
91march 2019 • IEEE rOBOTIcS & aUTOmaTION maGaZINE •1070-9932/19©2019IEEE

C
ollaborative robots are increasingly present in
our lives. The KUKA LBR iiwa, equipped with
the KUKA Sunrise.OS controller, is one ex
ample of a collaborative/sensitive robot. This
tutorial presents the KUKA Sunrise Toolbox

(KST), a MATLAB toolbox that interfaces with KUKA
Sunrise.OS. KST contains functionalities for networking,
soft control in real time, pointtopoint motion, parameter

setters/getters, general purpose, and physical interaction.
It includes approximately 100 functions and runs on a re
mote computer connected with the KUKA Sunrise control
ler via Transmission Control Protocol/Internet Protocol
(TCP/IP). The potentialities of the KST are demonstrated
in nine application examples.

A Motivation and Related Work
Collaborative robots have been extensively studied and are
increasingly safe, intuitive to use, and robust. KUKA Sunrise.
OS equips the KUKA LBR iiwa and the mobile platform

to
o

lb
o

x
—

©
is

to
c

k
p

h
o

to
.c

o
m

/j
e

m
a

s
to

c
k

,
r

o
b

o
t

ic
 c

ir
c

le
s

—
©

is
to

c
k

p
h

o
to

.c
o

m
/a

lf
a

z
e

t
c

h
r

o
n

ic
le

s

KUKA
Sunrise
Toolbox

Interfacing
Collaborative
Robots With
MATLAB

Digital Object Identifier 10.1109/MRA.2018.2877776

Date of publication: 20 November 2018

By Mohammad Safeea and Pedro Neto

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

92 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2019

KMR iiwa. However, because of its functionalities (advanced
programming, planning, and configuration), it is expected
that the Sunrise.OS will be available for other KUKA robots
in the future. These robots are being used in several projects
for advanced applications, such as the ColRobot, EURECA,
and CogIMon projects [1], [2], with possible implementa
tions in other domains, as demonstrated by the KUKA inno
vation awards. In these applications, the robot works side by
side with the coworker, providing assistance in an intuitive
and safe manner.

In the robotics field, several MATLAB toolboxes have been
introduced. One of the most popular is the Robotics Toolbox
for MATLAB [3]. This toolbox includes functionalities for

robotic manipulators,
such as homogeneous
transformations, forward
and inverse kinematics,
forward and inverse dy
namics, and trajectory
generation. The Dynamics
Simulation Toolbox for
industrial robot manipula
tors can be used to simu
late robot dynamics in

addition to other functionalities [4]. The DAMAROB Toolbox
allows kinematic and dynamic modeling of manipulators [5].
The KUKA control toolbox is dedicated to the motion control
of KUKA manipulators equipped with the KUKA robot con
troller [6]. JOpenShowVar is a Javabased opensource plat
form used to interface KUKA industrial robots equipped with
the controller KRC4 and KRC2 [7].

Recently, KUKA launched the LBR iiwa series of manipu
lators [8], a commercial version of the KUKADLR light
weight robot [9]. The LBR iiwa is a lightweight, sensitive
robot with seven axes (redundant). Each axis contains multi
ple sensors allowing position and impedance control. These
robots are programmed with KUKA Sunrise.Workbench, the
programming environment for KUKA Sunrise. Input–output
(I/O) connectors and an EtherCAT interface are available in
the robot flange.

From an external computer, the user can interface with
Sunrise.OS using the Fast Robot Interface (FRI) [9] and
Robot Operating System (ROS) [10]. The FRI is a platform
for controlling the KUKA iiwa remotely from a personal
computer (PC), allowing hard, realtime control at rates of

up to 1 kHz. ROS is popular within the research community
because it allows users to use an external PC to interface
with robotic systems. The iiwa_stack [11] is one of the most
commonly used packages for interfacing Sunrise.OS with
ROS. This package is built on the SmartServo interface only;
as such, it provides soft, realtime control capability, allow
ing the user to control iiwa with the ROS on the fly. As an
alternative, KST is the unique MATLABbased interface for
Sunrise.OS (Table 1), and it is a plugandplay solution that
requires no special configuration in the controller and cov
ers a wide range of Sunrise.OS features, especially for
human–robot interaction capabilities.

