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Advances in Acoustic Signal Processing
Techniques for Enhanced Bowel Sound Analysis
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Abstract—With the invention of the electronic stetho-
scope and other similar recording and data logging devices,
acoustic signal processing concepts and methods can now
be applied to bowel sounds. In this paper, the literature per-
taining to acoustic signal processing for bowel sound anal-
ysis is reviewed and discussed. The paper outlines some
of the fundamental approaches and machine learning prin-
ciples that may be used in bowel sound analysis. The ad-
vances in signal processing techniques that have allowed
useful information to be obtained from bowel sounds from a
historical perspective are provided. The document specifi-
cally address the progress in bowel sound analysis, such as
improved noise reduction, segmentation, signal enhance-
ment, feature extraction, localization of sounds, and ma-
chine learning techniques. We have found that advanced
acoustic signal processing incorporating novel machine
learning methods and artificial intelligence can lead to bet-
ter interpretation of acoustic information emanating from
the bowel.

Index Terms—Acoustics, bowel sound, signal process-
ing.

NOMENCLATURE

Table Abbreviations

ECM Electret condenser microphone.
PZT Piezoelectric transducer.
CES Commercial electronic stethoscope.
FFT Fast Fourier transform.
WT Wavelet transform.
WTST-NST Wavelet transform stationary–nonstationary

filter.
AF Adaptive filter.
WDWF Wavelet domain Weiner filter.
FDD Fractal dimension detector.
IKD Iterative Kurtosis detector.
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LF Legendre fitting.
TD Time domain.
FD Fourier domain.
WD Wavelet domain.
PCA Principle component analysis.
ANN Artificial neural network.
ARMA Autoregressive moving average.
RBFN Radial basis function network.
NBD Naive Bayesian detector.

I. INTRODUCTION

THE use of stethoscopes to listen to the heart, lungs, and
bowel has been a common practice since their invention by

Laennec in 1816 [1]. Scientific analysis of sounds produced by
the bowel have been reported since the early 1900’s by Cannon
[2]. However, observation and recording of sounds produced
by the gastrointestinal tract were performed centuries earlier
with Hooke proposing that it may be possible to discover the
workings of the internal parts of the body by listening to the
sound they make [3]. Cannon described the rhythmic sounds
in the gut possibly produced by peristaltic movement of the
intestines, as well as continuous random sounds that vary in
intensity and location within the bowel. It is understood that
many of the sounds produced in the abdomen are caused by the
intestines pushing liquid and gasses through the bowel as part of
the digestive process, as well as sounds produced as the material
passes through valves connecting the different sections of the
bowel [4]. Recognizing differences in the sounds that the bowel
makes may lead to a better understanding of the anatomy and
physiology of the human gut [5]. Bowels sound analysis may
also provide insight into the activities of the microbiome, such
as gas production through fermentation [6].

Big data analytics and artificial intelligence are emerging as
powerful tools in many diverse applications from facial recog-
nition to financial forecasting [7]. Models based on artificial
intelligence algorithms have been reported useful in many areas
such as structural damage detection [8], disease diagnosis [9],
and civil engineering [10]. The technology has been driven by
developments in computer processing power that have enabled
basic computer algorithms to analyze large data sets and through
training, recognize previously hidden, higher dimensional pat-
terns within the data. These machine learning techniques have
recently been applied to identification of bowel sounds.
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Fig. 1. Time domain acoustic signal recorded from the gut.

The improvements in acoustic signal processing methods
have led to improved noise reduction and signal enhancement.
Dalle et al. are noteworthy because they pioneered the use of
computers to analyze bowel sounds in 1975 [11]. They used
the duration of the recorded bowel sounds to classify them
into different types. Later, signal processing techniques like
Fourier transformation, WT, and short time Fourier transforma-
tion (STFT) were used for signal enhancement, identification
of bowel sound types, and extraction of sound features [12]–
[14]. Signal processing methods in turn have culminated in the
extraction of large feature sets from acoustic signals and en-
abled automatic detection of bowel sounds. Here, the advances
in acoustic signal processing techniques in bowel sound appli-
cations are reviewed and discussed.

