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ABSTRACT Existing moving target indication (MTI) methods are limited either by the sufficient and
homogeneous secondary data (SD) condition or by the high signal-to-clutter-ratio (SCR) requirement.
In practice, such constraints are hard to be satisfied. In this paper, we propose a novel deep convolutional
neural network (CNN)-based method for theMTI (CNN-MTI) to overcome the limitations of these methods.
In the proposed method, the CNN architecture is deliberately designed, and the training data set is greatly
augmented to ensure the CNN be deep and well-trained; in addition, the SD only act as the background
interference during the augmentation of the training data set. These procedures ensure that the effective
features of different classes of moving targets can be extracted, so that good MTI performance can be
achieved without the requirement of the sufficient and homogeneous SD or the high SCR condition.
Simulation results from the synthetic data and the experimental data demonstrate the validity and the
robustness of the CNN-MTI with limited SD support in non-homogeneous and low SCR environment.

INDEX TERMS Moving target indication (MTI), convolution neural network (CNN), space-time adaptive
processing (STAP), feature extraction.

I. INTRODUCTION
Moving target indication (MTI) is one of the most important
tasks of airborne phased array radar. MTI concerns whether
there is a moving target with a certain relative velocity in the
interesting scenario, also known as cells under test (CUT).
Due to the interference of severe clutter, noise and jamming,
the moving target is generally buried in the interference and
is hard to be directly detected. To address this problem,
MTI based on space-time adaptive processing (STAP-MTI)
scheme has been widely applied to improve the detection
performance in the airborne radar.

In the pattern recognition point of view, STAP-MTI can be
considered as a 2-class classification system. In this system,
STAP, which performs adaptive filtering on the space-time
observation (STO) at each candidate Doppler frequency shift
caused by the target’s possible relative velocity to sup-
press the interference [1], [2], can be regarded as the feature
extraction procedure. While the subsequent constant-false-
alarm-rate (CFAR) processing can be considered as a 2-class
classifier, in which the amplitude of the STAP response
is the extracted feature and the two classes represent the
target-present and the target-absent, respectively. Owing to

the STAP, the extracted feature has a much higher signal-
to-interference-plus-noise ratio (SINR) comparing with the
original STO; thus the difference between the features of the
two classes becomes more distinct and can be much easier
to be discriminated by the classifier. However, great chal-
lenges have been brought to the STAP by the requirements
on both the abundance and the homogeneity of secondary
data (SD), which are generally unavailable in practice due to
the dense-target environment, the complex terrains, the lim-
itation of the radar measurement or other factors [3]. Either
heterogeneity or insufficiency can lead to mismatch between
the actual clutter covariance matrix (CCM) and the one esti-
mated from the sample covariance matrix (SMI) method [4];
thereby they can spoil the SINR and degrade the detection
performance.

Emphasis of the STAP-MTI has been mainly laid on
how to break the constraints on the SD during CCM esti-
mation; and these efforts can be roughly divided into the
following four groups. The first group of methods is used
to decrease the required amount of the homogeneous SD.
Methods in the first group generally take advantage of the
properties of the CCM, such as the rank-deficiency [5]–[14],
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the Toeplitz space [15], the sparsity [16], [17], or the prior
knowledge about the environment and the radar system [18],
or their hybrid combinations [19]. The second group of meth-
ods addresses the heterogeneous SD with unexpected tar-
gets, i.e. outliers. Non-homogeneous detector (NHD), such as
the generalized inner product (GIP) [20], the power selected
training (PST) [21], the sample weighting and selecting
methods [22], [23], sparsity recovery methods [24] and many
others, have been proposed to detect and eliminate the cells
of the SD with outliers. In the third group of methods,
efforts are performed to deal with the heterogeneous SD with
space-variant clutter. Typical methods include adaptive angle
Doppler compensation (A2DC) method [25], space-time
interpolation transformation (STINT) method [26], and reg-
istration based compensation (RBC) method [27]. The
fourth group of methods, e.g. direct data domain (DDD)
methods [28] and the maximum likelihood estimation detec-
tor (MLED) algorithm [29], perform operations only on the
CUT without the estimation of the statistics of the interfer-
ence; and thus could overcome the constraints of the abun-
dance and heterogeneity simultaneously, but at the cost of
performance degradation [30]. Due to the fact that methods
in this field have their respective preconditions and charac-
teristics, there is no perfect algorithm and the appropriate one
needs be selected from a database of algorithms based on the
specific application environment [31], [32].