Compared with the iiwa_stack, KST also includes extra
functionalities for handguiding, precision handguiding,
nonblocking motion calls, conditional motion calls, and
pointtopoint motion calls (arcs, lines, and ellipses), among
others. In addition, KST provides numerous examples, rang
ing from simple tutorials on the straightforward implementa
tion of its functions to more complex examples that involve
robot control based on external hardware/sensor inputs. KST
can be used in education, research, and industry. Thanks to its
MATLAB interface, KST facilitates the development of appli
cations for KUKA Sunrise.OS. Moreover, it makes the devel
opment of robot applications accessible to people with basic
MATLAB skills, even if they are not programming experts.

The KUKA Sunrise.OS controller is programmed using
Java, which allows implementation of complex algorithms in
the robot controller. Due to communication delay, the use of
an external computer to interface with the robot has a negative
impact on realtime execution of the robot’s commands. In
KST, tests revealed a 3 to 4ms communication delay when
sending commands to and receiving commands from the
robot, as detailed in the extended version of this tutorial in the
supplemental multimedia material. In this scenario, the use of
an external computer is advantageous in several cases:
1) when interfacing with multiple external devices
2) when easy integration of external software modules and

hardware devices is needed
3) when complex algorithms (image processing and machine

learning, among others) requiring high computational
power are being implemented

4) when the number of computations involved is relatively
high so that performance is limited by the robot controller
hardware (unlike the robot controller, the computer hard
ware can be easily upgraded).

Original Contribution
KST contains more than 100 functions and presents mul
tiple advantages.
1) Easy and fast interaction with the robot is possible from an

external computer running KST, which is an opensource
solution provided under Massachusetts Institute of Tech
nology license.

2) KST integrates diverse functionalities including, among
others, kinematics, motion definition, and precision
handguiding [the latter refers to robot handguiding at

Table 1. The iiwa_stack (ROS) and KST interfaces.

iiwa_stack KST

Operating system Linux Linux, Windows, Mac

Programming languages C++ or Python MATLAB

Required knowledge ROS MATLAB

3-dimensional simulator gazebo v-rep

Collaborative robots have

been extensively studied

and are increasingly safe,

intuitive to use, and robust.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

93march 2019 • IEEE rOBOTIcS & aUTOmaTION maGaZINE •

the endeffector level (translations and rotations for pre
cision positioning) [12], which is different from KUKA’s
offtheshelf hand guiding at the joint level].

3) The toolbox can accelerate the development of
advanced robot applications in MATLAB. Complex
algorithms and advanced mathematical tools supported
by MATLAB (e.g., matrix operations and data filtering)
can be implemented in an external computer. Existing
software modules/toolboxes (vision, machine learning,
statistics, etc.) can also be integrated, extending applica
tions with new functionalities.

4) KST makes the KUKA LBR iiwa manipulators accessible to
a wide variety of people from different backgrounds and
opens the door of collaborative robotics to many potential
new users for academic, educational, and industrial appli
cations. MATLAB is widely used to accelerate the process
of research implementation.

5) KST runs inside MATLAB, so it can be used on different
operating systems: Windows, Linux, and macOS.

KST
KST functions are divided into seven categories:
1) Networking: establishes (and terminates) connection with

the robot controller.
2) Soft real-time control: activates/deactivates soft realtime

functionalities for motion and impedance control. In such a
case, the robot’s path can be updated online from external
sensor data with simultaneous control–feedback capability.
These functionalities are built on the DirectServo and
SmartServo from KUKA.

3) Point-to-point motion: allows pointtopoint motion in
joint space as well as in Cartesian space. This category also
includes nonblocking and conditional/interruptible
motion functions.

4) Setters: set parameter values in the robot controller
(e.g., robot poses, lightemitting diodes, and I/O con
nectors).

5) Getters: obtain parameter values from the robot controller
(joint angles, endeffector position, endeffector orientation,

force/moment acting on the end effector, joint torques,
I/O connectors).

