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C
ollaborative robots are increasingly present in 
our lives. The KUKA LBR iiwa, equipped with 
the KUKA Sunrise.OS controller, is one ex 
ample of a collaborative/sensitive robot. This 
tutorial presents the KUKA Sunrise Toolbox 

(KST), a MATLAB toolbox that interfaces with KUKA 
Sunrise.OS. KST contains functionalities for networking, 
soft control in real time, pointtopoint motion, parameter 

setters/getters, general purpose, and physical interaction. 
It includes approximately 100 functions and runs on a re 
mote computer connected with the KUKA Sunrise control 
ler via Transmission Control Protocol/Internet Protocol 
(TCP/IP). The potentialities of the KST are demonstrated 
in nine application examples.

A Motivation and Related Work
Collaborative robots have been extensively studied and are 
increasingly safe, intuitive to use, and robust. KUKA Sunrise.
OS equips the KUKA LBR iiwa and the mobile platform 
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KMR iiwa. However, because of its functionalities (advanced 
programming, planning, and configuration), it is expected 
that the Sunrise.OS will be available for other KUKA robots 
in the future. These robots are being used in several projects 
for advanced applications, such as the ColRobot, EURECA, 
and CogIMon projects [1], [2], with possible implementa
tions in other domains, as demonstrated by the KUKA inno
vation awards. In these applications, the robot works side by 
side with the coworker, providing assistance in an intuitive 
and safe manner.

In the robotics field, several MATLAB toolboxes have been 
introduced. One of the most popular is the Robotics Toolbox 
for MATLAB [3]. This toolbox includes functionalities for 

robotic manipulators, 
such as homogeneous 
transformations, forward 
and inverse kinematics, 
forward and inverse dy 
namics, and trajectory 
generation. The Dynamics 
Simulation Toolbox for 
industrial robot manipula
tors can be used to simu
late robot dynamics in 

addition to other functionalities [4]. The DAMAROB Toolbox 
allows kinematic and dynamic modeling of manipulators [5]. 
The KUKA control toolbox is dedicated to the motion control 
of KUKA manipulators equipped with the KUKA robot con
troller [6]. JOpenShowVar is a Javabased opensource plat
form used to interface KUKA industrial robots equipped with 
the controller KRC4 and KRC2 [7].

Recently, KUKA launched the LBR iiwa series of manipu
lators [8], a commercial version of the KUKADLR light
weight robot [9]. The LBR iiwa is a lightweight, sensitive 
robot with seven axes (redundant). Each axis contains multi
ple sensors allowing position and impedance control. These 
robots are programmed with KUKA Sunrise.Workbench, the 
programming environment for KUKA Sunrise. Input–output 
(I/O) connectors and an EtherCAT interface are available in 
the robot flange.

From an external computer, the user can interface with 
Sunrise.OS using the Fast Robot Interface (FRI) [9] and 
Robot Operating System (ROS) [10]. The FRI is a platform 
for controlling the KUKA iiwa remotely from a personal 
computer (PC), allowing hard, realtime control at rates of 

up to 1 kHz. ROS is popular within the research community 
because it allows users to use an external PC to interface 
with robotic systems. The iiwa_stack [11] is one of the most 
commonly used packages for interfacing Sunrise.OS with 
ROS. This package is built on the SmartServo interface only; 
as such, it provides soft, realtime control capability, allow
ing the user to control iiwa with the ROS on the fly. As an 
alternative, KST is the unique MATLABbased interface for 
Sunrise.OS (Table 1), and it is a plugandplay solution that 
requires no special configuration in the controller and cov
ers a wide range of Sunrise.OS features, especially for 
human–robot interaction capabilities.