II. THEORY-ACOUSTIC SIGNAL PROCESSING AND MACHINE

LEARNING FUNDAMENTALS

Sounds are produced by the mechanical deformation of an
object or material that causes the surrounding medium, air or
water molecules, to move. This in turn generates an energy wave
that propagates through the medium before it is detected by the
ear or an electromechanical transducer, such as a piezoelectric
material. In the case of a piezoelectric transducer, the pressure
wave induces a voltage that varies with time, which is known
as the time domain signal. The following sections provide an
overview of some of the fundamental concepts in acoustic signal
processing and machine learning techniques.

A. Signal Identification and Enhancement

1) Time Domain Signal: The time domain signal is essen-
tially the raw data obtained from a listening device that changes
over time. An example of a time domain signal recorded from
the bowel with a sampling rate of 44.1 kHz is shown in Fig. 1.
The sensor used to detect the signal had an effective frequency
response from 80 Hz to 5 kHz.

Several features can be extracted directly from the time do-
main signal including the signal to noise ratio (SNR), duration,
and number of events. The SNR is an important index that gives

an indication of the quality of the signal. The higher the SNR,
the more information that can be extracted from the signal. Usu-
ally, a sensor will have an in-built algorithm to increase the SNR
in real time during data acquisition, in addition to improving the
SNR in subsequent data processing. The SNR of an acoustic
signal measured in decibels (dB) is given below

SNRdB = 10log10

(
Psignal

Pnoise

)
= Psignal,dB − Pnoise,dB. (1)

As bowel sounds do not occur all the time, it is possible to
obtain the power of the noise during a period when no bowel
sounds are present. Many common statistical parameters can
also be obtained from the time-domain signal such as the root
mean square. [15]. A common first step in acoustic signal pro-
cessing, in order to increase the SNR, is signal enhancement
through filtering. Filtering a signal is a way to remove unwanted
parts of a signal. The simplest types of filtering are low-pass,
high-pass, and band-pass filters. Low-pass and high-pass filters
remove higher and lower frequency components of a signal,
respectively, and a band-pass filter removes both high and low
components of a signal. The choice of threshold values depend
on the type of acoustic signal being analyzed. Filtering cat-
egories include Butterworth, Chebyshev, Bessel, and Elliptic,
which are described in [16]. Adaptive filtering can also be used
to enhance the signal by analyzing the properties of the noise
present. The ambient noise is recorded and input into the adap-
tive filter which then adjusts in response to the environmental
noise over time, to give improved performance in terms of signal
enhancement [17]. Another useful processing technique that is
usually performed in the time domain is enveloping. The en-
velope of an acoustic signal is a smooth line that outlines the
extremes of the signal and can represent the energy of a signal
with respect to time.

Before any features are extracted from the sound, it is a com-
mon practice to slice the acoustic recordings into small samples.
Various window functions can be used to achieve this, such as
rectangular, Hamming, and Hann. Because bowel sounds are
usually bursts, where the energy versus time distribution is ex-
tremely uneven, the rectangle window function is often used.
Usually a bowel sound signal will be sliced into small sample
chunks before the bowel sound identification process begins.

2) Frequency Domain Signal: Converting a signal from
the time domain to the frequency domain can provide a lot of
information that is not observable in the time domain. This is
achieved through the Fourier analysis. The time signal can be
considered as a combination of many sine waves with different
frequencies and amplitudes. By performing a Fourier transform,
it is possible to calculate the amplitude of each frequency from
the time domain signal. The fast Fourier transform (FFT) is
one of the most common conversion techniques that provides
information about all of the frequency components of an acous-
tic signal. Many features can be extracted from the frequency
domain for a bowel sound analysis including the centroid fre-
quency, spectral bandwidth, sub-band energy, etc. The main
problem with performing a FFT, however, is that most of the
time domain information is lost in order to obtain the frequency
components.



242 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 12, 2019

Fig. 2. Short term Fourier transform of an acoustic signal recorded
from the gut.

3) Time-Frequency Domain Signal: Besides the time do-
main and frequency domain information, it is possible to obtain
both time and frequency information simultaneously by using
a STFT or a WT. The STFT actually provides complex infor-
mation about the amplitude of an acoustic signal with respect
to time and frequency in the form of a spectrogram. However,
it is usually only applied to a small section of a signal. The
spectrogram is a two-dimensional image, which is created from
the one-dimensional wave signal that time stamps the frequency
components. It has been reported that a spectrogram created via
an STFT can be used for speech recognition and noise suppres-
sion by implementing a convolutional neural network [18], [19]
An example of an STFT is shown in Fig. 2.

