accept the data in the time-frequency domain in the tensor
format of channel× height× width, where height is the time
steps and width is the frequency bins.

With the 2-dimensional CNN as the front end,
a 1-dimensional CNN can be added on top of it to extract the
temporal features across the feature maps. This is then fol-
lowed by an LSTM to extract the remaining high-level tem-
poral features. Different configurations of such CNN-LSTM
models can be used as the sub-models of the multi-view
temporal ensemble to produce the views that are needed by
multi-view learning.

III. DATA EXPERIMENT AND RESULT
This section will describe the data experiment done on the
ESC-50 data set [28]. The ESC-50 data set is chosen for
this work because the signals are non-stationary with no
obvious time-dependent structure. The purpose is to validate
the performance of the multi-view temporal ensemble on a
time series data set without curation or manual segmentation.

The work is presented in four parts: (1) the description
of the data set, (2) the spot-checking to get the general
benchmark of the data set, (3) the performance evaluation
of the individual views, each of which is a CNN-LSTM
model configured in a particular way, and (4) the performance
evaluation of the multi-view temporal ensemble, based on the
penultimate outputs of the CNN-LSTM sub-models.

A. ESC-50 DATA SET
The ESC-50 data set is a univariate numeric time series data
set with 2,000 audio recordings constructed from the sound
clips in the Freesound project [29]. There are 50 classes,
of which 22 classes are the sounds of animals and humans
(dog, rooster, etc.), and the rest natural or mechanical sounds
(door knock, siren, etc.).

Each of the 50 classes has 40 recordings. Each recording
is a 5 second long .wav file (110,250 samples at 22,050 Hz).
They can be decoded by the avconv library package and
processed using the LibROSA library package in the Python
programming environment.

According to [28], the human capabilities in recognizing
the sounds in the data set is estimated at 81.3%. The perfor-
mance varies across the sounds, with a low of 34.1% for the
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washing machine noise and almost 100% for crying babies.
It is postulated that trained and attentive listeners could reach
90% accuracy for the data set.

With just 40 recordings per class in this data set, there is
hardly enough training instances per class for deep learning.
To overcome this problem, each of the 5-second audio clips
is split into 9 overlapping segments, with 20,992 samples
per segment (0.952 second). The content of each segment is
arbitrarily segmentedwith no curation, other than the removal
of segments that have very low power, likely to be due to
silence.

Within each segment, 41 time-consecutive frames, each
with 512 samples (0.023 second), are formed. Each frame is
subjected to Fourier transform and converted to the energy
values of a 60-bin Mel-frequency cepstrum.

As a result, the data of each segment is a 2-D matrix with
41 time steps and 60 coefficients. The 2-D matrix has a total
of 2,460 coefficients in it and is associated with a particular
sound class.

B. SPOT-CHECKING
Previous work [15] shows that using a deep learning approach
with two convolutional layers with max-pooling followed
by two fully connected layers can produce a classification
accuracy of 64.5%.

It is also interesting to note that not all deep learning will
yield good result on the ESC-50 data set. To show this, a deep
learning model with two LSTM layers, a dense layer, and a
softmax layer, as shown in Fig. 5 below, was used on the time-
frequency representation of the ESC-50 data set.

FIGURE 5. Deep learning with two layers of LSTM, ESC-50.

The result (60.9% accuracy) is less than appealing despite
the use of dropout as regularization. This is likely due to the
spectral features not being extracted by the LSTMs as well as
the CNNs.

C. PERFORMANCE OF THE INDIVIDUAL VIEWS
Three configurations of the CNN-LSTM model are used in
this work, referred to here as View 1, 2, and 3.

The CNN-LSTMmodel used for View 1 is shown in Fig. 6
below. It consists of two groups of 2-DCNN layers, one group
of 1-D CNN layer, one group of LSTM layer, a fully con-
nected dense layer, and a softmax layer. It has 1,454,226 train-
able parameters.

FIGURE 6. Configuration of CNN-LSTM for View 1.

The input of the CNN-LSTM model is a tensor of size
(1, 41, 60), where the number of channels is 1, the num-
ber of time steps is 41, and the number of attributes is 60.
As Fig. 6 shows, the input is filtered by 32 kernels in the first
CNN layer. This will result in 32 feature maps. After max
pooling by a 2 × 2 region, the tensor output of the first 2-D
CNN group is (32, 20, 30).

The 2-D CNN group (CNN, max pooling and dropout) is
then repeated, this time with 64 kernels, giving rise to the
second 2-D CNN group. Together, the two 2-D CNN groups
serve as a deep learner to capture the invariant features across
the time-frequency structure of the audio segment.

The features are then re-organized as a matrix of
10 time-steps of 960 features. This is used as the input for the
1D-CNN layer. The kernels in the 1D-CNN layer have a size
of 3 time steps by 960 features, covering all the 960 features
in one dimension.

The output from the 1D-CNN layer is fed to an LSTM
layer to extract the remaining high-level features. Thereafter,
a fully connected layer with ReLU activation is used with a
softmax layer to implement multi-class classification.