Compared with the iiwa_stack, KST also includes extra 
functionalities for handguiding, precision handguiding, 
nonblocking motion calls, conditional motion calls, and 
pointtopoint motion calls (arcs, lines, and ellipses), among 
others. In addition, KST provides numerous examples, rang
ing from simple tutorials on the straightforward implementa
tion of its functions to more complex examples that involve 
robot control based on external hardware/sensor inputs. KST 
can be used in education, research, and industry. Thanks to its 
MATLAB interface, KST facilitates the development of appli
cations for KUKA Sunrise.OS. Moreover, it makes the devel
opment of robot applications accessible to people with basic 
MATLAB skills, even if they are not programming experts.

The KUKA Sunrise.OS controller is programmed using 
Java, which allows implementation of complex algorithms in 
the robot controller. Due to communication delay, the use of 
an external computer to interface with the robot has a negative 
impact on realtime execution of the robot’s commands. In 
KST, tests revealed a 3 to 4ms communication delay when 
sending commands to and receiving commands from the 
robot, as detailed in the extended version of this tutorial in the 
supplemental multimedia material. In this scenario, the use of 
an external computer is advantageous in several cases:
1) when interfacing with multiple external devices
2)  when easy integration of external software modules and 

hardware devices is needed
3)  when complex algorithms (image processing and machine 

learning, among others) requiring high computational 
power are being implemented 

4)  when the number of computations involved is relatively 
high so that performance is limited by the robot controller 
hardware (unlike the robot controller, the computer hard
ware can be easily upgraded).

Original Contribution
KST contains more than 100 functions and presents mul
tiple advantages.
1)  Easy and fast interaction with the robot is possible from an 

external computer running KST, which is an opensource 
solution provided under Massachusetts Institute of Tech
nology license.

2)  KST integrates diverse functionalities including, among 
others, kinematics, motion definition, and precision 
handguiding [the latter refers to robot handguiding at 

Table 1. The iiwa_stack (ROS) and KST interfaces.

iiwa_stack KST

Operating system Linux Linux, Windows, Mac

Programming languages C++ or Python MATLAB

Required knowledge ROS MATLAB

3-dimensional simulator gazebo v-rep

Collaborative robots have 

been extensively studied 

and are increasingly safe, 

intuitive to use, and robust.
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the endeffector level (translations and rotations for pre
cision positioning) [12], which is different from KUKA’s 
offtheshelf hand guiding at the joint level].

3)  The toolbox can accelerate the development of 
advanced robot applications in MATLAB. Complex 
algorithms and advanced mathematical tools supported 
by MATLAB (e.g., matrix operations and data filtering) 
can be implemented in an external computer. Existing 
software modules/toolboxes (vision, machine learning, 
statistics, etc.) can also be integrated, extending applica
tions with new functionalities.

4)  KST makes the KUKA LBR iiwa manipulators accessible to 
a wide variety of people from different backgrounds and 
opens the door of collaborative robotics to many potential 
new users for academic, educational, and industrial appli
cations. MATLAB is widely used to accelerate the process 
of research implementation.

5)  KST runs inside MATLAB, so it can be used on different 
operating systems: Windows, Linux, and macOS.

KST
KST functions are divided into seven categories:
1)  Networking: establishes (and terminates) connection with 

the robot controller.
2)  Soft real-time control: activates/deactivates soft realtime 

functionalities for motion and impedance control. In such a 
case, the robot’s path can be updated online from external 
sensor data with simultaneous control–feedback capability. 
These functionalities are built on the DirectServo and 
SmartServo from KUKA.

3)  Point-to-point motion: allows pointtopoint motion in 
joint space as well as in Cartesian space. This category also 
includes nonblocking and conditional/interruptible 
motion functions.

4)  Setters: set parameter values in the robot controller 
(e.g., robot poses, lightemitting diodes, and I/O con
nectors).

5)  Getters: obtain parameter values from the robot controller 
(joint angles, endeffector position, endeffector orientation, 

force/moment acting on the end effector, joint torques, 
I/O connectors).

6)  General purpose: calculates forward and inverse kinemat
ics, the mass matrix, the Coriolis matrix, and the Jacobian 
matrix.