As for the WT, it is widely used for noise suppression and
has advantages over other techniques including being able to
deconstruct and reconstruct complex signals with very little
loss of information. There are a large array of WTs that can
be implemented that provide different levels of information in
the time domain and the frequency domain depending on the
selection of mother wavelet. A detailed explanation of WTs is
given in [20] and [21], and a review of wavelets in biomedical
applications is given in [22] and [23].

B. Machine Learning and Feature Extraction

Machine learning is a technique that enables computers to
determine the nonlinear information from a data set without
being explicitly programed. The machine learning algorithms
are used to search for unknown patterns or relationships within
data sets and adjust the model accordingly. Machine learning
methods typically fall into the following categories.

1) Supervised learning.
2) Unsupervised learning.
3) Reinforced learning.

Each of these techniques can be used for either classification
of data, or regression analysis. Supervised learning is used
when the obtained data contains specific labels or solutions that
are used to train the model. The model is used to map the data to

the predetermined categories or solutions, and is then capable
of predicting the labels or solutions of unknown data. Unsu-
pervised learning is used when the data labels or solutions are
unknown and the algorithm infers new categories or outcomes
from the relationships within the data itself. Reinforced learning
trains the model based on a reward and punishment system. If
the model finds the correct solution to a problem it is rewarded,
whereas it is punished if it obtains the wrong solution.

One of the challenges in using machine learning in acoustic
signal processing applications is that acoustic signals tend to
have high dimensionality, due to the high sampling rate used
while recording. Thus, it is often necessary to reduce the num-
ber of dimensions by implementing a dimension reduction al-
gorithm and extracting acoustic features. Down sampling tech-
niques can be implemented; however, the information in the
high-frequency range is lost. Once a database of features has
been developed, each feature is input into the machine learning
algorithm, which generates a score to determine which features
are the most significant, for a particular problem. Finally, these
features are incorporated into the algorithm for training the
model that is then used to make predictions about previously
unseen data.

III. ADVANCED SIGNAL PROCESSING OF BOWEL SOUNDS

In general, the term acoustic signal processing may encom-
pass many steps including data acquisition and preprocessing,
although often signal processing refers to specific steps in the
overall process. Modern bowel sound signal processing usually
follows a similar sequence to that shown in the flow chart dis-
played in Fig. 3. However, there can be lots of crossovers in
each of the sections depending on the type of acoustic sounds
being analyzed and the exact goal of the research. For example,
denoising and filtering, would usually be part of a preprocess-
ing stage, although it may also occur in later stages. Within the
literature, many studies focus on specific steps, such as signal
enhancement or localization, whereas other works may describe
a complete sequence from acquiring a signal through to classifi-
cation. An attempt has been made to categorize the literature into
groups relating to the different stages of the overall sequence,
although, as mentioned, some studies have incorporated many
of the steps involved in processing bowel sounds. Table I, in
the appendix, summarizes to what extent each of the author
has achieved a complete acoustic signal processing package for
bowel sound analysis.

A. Data Acquisition

In order to record the sounds produced in the abdomen, a
transducer must be designed to convert the acoustic sound en-
ergy to an electrical signal. The transducer may form the basis
of an electronic stethoscope, where the main detection element
is usually a microphone or a piezoelectric material. The mi-
crophones and piezoelectric elements used in audio applica-
tions typically have an effective frequency response range from
20 Hz to 20 kHz. However, electronic stethoscopes are usu-
ally designed to pickup signals up to 1 kHz. In the case of a
microphone-based stethoscope, there are three types, capaci-



ALLWOOD et al.: ADVANCES IN ACOUSTIC SIGNAL PROCESSING TECHNIQUES FOR ENHANCED BOWEL SOUND ANALYSIS 243

TABLE I
SUMMARY OF ADVANCED SIGNAL PROCESSING STAGES DESCRIBED BY AUTHORS IN THE REVIEWED ARTICLE

*Many different types of sound detectors were tested, although a PZT was determined as the best.

tive, coil, and electret. The electret condenser microphone is
typically the most common. The microphone is placed inside
the tubing, somewhere between the sensor head and the ear
pieces. An electronic circuit is required to power the micro-
phone and the stethoscope usually has an additional circuit to
increase the gain and filter low- and high-frequency noise. An
example of an electret condenser microphone based stethoscope
is the JABES digital electronic stethoscope manufactured by GS
Technology Co., Ltd. Conversely, a piezoelectric transducer is
completely passive, and hence does not need an external power
supply. It simply needs to be connected to a recording device,
which usually has some electronic filtering and amplification
capabilities. The specific electronics depends on the type of
recording unit used however typically a bandpass filter is used
to remove very low and very high frequencies and an adjustable
amplifier circuit can provide a gain of up to 55 dB. An example
of a piezoelectric-based stethoscope is the 3 M Littmann 3200
electronic stethoscope.