Besides STAP-MTI, there are alternative MTI methods.
In [33], the interference, the noise and the targets are con-
sidered as 3 classes. Feature extraction is performed through
a 2-D fast Fourier transform (FFT) to convert the STO into
the angle-Doppler domain, where the unsupervised classifier
is used to discriminate among different classes. However,
due to its detection performance being highly dependent on
the manually-set threshold which is difficult to determine
without prior knowledge to the environment, it is hard to be
implemented in realistic scenario.

More recently, the linear-classifier based MTI
(LI-MTI) [34] and polynomial-classifier based MTI
(POLY-MTI) [35] were proposed. In [34], feature extraction
is not performed and the STO passes directly to a linear
classifier. In [35], the polynomial transformation and the
principle component analysis (PCA) are used to extract
the feature of the STO before the linear classifier. In both
methods, the SD cells are distributed to different classes to
construct training data. However, due to the shallow structure
of the employed classifiers and the inadequate amount of the
training data samples, these methods cannot obtain distinct
features for different classes before classification; and this
problem becomes especially severe in the low signal-to-
clutter (SCR) case. Therefore, it is very hard to achieve
satisfactory detection performance from them.

To overcome the constraints of SD and SCR and to improve
the robustness of the MTI, we propose a deep convolution
neural network (CNN) basedMTI (CNN-MTI)method in this
paper. The deep CNN has achieved extensive attention and
tremendous success in the computer vision field [36]–[38].

In order to apply the CNN, the MTI is regarded as a
multiple-class classification problem, in which each pairing
of the candidate velocity and space information of themoving
target is considered as one class. Deep CNN following the
architecture of the well-known AlexNet [38] is designed to
perform feature extraction and classification directly from
the STO of the airborne radar echo. To tune the proposed
deep CNN, large amount of training data are required but in
practice there are limited amount of SD available. To solve
this problem, we propose to augment the training dataset
by taking the available SD as the background interference
and combining them with the artificially generated moving
target signal. Through the collaboration of the CNN and the
training dataset, the MTI can be effectively realized without
being constrained either by the heterogeneity and insuffi-
ciency effect of the SD or by the high SCR requirement.
Thus, the robustness of the CNN-MTI can be highly improved
comparing with the traditional STAP-MTI method and the
POLY-method. Simulation results from the synthetic data and
the experimental mountaintop data [39] demonstrate validity
of the proposed method.

The organization of this paper is as follows. In Section II,
the signalmodel of the STO from the airborne radar, as well as
the fundamental of the CNN, is presented. In Section III, the
proposed method of the MTI using deep CNN is discussed.
In Section IV, the simulation results with synthetic data as
well as experimental data are shown. Section V draws the
conclusion.

II. FUNDAMENTALS
A. MATHEMATICAL MODEL OF THE
SPACE-TIME OBSERVATION
The STO of the radar antenna array from a moving target in
one range gate consists of two components, one of which is
signal coming from the moving target and the other is the
composite of clutter, jamming and noise. The STO can be
organized into a 2-D matrix, whose column and row dimen-
sions correspond to the pulse and the azimuth sampling,
respectively. After matched filtering, the (m, n)-th element in
the STO matrix X can be expressed as

Xm,n = a exp (j2πm$) exp (j2πnϑ) exp (j2πϕ)+ χm,n,

(1)

where the first term represents the echo from the moving
target signal and χm,n is the (m, n)-th element of the inter-
ference. m = 1, · · · ,M , n = 1, · · · ,N . M is the number of
pulses transmitted within a coherent period interpulse (CPI)
period and N is the number of antenna channels. m, n are the
indices for pulse and antenna, respectively. a is the complex
amplitude of the moving target. 2πϕ is the random phase.
ϑ and $ are the normalized space frequency (NSF) and the
normalized Doppler frequency (NDF) given by

ϑ =
d
λ
sin θ cosφ, (2)

$ =
2v
λfr

. (3)
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In (2), d is the interval between the adjacent antennas. θ
is the elevation angle and φ is the azimuth angle of the radar
platform relative to the moving target. λ is the wavelength
of transmitted signal corresponding to the center frequency.
In (3), v is the velocity of the moving target relative to the
platform. fr is the pulse repetition frequency (PRF).