6) General purpose: calculates forward and inverse kinemat
ics, the mass matrix, the Coriolis matrix, and the Jacobian
matrix.

7) Physical interaction: activates/deactivates handguiding,
precision handguiding [12], and double tap detection.
KST runs on an external/remote computer and communi

cates with KUKA Sunrise via TCP/IP through an Ethernet
network using the robot’s X66 connector (Figure 1). KST
implements a TCP/IP client that communicates with the Java
server (KST Server and KST Main) running on Sunrise.
OS. Both KUKA iiwa ma
nipulators (KUKA iiwa
7 R800 and KUKA iiwa
14 R820) are supported.

The main functions of
KST are detailed and
illustrated with imple
mentation examples in
the extended version of
this tutorial in the multi
media material available
in IEEE Xplore. The KST
toolbox can be freely
down loaded from the GitHub repository at https://github
.com/Modi1987/KSTKukaSunriseToolbox provided under
MIT license.

Application Examples
The robot, with a pen mounted on the flange, draws a circle
on the top of a white box. This task is achieved by KST point
topoint functionalities that support arc motion. An illustra
tive example/algorithm is given in Algorithm 1.

This task can also be achieved with the inverse kinematics
solver and the soft, realtime control functionalities. The end
effector circular path is calculated while the robot is moving.
The inverse kinematics solver is used to calculate the joint angles
of the robot from the circular path. The calculated angles are

Computer

MATLAB Application

KUKA Sunrise Toolbox

KUKA Sunrise Cabinet

KUKA Sunrise.OS
KUKA

LBR iiwaKST Server

KST Main

Networking || Real-Time Control
Point-to-Point Motion
Setters || Getters
General Purpose
Physical Interaction

TCP/IP

Figure 1. The KST architecture and communication scheme. The KUKA Sunrise cabinet is the physical robot controller.

In these applications,

the robot works side by

side with the coworker,

providing assistance in an

intuitive and safe manner.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

94 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2019

relayed to the Sunrise controller through KST such that the
robot end effector executes the circular path. Figure 2(a) illus
trates the control scheme flowchart, and Figure 2(b) is a snap
shot of the robot drawing a circle. Because robot motion is
being generated online using KST’s soft, realtime control
functionalities the path can quickly be adjusted to change veloc
ity or stop the motion, if desired. The example code can be

found in the MATLAB
file KSTclass_Tutorial_
drawCircle.m.

KST was also used to
implement a practical use
case in which a human
coworker and the robot
share workspace and sub
tasks related to the assem
bly of two parts joined by
screws. As such, KST was

used to implement a human–robot collision avoidance sys
tem based on the wellknown potential fields method [13].
The screwing operation (Figure 3) for a single screw is divid
ed into three subtasks.

First, the human coworker approaches the work piece to
place the screw into the hole while the robot moves away to
avoid collision. In this phase the coworker rotates the screw
(1–2 turns) and leaves the area. The collision avoidance sys
tem is able to adjust the offline preplanned paths smoothly
and on the fly to avoid collisions with the dynamic coworker
[Figure 3(a)–(c)].

Next, the robot automatically returns to the preplanned
path to tighten the screw. It approaches the screw head from
the top, while the tool attached to the robot end effector
starts rotating. When a given torque is reached, the tool stops
rotating, and the robot moves up. In this phase, when the
robot reaches a predefined distance until it moves up from
the screw head, collision avoidance is deactivated. In this sce
nario, the robot velocity is relatively reduced, limiting the risk
for the human coworker [Figure 3(d)–(f)].

Finally, the human approaches the work piece to
apply a final manual tightening with adequate pressure.

Initial Position Time

Online Path Generation
in Cartesian Space

Inverse Kinematics
Solver (KST Functionality)

Update Robot Motion
(KST Real-Time Control)

Loop Until
the Circle Is Complete

(b)(a)

Figure 2. Example 1. (a) A flowchart of the MATLAB script. (b)
The robot drawing a circle.