7)  Physical interaction: activates/deactivates handguiding, 
precision handguiding [12], and double tap detection.
KST runs on an external/remote computer and communi

cates with KUKA Sunrise via TCP/IP through an Ethernet 
network using the robot’s X66 connector (Figure 1). KST 
implements a TCP/IP client that communicates with the Java 
server (KST Server and KST Main) running on Sunrise.
OS. Both KUKA iiwa ma 
nipulators (KUKA iiwa 
7  R800 and KUKA iiwa 
14 R820) are supported.

The main functions of 
KST are detailed and 
illustrated with imple
mentation examples in 
the extended version of 
this tutorial in the multi
media material available 
in IEEE Xplore. The KST 
toolbox can be freely 
down  loaded from the GitHub repository at https://github 
.com/Modi1987/KSTKukaSunriseToolbox provided under 
MIT license.

Application Examples
The robot, with a pen mounted on the flange, draws a circle 
on the top of a white box. This task is achieved by KST point
topoint functionalities that support arc motion. An illustra
tive example/algorithm is given in Algorithm 1.

This task can also be achieved with the inverse kinematics 
solver and the soft, realtime control functionalities. The end
effector circular path is calculated while the robot is moving. 
The inverse kinematics solver is used to calculate the joint angles 
of the robot from the circular path. The calculated angles are 

Computer

MATLAB Application

KUKA Sunrise Toolbox

KUKA Sunrise Cabinet

KUKA Sunrise.OS
KUKA

LBR iiwaKST Server

KST Main

Networking || Real-Time Control
Point-to-Point Motion
Setters || Getters
General Purpose
Physical Interaction

TCP/IP

Figure 1. The KST architecture and communication scheme. The KUKA Sunrise cabinet is the physical robot controller.

In these applications, 

the robot works side by 

side with the coworker, 

providing assistance in an 

intuitive and safe manner.
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relayed to the Sunrise controller through KST such that the 
robot end effector executes the circular path. Figure 2(a) illus
trates the control scheme flowchart, and Figure 2(b) is a snap
shot of the robot drawing a circle. Because robot motion is 
being generated online using KST’s soft, realtime control 
functionalities the path can quickly be adjusted to change veloc
ity or stop the motion, if desired. The example code can be 

found in the MATLAB 
file KSTclass_Tutorial_
drawCircle.m.

KST was also used to 
implement a practical use 
case in which a human 
coworker and the robot 
share workspace and sub
tasks related to the assem
bly of two parts joined by 
screws. As such, KST was 

used to implement a human–robot collision avoidance sys
tem based on the wellknown potential fields method [13]. 
The screwing operation (Figure 3) for a single screw is divid
ed into three subtasks.

First, the human coworker approaches the work piece to 
place the screw into the hole while the robot moves away to 
avoid collision. In this phase the coworker rotates the screw 
(1–2 turns) and leaves the area. The collision avoidance sys
tem is able to adjust the offline preplanned paths smoothly 
and on the fly to avoid collisions with the dynamic coworker 
[Figure 3(a)–(c)].

Next, the robot automatically returns to the preplanned 
path to tighten the screw. It approaches the screw head from 
the top, while the tool attached to the robot end effector 
starts rotating. When a given torque is reached, the tool stops 
rotating, and the robot moves up. In this phase, when the 
robot reaches a predefined distance until it moves up from 
the screw head, collision avoidance is deactivated. In this sce
nario, the robot velocity is relatively reduced, limiting the risk 
for the human coworker [Figure 3(d)–(f)].

Finally, the human approaches the work piece to 
apply a final manual tightening with adequate pressure. 

Initial Position Time

Online Path Generation
in Cartesian Space 

Inverse Kinematics
Solver (KST Functionality)

Update Robot Motion
(KST Real-Time Control) 

Loop Until
the Circle Is Complete

(b)(a)

Figure 2. Example 1. (a) A flowchart of the MATLAB script. (b) 
The robot drawing a circle.