Due to the severe clutter, noise and jamming, the moving
target signal are always buried in the interference. The goal of
MTI is to detect the Doppler frequency and spatial frequency
of the moving target from the STO.

B. CNN FUNDAMENTALS
CNN is an end-to-end classifier that performs feature
extraction and classification directly from the observed
data. Several types of CNN, e.g. LeNet [36], AlexNet [37],
ResNet [40] and so on, have been proposed. Despite their
variance in architecture, different types of CNN are com-
monly composed of the convolution layer, the pooling layer,
the fully connected layer and the final classifier layer.

The convolution layers, pooling layers and fully-connected
layers perform hierarchical nonlinear operations, so that fea-
tures of different classes hidden in the observed data can
be extracted. Such features are very helpful for the final
classification layer to realize high performance classification.

FIGURE 1. The illustration of CNN layers.

In Fig. 1, the CNN connection relationship is illustrated
based on an example with 1 convolution layer, 1 pooling
layer, 1 fully connected layer and 1 final classifying layer.
The output of each layer is the input to the next layer. The
input and the output of the convolution layer and the pooling
layer are represented as data volumes, where the 3-elements
of the subscript denote the 2-D position in the feature map
and the index of feature map (channel), respectively. The
input and output of the fully-connected layer and the final
classification layer are vectors. The superscripts c, p and f
denote the convolutional layer, the pooling layer and the fully
connected layer, respectively. K is the total number of all
possible classes.

1) CONVOLUTION LAYER
Convolution layer applies linear convolution and non-
linearization activation on each sub-region of the input
volume. In the d-th channel of the output volume,
the (m, n)-th node can be formulated as

Y cm,n,d

= γ c
(∑

ς,ξ,η
X†
(m−1)×sc+ξ,(n−1)×sc+η,ςW

c
d,ς,ξ,η + b

c
d

)
.

(4)

where γ c is the elementwise and non-linear activation oper-
ator. X†

(m−1)×sc+ξ,(n−1)×sc+η,ς is a node of the input data
volume after zero padding. W c

d,ς,ξ,η, b
c
d are the weighting

parameter and the bias value, respectively. ζ = 1, · · · ,D,
d = 1, · · · ,Dc are the channel index of the input volume and
the output volume. ξ, η=1, . . . ,Fc and Fc × Fc is the kernel
size of the input sub-region in one channel. Sc is the stride
length of the convolution layer which measures the interval
between two neighboring convolution sub-regions.

2) POOLING LAYER
Pooling layer performs down-sampling on a sub-region of its
input volume. In the d-th channel of the output data volume,
the (m, n)-th element is represented as

Y pm,n,d = γ
p
(
Yc†,m, n; Sp,Fp

)
. (5)

where γ p is the pooling operator of down-sampling.Yc is the
input volume of the pooling layer and Yc† is the volume after
zero-padding ofYc. Fp×Fp is the kernel size of a sub-region.
Sp is the stride length of the pooling layer which measures the
interval between two neighboring sub-regions.

3) FULLY-CONNECTED LAYER
In the fully connected layer, every node of the input is con-
nected to that of the output. The m-th element of its output
vector is

yfm = γ
f
(〈
yp,wf

m

〉
+ bfm

)
. (6)

where γ f is the nonlinear function operator. yp is the vector-
ization of the input volume of the fully connected layer.wf

m is
the weighting vector and bfm the bias connecting the input
vector with the m-th element of the output vector. 〈•〉 denotes
the inner product of two vectors.

4) FINAL CLASSIFIER LAYER
The softmax classifier is applied in this layer. The number
of the elements of the output vector is K and it is also the
total number of all possible classes and the k-th element
is the estimated probability that the input belongs to the
k-th class

yk = p (k|X) =
exp

(〈
wk , yf

〉
+ bk

)∑
k=0,1,··· ,K−1 exp

(〈
wk , yf

〉
+ bk

) . (7)

where wk and bk are the weighting vector and the bias value
between the input vector and the k-th element of the output
vector.