Algorithm 1: Drawing a circle (MATLAB Code)

 % Instantiate the KST object
 ip = ‘172.31.1.147’; % IP of the robot controller
 arg1 = KST.LBR7R800; % Robot type/model
 arg2 = KST.Medien_Flansch_elektrisch; % Flange type/model
 Tef_flange = eye(4); % End-effector to flange transform
 iiwa=KST(ip,arg1,arg2,Tef_flange);
 % Connect to the robot controller
 iiwa.net_establishConnection();
 % Define circle radius and robot velocity
 r = 50; vel = 150;
 % Define the center of the circle as the current end-effector position
 Cen = iiwa.getEEFPos();
 % Define sPoint as the starting point of the circle
 sPoint = Cen; sPoint{1} = sPoint{1}+r;
 % Move the end-effector to the starting point of the circle
 iiwa.movePTPLineEEF(sPoint,vel);
 % Specify the parameters of the arc, namely the angle theta
 % subtended by the arc at the center of the rotation and the
 % XY coordinate of the center of the arc
 theta = -2*pi;
 c = [Cen{1}; Cen{2}];
 % Move the end-effector to perform the arc motion
 iiwa.movePTPArcXY_AC(theta,c,vel);

Easy and fast interaction

with the robot is possible

from an external computer

running KST.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

95march 2019 • IEEE rOBOTIcS & aUTOmaTION maGaZINE •

The robot moves away to avoid collision [Figure 3(g)
and (h)].

In this system, a magnetic tracker captures the human’s
pose around the robot. Each magnetic tag provides position
and orientation data, which are used as inputs to compute

the minimum distance between the human and the robot,
both geometrically approximated by capsules. The robot
motion is controlled with the soft, realtime control func
tions provided by KST. We conducted a quantitative analysis
by recording the human–robot minimum distance, robot
velocity, and robot joint angles (Figure 4). This analysis
focused on the first subtask and the beginning of the sec
ond subtask [Figure 3(a)–
(e)]. At the start, the robot
is stationary. When the hu
man coworker ap proa ch
es the work piece, the
human–robot minimum
distance decreases to 0.3 m
(minimum), and t h e
robot reacts to avoid colli
sion (Figure 4). After this
process, when the cowork
er is placing the screw,
the minimum distance is
stable, and the robot is
stopped, keeping a given
safe distance. When the human moves away (second sub
task), the robot returns back to the work piece. The sample
video and another collision avoidance example with addi
tional detail are provided in the extended version of this
tutorial in the multimedia material in IEEE Xplore.

Nine application examples on a KUKA iiwa 7 R800 ma
nipulator demonstrate the performance and easy use of
KST for drawing geometries, DirectServo control, human–
robot collision avoidance, teleoperation, handguiding and
teaching, interfacing Sunrise with vrep, and controlling
iiwa using a graphical user interface. The application
examples also include two practical use cases, one for
assembly operation using screws and the other for pick
andplace operation. These examples are detailed in the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a)–(h) The robot smoothly avoids collision when the human coworker approaches to perform the screwing operation.

The collision avoidance

system is able to adjust the

offline preplanned paths

smoothly and on the fly to

avoid collisions with the

dynamic coworker.

1.4

1.2

1

0.8

0.6

0.4

0.2

2

1.5

1

0.5

0

–0.5

–1

–1.5

0

–0.2

1.4

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

D
is

ta
nc

e
(m

)

V
el

oc
ity

 (
m

/s
)

Jo
in

t A
ng

le
 (

ra
d)

4 6 8 10 12 14 16
Time (s)

4 6 8 10 12 14 16
Time (s)

Joint 1 Joint 2 Joint 3
Joint 4 Joint 5 Joint 6
Joint 7

Minimum Distance
Velocity Along x
Velocity Along y
Velocity Along z
Absolute Velocity

Figure 4. The human–robot minimum distance, robot velocity,
and joint angles recorded during experimental tests.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

96 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2019

extended version of this tutorial in the multimedia materi
al in IEEE Xplore .