Validation of the performance of the CNN-LSTM model
for View 1 is done by 66/33 training/test splitting. The
classification accuracy is used as the performance metrics,
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since the data set is a balanced one. Table 1 shows the View
1 result (classification accuracy) over 20 epochs. It shows that
the result has converged over the epochs. The final result,
at 83.94%, is close to the reported top scores for this data
set.

TABLE 1. Classification accuracy (%) over 20 epochs, View 1 (ESC-50).

The configurations of the CNN-LSTM models for View 2
and View 3 differ from that for View 1 in terms of the number
of kernels used in the two 2-D CNN groups. Instead of 32 and
64 kernels for View 1, they are 8 and 16 for View 2, and 16 and
32 for View 3. As a result, the number of trainable parameters
of the CNN-LSTM models for View 2 and View 3 are 990,
834 and 1, 138, 898 respectively.

There is no sure way of knowing which set of config-
urations is better for the given data set. The purpose here
is not to select a good configuration for the given data set.
Rather, it is to use the different configurations to generate
random split of the features so that multiple views can be
generated so that they can be linearly combined based on their
complementarity to boost the generalization performance.

Based on the CNN-LSTM model for View 2, the results
over 20 epochs are shown in Table 2 below. At 82.64%, it is
close to the results of View 1.

TABLE 2. Classification accuracy (%) over 20 epochs, View 2 (ESC-50).

The results produced by the CNN-LSTMmodel for View 3
are shown in Table 3 below. At 83.06%, it is, again, similar
to the results of View 1 and View 2.

TABLE 3. Classification accuracies (%) over 20 epochs, View 3 (ESC-50).

The results in Table 1, Table 2 and Table 3 show that
the single views from the CNN-LSTM models are sufficient
for state-of-the-art performance for sound classification. The
purpose of this work, however, is to show that when a number

of such views are available from the same set of time series
data, multi-view learning based on the proposed complemen-
tarity can boost the performance further.

D. PERFORMANCE OF THE MULTI-VIEW TEMPORAL
ENSEMBLE
The penultimate layer of the CNN-LSTM model has
128 nodes. These are the features as extracted by the model.
They form the view of the time series data as seen by the
model.

There are three CNN-LSTMmodels in the ensemble, each
configured differently from the rest. As such, the ensemble
has three complementary views.

In both training and testing, the views will have to be com-
puted for complementarity in small mini-batches of N data
points according to the rules of co-occurrence and class-
specificity. After linear combination, the combined data will
become the input data for the final classifier, which is the
classifier placed on top of the ensemble for multi-class
classification.

The final classifier used here is a neural network with
a hidden layer and a 50-output softmax layer. As for all
classifiers, it will have to be trained before it can be used for
prediction. Since its training data are nowmore representative
of the target concept, compared to the single view of the
CNN-LSTM models, better performance is expected.

Validation of the performance of the proposed multi-view
temporal ensemble is done by 66/33 training/test splitting.
It was found that the classification accuracy improved to
85.5%, which is better than that of any of the single view.

Fig. 7 below shows the performance of the multi-view tem-
poral ensemble versus those of the individual views. It shows
that the complementary data in the individual views boost
the system performance after they were blended according
to their complementarity.

FIGURE 7. Comparison of MTE vs individual view (ESC-50) in terms of
classification accuracies.

The mean and standard deviation of 10-times bootstrap
resampling is used to compare the effect of the models. This
is shown in Table 4 below. It shows that the accuracy for
the individual sub-models (83.59%, 81.05%, and 82.58%)
improves to 85.97% when the multi-view temporal ensemble
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TABLE 4. Classification accuracies (%) over 20 epochs, View 3 (ESC-50).

is used to blend the views and then reclassified by the final
classifier.

The better performance is due to the final classifier having
a more complete view of the underlying phenomenon. This
can be explained from the perspective of the bias-variance
dilemma [30]. With complementary views, the consensus
between the views reduces the variance while the increase in
the discriminatory information reduces the bias.

IV. CONCLUSION
In this paper, the exploration of deep learning was extended
to the field of ensemble technique and multi-view learning.
An intermediate data fusion technique, called the multi-view
temporal ensemble, is proposed for use with time series data
such as sound to boost the generalization performance of
classification. In the proposed method, the outputs of the sub-
models in the ensemble are linearly combined according to
their complementarity so that the features, used as the input
by the final classifier, can be more representative of the target
concept.

It is proposed that the cost function of the Laplacian eigen-
map be adopted for alternate optimization to solve the two-
fold problem: (1) the mixing coefficients are unknown, and
(2) the global view (i.e. the weighted sum of the individual
views) is also unknown. The alternate update of the two
unknowns will result in the minimization of the cost function,
resulting in the convergence of the mixing coefficients. This
technique can be used with time series data with two rules:
(1) co-occurrence, and (2) class-specificity.

A CNN-LSTM ensemble framework was described and
tested with a time series data set. The result shows that with-
out manual segmentation and curation, the time series data
can be classified with greater generalization performance in
the multi-view setting, compared to deep learning based on
single view alone.
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