III. METHOD
In the proposed CNN-MTI, the pairing of one candidate NDF
and one candidate NSF of the moving target are considered
as one class, so that MTI can be regarded as a multiple-class
classification problem; and the deep CNN is employed to
perform feature extraction and classification. The proposed
CNN-MTI method includes the following 4 steps: the con-
struction of the deep CNN architecture, the generation of the
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training data set, the training of the deep CNN and the test of
the deep CNN.

A. THE CONSTRUCTION OF THE
DEEP CNN ARCHITECTURE
The deep CNN architecture of the proposed CNN-MTI
method is shown in Fig. 2. It follows the AlexNet model and
is composed of four convolutional layers, two pooling layers,
one fully connected layer and one final classification layer.
Two convolution layers are stacked before one pooling layer.

FIGURE 2. The CNN model in the proposed MTI-CNN.

In the CNN, the real part and the imaginary part of STO are
fed into the two channels of the input volume. The number
of channels of the input volume is 2, and the 2-D size of
each channel is M × N , i.e. the number of pulses transmit-
ted in one CPI and the number of antenna channels. The
output size of the final classification layer is K , which is
the number of classes. In each convolution layer and each
pooling layer, zero padding technique is used. The hyper-
parameters, e.g. number of channels in each convolutional
layer, are determined experimentally to achieve better per-
formance. The hyper-parameters and the size of the output
volume of each layer are listed in Table 1, where the output
of one layer is the input of the next one and the operator de
denotes the rounding-up operation.

TABLE 1. The description of the proposed deep CNN architecture.

In the CNN, the rectified linear unit (Relu) function is used
as the nonlinear activation function of all the convolution
layers and the fully connected layer of the proposed CNN;

while the max pooling is utilized in the pooling layers

γ c (x) = γ f (x) = max (x, 0) , (8)

γ P
(
Yc†,m, n; Sp,Fp

)
= max

1≤ξ,η≤Fp

{
Y c†d,(m−1)×Sp+ξ,(n−1)×Sp+η

}
. (9)

In the CNN-MTI, the features of different moving targets
are extracted through the nonlinear operations in the convolu-
tion layers, the pooling layers and the fully-connected layer.
The classification with the extracted features is realized in the
final classification layer.

B. THE CONSTRUCTION OF THE AUGMENTED
TRAINING DATA SET
In this subsection, we propose to artificially generate abun-
dant training data using the limited available SD cells to
augment the training dataset. For simplicity, we assume the
NSF is already known.

The main idea is to regard the SD as the background
interference where the moving target signal is buried. For the
target-present classes, the training samples are constructed by
repeatly adding the artificial moving target signal of differ-
ent amplitudes, different NDF’s and random phases to each
available SD. For the target-absent case, small disturbance of
clutter signal, which is the generated static clutter with much
lower power, is added to the SD. The (m, n)-th element of the
training sample generated from the q-th SD is

X (k,q,h)m,n = a(k,h) exp
(
j2πϕ(k,q,h)

)
exp

(
j2πm$ (k)

)
× exp (j2πnϑ)+ χ (q)m,n, (10)

where the superscripts k, q, h are the indexes of the train-
ing samples indicating different NDF’s, SD range cells and
target amplitudes. k = 0, · · · ,K − 1, q = 1, · · · ,Q,
and h = 1, · · · ,H . K , Q, H are the total numbers of the
candidate classes, the SD cells and the possible amplitudes
of the moving target, respectively. k is also the class label
of different NDF’s. For the target-absent class, k = 0,
$ (0) =

2va
dfr
ϑ , where va is the platform velocity; for the

target-present classes, k > 1, and it corresponds to the k-th
candidate NDF of the moving target which is

$ (k)
= −

1
2
+

k − 1
K − 1

, k = 1, 2, · · · ,K − 1 . (11)

In (10), the phase 2πϕ(k,q,h) randomly varies with dif-
ferent k , q and h within the range of [0, 2π ). a(k,h) is the
h-th amplitude of the training samples for the k-th class.
a(k,h) ∈