Algorithm 1: Drawing a circle (MATLAB Code)

 % Instantiate the KST object
 ip = ‘172.31.1.147’; % IP of the robot controller
 arg1 = KST.LBR7R800; % Robot type/model
 arg2 = KST.Medien_Flansch_elektrisch; % Flange type/model
 Tef_flange = eye(4); % End-effector to flange transform
 iiwa=KST(ip,arg1,arg2,Tef_flange); 
 % Connect to the robot controller
 iiwa.net_establishConnection();
 % Define circle radius and robot velocity
 r = 50; vel = 150;
 % Define the center of the circle as the current end-effector position
 Cen = iiwa.getEEFPos();
 % Define sPoint as the starting point of the circle
 sPoint = Cen; sPoint{1} = sPoint{1}+r;
 % Move the end-effector to the starting point of the circle
 iiwa.movePTPLineEEF(sPoint,vel);
 % Specify the parameters of the arc, namely the angle theta
 % subtended by the arc at the center of the rotation and the
 % XY coordinate of the center of the arc
 theta = -2*pi;
 c = [Cen{1}; Cen{2}];
 % Move the end-effector to perform the arc motion
 iiwa.movePTPArcXY_AC(theta,c,vel);

Easy and fast interaction 

with the robot is possible 

from an external computer 

running KST.
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The robot moves away to avoid collision [Figure 3(g) 
and (h)].

In this system, a magnetic tracker captures the human’s 
pose around the robot. Each magnetic tag provides position 
and orientation data, which are used as inputs to compute 

the minimum distance between the human and the robot, 
both geometrically approximated by capsules. The robot 
motion is controlled with the soft, realtime control func
tions provided by KST. We conducted a quantitative analysis 
by recording the human–robot minimum distance, robot 
velocity, and robot joint angles (Figure 4). This analysis 
focused on the first subtask and the beginning of the sec
ond subtask [Figure 3(a)–
(e)]. At the start, the robot 
is stationary. When the hu 
man coworker ap  proa  ch 
es the work piece, the 
human–robot minimum 
distance decreases to 0.3 m 
(minimum), and t h e 
robot reacts to avoid colli
sion (Figure 4). After this 
process, when the cowork
er is placing the screw, 
the minimum distance is 
stable, and the robot is 
stopped, keeping a given 
safe distance. When the human moves away (second sub
task), the robot returns back to the work piece. The sample 
video and another collision avoidance example with addi
tional detail are provided in the extended version of this 
tutorial in the multimedia material in IEEE Xplore.

Nine application examples on a KUKA iiwa 7 R800 ma 
nipulator demonstrate the performance and easy use of 
KST for drawing geometries, DirectServo control, human–
robot collision avoidance, teleoperation, handguiding and 
teaching, interfacing Sunrise with vrep, and controlling 
iiwa using a graphical user interface. The application 
examples also include two practical use cases, one for 
assembly operation using screws and the other for pick
andplace operation. These examples are detailed in the 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a)–(h) The robot smoothly avoids collision when the human coworker approaches to perform the screwing operation.

The collision avoidance 

system is able to adjust the 

offline preplanned paths 

smoothly and on the fly to 

avoid collisions with the 

dynamic coworker.
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Figure 4. The human–robot minimum distance, robot velocity, 
and joint angles recorded during experimental tests.
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extended version of this tutorial in the multimedia materi
al in IEEE Xplore . 

Conclusions
According to users’ feed
back (students, researchers, 
and industry engineers), 
the proposed toolbox is a 
useful and intuitive tool to 
interface with KUKA Sun
rise.OS and, in particular, 
to speed up the develop
ment and implementation 
of robot applications. KST 
functionalities are ad 
vantageous for the im 

plementation of advanced robot applications. KST also 
facilitates integration of external hardware, data process
ing, and implementation of complex algorithms using exist
ing toolboxes.
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