Conclusions
According to users’ feed
back (students, researchers,
and industry engineers),
the proposed toolbox is a
useful and intuitive tool to
interface with KUKA Sun
rise.OS and, in particular,
to speed up the develop
ment and implementation
of robot applications. KST
functionalities are ad
vantageous for the im

plementation of advanced robot applications. KST also
facilitates integration of external hardware, data process
ing, and implementation of complex algorithms using exist
ing toolboxes.

Acknowledgment
This research was partially supported by the Portugal 2020
project DM4Manufacturing POCI010145FEDER016418,
UE/FEDER through the program COMPETE2020, and the
Portuguese Foundation for Science and Technology SFRH/
BD/131091/2017.

References
[1] L. Roveda, S. Haghshenas, A. Prini, T. Dinon, N. Pedrocchi, F.
Braghin, and L. M. Tosatti, “Fuzzy impedance control for enhancing
capabilities of humans in onerous tasks execution,” in 2018 IEEE 15th
Int. Conf. Ubiquitous Robots (UR), pp. 406–411.
[2] S. S. M. Salehian and A. Billard, “A dynamicalsystembased
approach for controlling robotic manipulators during noncontact/con
tact transitions,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 2738–2745,
Oct. 2018. doi: 10.1109/LRA.2018.2833142.
[3] P. I. Corke, “A robotics toolbox for MATLAB,” IEEE Robot. Autom.
Mag., vol. 3, no. 1, pp. 24–32, Mar. 1996. doi: 10.1109/100.486658.

[4] M. Toz and S. Kucuk, “Dynamics simulation toolbox for industrial
robot manipulators,” Computer Applications Eng. Educ., vol. 18, no. 2,
pp. 319–330, 2010. doi: 10.1002/cae.20262.
[5] M. Bellicoso. (2010). DAMAROB Toolbox. [Online]. Available: http://
www.damarob.altervista.org
[6] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, “KUKA con
trol toolbox,” IEEE Robot. Autom. Mag., vol. 18, no. 4, pp. 69–79, Dec.
2011. doi: 10.1109/MRA.2011.942120.
[7] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, and K. Y. Pettersen,
“Controlling KUKA industrial robots: f lexible communication inter
face JOpenShowVar,” IEEE Robot. Autom. Mag., vol. 22, no. 4, pp. 96–109,
Dec. 2015. doi: 10.1109/MRA.2015.2482839.
[8] KUKA. (2018). LBR iiwa. [Online]. Available: https://www.kuka.com/
enmy/products/roboticssystems/industrialrobots/lbriiwa
[9] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. AlbuSchaeffer, A.
Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirz
inger, “The KUKADLR lightweight robot arm—a new reference plat
form for robotics research and manufacturing,” in ISR 2010 (41st Int.
Symp. On Robotics) and ROBOTIK 2010 (6th German Conf. on Robot-
ics), June 2010, pp. 1–8.
[10] ROS. (2018). ROS industrial support for the KUKA LBR iiwa.
[Online]. Available: http://wiki.ros.org/
[11] GitHub. (2018). ROS Indigo/Kinetic metapackage for the KUKA
LBR IIWA R800/R820. [Online]. Available: http://github.com/IFLCAMP/
iiwa_stack/
[12] M. Safeea, R. Bearee, and P. Neto, “Endeffector precise handguiding
for collaborative robots,” in Advances in Intelligent Systems and Comput-
ing 694, A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, Eds. New
York: Springer, 2018, pp. 595–605. doi: 10.1007/9783319708362_49.
[13] O. Khatib, “Realtime obstacle avoidance for manipulators and
mobile robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986. doi:
10.1177/027836498600500106.

Mohammad Safeea, Department of Mechanical Engineering,
University of Coimbra, Portugal, and Arts et Métiers, ParisTech,
France. Email: ms@uc.pt.

Pedro Neto, Department of Mechanical Engineering, Universi
ty of Coimbra, Portugal. Email: pedro.neto@dem.uc.pt.

KST functionalities

are advantageous for

the implementation

of advanced robot

applications.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 04,2024 at 03:28:02 UTC from IEEE Xplore. Restrictions apply.