[
a(k)− , a

(k)
+

]
, where a(k)− > 0, a(k)+ > 0 are the lower

bound and the upper bound of the training samples of the
k-th class. Generally, the power boundary of moving target
can be chosen to be 20-30 dB lower than the interference
power which can be obtained from the power spectrum of the
echo data. For k > 1, a(k)− � a(0)− , a

(k)
+ � a(0)+ . Thus, the con-

structed training dataset is
{(
X(k,q,h), k

)}
, k = 0, . . . ,K − 1,

q = 1, . . . ,Q and h = 1, . . . ,H .
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C. TRAINING OF THE CNN
In the training stage, we use the training dataset to obtain the
values of the weighting parameters and the bias parameters
in the CNN so that

2 = argmin J (2) , (12)

where 2 is the parameter vector which includes all the
weighting parameters to be trained in the CNN. J (2) is the
cross-entropy loss function defined by

J (2) = −
∑
k,q,h

k ln p(k|X(k,q,h)
;2). (13)

In (13), p
(
k|X(k,q,h);2

)
is the output of the last layer of

the CNN network and it can be obtained from (7) for each
training sample X(k,q,h).
Gradient descent and the back projection method are used

to iteratively solve the optimization problem in (12) by

2 (i+ 1) = 2 (i)− η (i) · ∇2J . (14)

where i = 1, 2, · · · denotes the sequence number of iteration
during gradient descent. The initial values of the parameter
vector, 2(0), are randomly selected. η(i) is the learning rate
at the i-th iteration and ∇2 is the gradient operation operator
with respect to 2.

D. TEST OF THE MTI-CNN
In the test stage, the test sample X, i.e. one STO from one
range gate of the CUT, goes through each layer in Fig. 2. X is
classified to the z-th class where

z = argmax
k=0,··· ,K−1

yk = argmax
k=0,...,K−1

p (k|X) . (15)

According to the classification results, the detected NDF as
well as the velocity can be achieved by substituting the result
to (11) and (3).

E. COMPUTATION COMPLEXITY AND MEMORY
REQUIREMENT OF THE PROPOSED CNN-MTI
The computation burden of the proposed CNN-MTI mainly
comes from the convolution operation during CNN training
and test. The order of the computation complexity is the total
numbers of the multiplication operations in all convolution
layers [41]. Thus, according to Table 1 and Fig. 2, the compu-
tation complexity of the proposed CNN-MTI is in the order of
O(105IMN ), where I is the iteration numbers during training.

The memory requirement of the proposed CNN-MTI
results from storing the weighting and bias parameters as well
as the feature map of each layer. According to Table 1 and
Fig. 2, the number of the weighting and bias parameters in the
proposed CNN-MTI is about 2.56× 105; while the total size
of the saved feature map is 150MN . The required memory of
the proposed CNN-MTI is decided by the summation of the
above two sizes.

F. REMARKS
Two important techniques are cooperated in the CNN-MTI
to guarantee its accuracy and robustness against the limited
SD support, the low SCR and the non-homogeneous clutter
environment.

The first important technique is the deliberate design of the
deep CNN in order to extract the useful features for the MTI.
The two channels of the input volume enable that both the real
part and the imaginary part of the STO data be simultaneously
sent to the CNN for feature extraction. On the other hand, the
decrease of the pooling operation, the zero padding and the
small stride configuration in the CNN architecture can avoid
the too rapid decrease of the feature dimensions and make
full use of the feature on the edge. It is very important for
the MTI application due to the fact that the dimensions of the
STO data are generally in the quantity level of dozens. Such
design of the CNN architecture can ensure the network to be
deep enough so that more expressive and powerful features
for the moving targets can be extracted.

The second important technique is the augmentation of
the training dataset. Deep CNN requires large amount of
training data to perform well, but the available training data
of MTI are only the SD samples, which can be considered
as the training data of the 0-th class. Through the proposed
augmentation method, the amount of the constructed training
data samples is KH times of that of the available SD, and the
amount can be adjusted according to different requirements.
Meanwhile, the class unequilibrium problem during training
is avoided by generating the same amount of training data
for each class. Also, in the augmented training dataset, the
SD echo acts only as the interference background; so that
the effect of the SD heterogeneity can be greatly reduced.
Therefore, through the augmentation, the generated training
dataset can provide the guarantee of not only the well training
of the proposed deep CNN but also the robustness against
homogeneous environment.

G. EXTENSION TO UNKNOWN NSF
In the above, the NSF of the moving target is assumed to be
already known. For the unknown NSF case, the CNN-MTI
can be extended.

First, the pairing of one candidate NDF and one candidate
NSF, ($ (k), ϑ (l)), is considered as one class. ϑ (l) can be
obtained from (2) according to the value of the possible
azimuth angles φl , l = 1, . . . ,L, where φl is the index of
the candidate NSF and L is the total number of the candidate
NSF. The label of each class is k̂ which is decided by k and l

k̂(k, l) =

{
0, k = 0
(l − 1)(K − 1)+ k, k = 1, . . . ,K − 1.

(16)

Then we can construct the training dataset by substituting
each candidate NSF and NDF into (10)

X (k,l,q,h)m,n = a(k,l,h) exp
(
j2πϕ(k,l,q,h)

)
exp

(
j2πm$ (k)

)
× exp

(
j2πnϑ (l)

)
+ χ (q)m,n. (17)
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Thereby, the training dataset is extended to be
{(
X(k,l,q,h), k̂

)}
,

k = 0, . . . ,K−1, q = 1, . . . ,Q, l = 1, . . . ,L, h = 1, . . . ,H
and k̂ = 0, . . . ,L(K − 1).
As for the CNN classifier, the architecture shown in

Fig. 2 keeps unchanged except that the number of the output
nodes in the final classification layer is increased from K
to L(K − 1)+ 1.

In the training stage, the extended training dataset is used
to obtain the CNN parameters; while in the test stage, the test
sample X is classified to the z-th class where

z = argmax
k̂=0,··· ,L(K−1)

yk̂ = argmax
k̂=0,...,L(K−1)

p
(
k̂|X

)
. (18)

From the classification result and (16), the index of the
NDF and the NSF of the moving target can be found to be
l = bz/(K − 1) c and k = z− (l−1)(K −1) for z ≥ 1, where
the operator bc denotes the ceiling operation. Accordingly,
the velocity and azimuth position of the moving target can be
achieved from (2), (3) and (11).

IV. RESULTS
In this section, the synthetic echo as well as the experimental
Mountaintop data [39] are utilized to verify the proposed
CNN-MTI method. The parameters of the synthetic echo
and the experimental data are shown in Table 2. In both
cases, the 33 range gates which contain the moving target
are taken as the CUT. There are 5 more guard cells on each
side of the CUT; and the SD range cells lie outside of the
guard cells. Eight SD range cells are used in CNN-MTI. The
CNN is realized via Tensorflow 1.3.0. This section includes
three parts denoted as Part A, Part B and Part C to verify
the CNN-MTI method with different clutter environments,
different SCR scenarios and mountaintop data, respectively.

TABLE 2. System parameters.

To demonstrate the advantage of the proposed method,
results obtained from the SMI-STAP-MTI [4], the
SBL-STAP-MTI [16] as well as the POLY-MTI method
are also provided for comparisons. In the SMI-STAP-MTI
method and the POLY-MTI method, 96 SD range cells are
used as SD; whereas, 8 range cells of SD are used in the
SBL-STAP-MTI and the CNN-MTI. In the SMI-STAP-MTI
and the SBL-STAP-MTI, the 2-D cell average CFAR
(CA-CFAR) with the false alarm rate of 1e-4 [42] is applied
on their respective STAP results. The NSF is known to

FIGURE 3. The value of the loss function in each generation of the
training stage. (a) Curve of the loss function for the case 1 and case 2.
(b) Curve of the loss function for the case 3.

be −0.1287. For the POLY-MTI and the CNN-MTI, the
total number of classes is 17, where k = 0 represents the
absent-target case and the labels k > 1 denote the NDF of
$ (k)
= −

1
2 +

(k−1)
16 , k = 1, 2, · · · , 16, respectively.

A. DIFFERENT CLUTTER ENVIRONMENTS
To demonstrate the validity and the robustness of the pro-
posed CNN-MTI, we simulate the echo of 3 different clutter
environments. The interference environment is homogeneous
in case 1; while case 2 has the space-variant clutter and
case 3 contains target-like outliery. In case 2, the SD echo
are the same with case 1, but the clutter in the CUT is
generatedwith a different platform velocity of 120m/s. As for
case 3, the CUT echo is the same with case 1 but there is an
unexpected target with the power of 30 dB in the 4-th range
cell of the SD. For each case, the power of the clutter and the
target is 50 dB and 28 dB; the target is located at the 17-th
range gate with the NDF of 0.25 corresponding to the 13-th
class.

Owing to the same SD, one training dataset needs to be
constructed and the CNN is trained for case-1 and case-2
simultaneously; then the trained CNN is tested with the test
datasets of case-1 and case-2 separately. Owing to the same
CUT echo, the test dataset of case 1 and case 3 are the
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FIGURE 4. Processing results of different clutter environment with SCR=-20dB. In each row, from left to right are the result of the CNN-MTI method,
the SMI-STAP-MTI method, the SBL-STAP-MTI and the POLY-MTI method. (a) Results of the different 3 methods in homogeneous environment (case-1).
(b) Results of the different 3 methods in space-variant clutter environment (case-2). (c) Results of the different 3 methods in unexpected
target-present clutter environment (case-3).

TABLE 3. Target power boundary of the training datasets of the CNN-MTI.

same, but the CNN needs to be trained separately for them.
Therefore, there are 2 training datasets and 2 test datasets
for the 3 different clutter environments. Each training dataset
of the CNN-MTI is constructed according to the parameters
listed in Table 2 and Table 3. The interval of the power for
each class is equally spaced and the number of the differ-
ent target power levels (amplitudes) for each class is 101.
There are 808 training samples for each class and a total
of 13736 samples in each training dataset. During each train-
ing, the batch gradient descent method is used to obtain the
weights of the classifier and the size of the batch is 404.
The learning rate is 1e-3. The values of the loss function of

FIGURE 5. Performance comparison of the CNN-MTI method and the
POLY-MTI method.

equation (13) for each of the training are evaluated and shown
in Fig. 3.

After training for 200 iterations and 300 iterations for the
two respective classifiers, the test datasets of the three cases
are passed into the corresponding CNN classifier, and their
classification results are shown in Fig. 4. In different clutter
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FIGURE 6. Processing results of the mountaintop data. (a) CNN-MTI method. (b) SMI-STAP-MTI method. (c) SBL-STAP-MTI method. (d) POLY-MTI method.

environments, the CNN classifier can detect the correct NDF
for different range cells. Therefore, in the clutter scenario
with the SCR of −22dB and the jamming-to-clutter-ratio
(JCR) of−30 dB, the proposedCNN-MTIwith 8 SD cells can
correctly detect the moving target. The CNN-MTI method
is accurate and robust against different clutter environments.
On the contrary, the SMI-STAP-MTI cannot detect the target
in case 2; and it can detect the target in case 1 and case 3 but
with many false alarms in other range cells. The POLY-MTI
fails to detect the target for all of the 3 cases. Although the
SBL-STAP-MTI method can detect the moving target, false
alarms occur in the 3 cases. Thus, the CNN-MTI is much
more robust than the other three methods confronting with
limited SD support or non-homogeneous clutter environment.

B. DIFFERENT SCR SCENARIOS
In this part, the performance of the CNN-MTI with regard
to the different SCR is validated. There are artificially gen-
erated 13 test datasets with different SCRs, which is caused
by the different target power under the same clutter power
of 55 dB. The targets’ powers in different test datasets vary
from 10.5 dB to 62.5 dB with the equal interva. The jamming
power is 60 dB. In each dataset, the test samples are generated
by adding the target signals with the same power and candi-
date NDF’s to the interference of each of the range gate in the
CUT. Thus, there are 33 test samples for each of the 17 classes
in each dataset.

The power boundary to construct the training dataset of
the CNN-MTI method are shown in Table 3 and the number
of training examples is the same with those of Part A.
Due to the same clutter environment and the same SD, one
training dataset is constructed and one CNN-classifier is
trained for all of the 13 test datasets simultaneously; then the
CNN-classifier is tested with the 13 test datasets separately.
Therefore, there are 1 training datasets and 13 test datasets
in this part. After training for 600 iterations, the samples of
each test dataset go into the trained CNN and the detection
performance is evaluated via average accuracy, which is the
average percentage of the correctly classified test samples of
each class in the test dataset [43]. Due to no constraints on the
SCR, the SMI-STAP-MTI method and the SBL-STAP-MTI
is not considered in this part.

The accuracy comparison of the CNN-MTImethod and the
POLY-MTI method is shown in Fig. 5. It can be observed
that, the average accuracy of POLY-MTI is very low and it
is less than 10% at SCR lower than −27.2 dB. On the con-
trary, for the CNN-MTI, the average accuracy approximately
approaches 90% even with the SCR of −40.2 dB. With the
increase of SCR, the performance of both methods improves.
The average accuracy of the CNN-MTI remains to be 95.9%
when the SCR is higher than −22.8 dB; and that of the
POLY-MTI settles at 94.1% at SCR higher than−1.2 dB. The
reason that the average accuracies of both methods remain
unchanged as SCR becomes high is that only target-absent
samples are mis-classified when the SCR is very high and
the increase of the SCR has no impact on the accuracy
enhancement. Thus the results demonstrate that, the average
accuracy of the CNN-MTI exceed that of the POLY-MTI
under different SCR conditions; and the advantage of the
CNN-MTI is especially outstanding in the severely low SCR
scenarios.

C. EXPERIMENTAL MOUNTAINTOP DATA
We also apply the CNN-MTI method to the Mountaintop
dataset [39] and its parameters are listed in Table 2. Of the
17 classes of candidate Doppler frequency, the target Doppler
frequency is the closest to the 13-th class.

In the stage of the generating the training dataset,
the lowest and upper boundaries of the amplitude for
classes 1-16 are 50 dB and 70 dB; whereas those for the
class 0 is 0 dB and 15 dB. There are 808 training samples
for each class and a total of 13736 training samples in the
training dataset. The initial value of the learning rate is 1e-2
and it is rescaled by a factor of 1e-1 every 1000 iterations.

After training for 2000 iterations using the batch gradient
method with the batch size of 404, the samples of the CUT
range cells are sent to the trained CNN and the detection
results are shown in Fig. 6. The proposed method can cor-
rectly detect the moving target located at the 17-th range
gate and the NDF of 0.25; whereas in the results of the
SMI-STAP-MTI, the SBL-STAP-MTI and the POLY-MTI,
a lot of false alarm appear.

In the above results, the validity of the proposed CNN-MTI
method has been illustrated in different clutter environments
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and different SCR scenarios. Comparing with the
SMI-STAP-MTI and the POLY-MTI, the proposedCNN-MTI
method not only requires much less amount of the SD
range cells but also can achieve much better performance
confronting with the non-homogeneous and the low SCR
scenario. The performance of the SBL-STAP-MTI method
exceeds the SMI-STAP-MTI method and the POLY-MTI
method, but have much more false alarms than the CNN-MTI
method. Therefore, the CNN-MTI is more robust and can
conquer against the inherent limitations of the traditional
methods.

V. CONCLUSION
In this paper, we propose a deep CNN based MTI method,
in which theMTI is regarded as amultiple-class classification
problem. In the proposed CNN-MTI method, a deep CNN
is utilized to realize the MTI by assigning each STO from
the CUT to one class. The CNN architecture includes four
convolutional layers, two pooling layers, one fully-connected
layer and one final classification layer. To address the require-
ment of the large amount of training data during the tuning
of the CNN, we propose to augment the training dataset by
taking the SD as the background interference and combin-
ing them with the artificially generated moving target signal
at different SCR levels, different Doppler frequencies and
random phases. Simulation results from the synthetic data
and the experimental data demonstrate that, with very small
amount of SD, the proposed method can achieve good perfor-
mance in the low SCR scenario and in the non-homogeneous
clutter environment; and simulation results also demon-
strate the great advantage of the CNN-MTI method over the
SMI-STAP-MTI method, the SBL-STAP-MTI method and
the POLY-MTI method.
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