Electronic stethoscopes often resemble traditional stetho-
scopes, perhaps because they symbolize medical practitioners
and healthcare professionals and therefore can psychologically
help patients feel at ease [24]. However, some recent electronic
stethoscope designs such as the Thinklabs One digital stetho-
scope are more novel, using standard headphones or speakers for
listening to patients or connecting them directly to a smartphone
for analysis [1]. A three-dimensional 3-D printed stethoscope
head with a microphone and electronics built in, which can be
connected to a smartphone, was designed by Aguilera-Astudillo

et al. [25]. Likewise, a condenser microphone-based device,
which was connected to a microcontroller, with a Bluetooth
module for wireless transmission of data was designed by
Frank and Meng [26]. A similar device was also developed by
Mills et al. [27] although the Bluetooth transmitter sent a signal
to the receiver contained in the headset part of the stethoscope.
Another design using an FM module to transmit the signals was
developed by Pawar and Chaskar [28]. Yu et al. [29] designed
a piezoelectric-based stethoscope with a conditioning circuit
built into the stethoscope head, which could be connected to
a PC via a USB cable. Hill et al. [30] specifically designed
an electronic stethoscope system for long-term monitoring
of abdominal sounds. Their system again used a condenser
microphone as the sensing element, although it was connected
to a field programmable gate array for processing.

White [31] suggested a solution for using stethoscopes in
highly hazardous or contaminated areas whilst wearing per-
sonal protective equipment. He proposed the use of the Thin-
klabs One stethoscope connected to wireless bone conducting
headphones, instead of normal headphones. These types of head-
phones transmit the sound through the jaw bone directly to the
inner ear leaving the ear canal free for communicating with
patients. Moreover, the headphones do not have to be handled
between auscultation times, and since they are wireless, the
medical practitioner can be outside of a contained area.

An informative study that analyzed external noise contamina-
tion caused by vibrations from handling a commercial electronic
stethoscope was presented by Nelson et al. [32]. The work ad-
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Fig. 3. Bowel sound signal processing flow chart.

dressed the physical limitations of the stethoscope design by
modeling the influence of different insulation materials on the
noise transmission through the stethoscope housing to the piezo-
electric transducer. They proposed better noise isolation using
dampeners, however, they noted there would be a tradeoff be-
tween sensitivity and noise reduction.

A comprehensive review of electronic stethoscope technology
and diagnostic techniques is given in [33]. The limitations of the
current technology are discussed and future research directions
are proposed.

Dimoulas et al. [34] are one of the most significant author
groups in the analysis of bowel sounds. Although, their progress
will be discussed in the following sections, it is worth noting that
Dimoulas et al. [34] also described in detail their preferred hard-
ware for bowel sound analysis. They tested the sensitivity and
frequency response of electronic stethoscopes, stethoscopes in-
corporating microphones, and both capacitive and piezoelectric
transducers. Physical attributes such as size, shape, and weight
were also taken into consideration. Subsequently, piezoelectric
sensors were chosen due to their small size and shape, their high
sensitivity, and low cost, and because they were passive sensors
requiring no external power. Their poor frequency response at

very low frequencies, outside the range of bowel sounds, which
do not occur below 150 Hz, was also considered an advantage,
as they were less susceptible to low frequency noise. In addition,
a wearable abdominal vest containing a thin metal plate and ab-
sorbing foam was used to protect the sensor from external noise
and ensured they were held tight to the abdominal surface. A
two channel system with one sensor in the upper-right quadrant
and one sensor in the lower-left quadrant was initially used, al-
though a four channel system with one sensor on each quadrant
of the abdomen was later implemented for improved sensitivity
and localization.

B. Signal Identification, Enhancement, and Extraction

Most of the documented research on the analysis of bowel
sounds has involved very simple data processing, in the form
of statistical analysis. Dalle et al. [11] further exploited the
capability of computerized postprocessing of the acoustic data
by developing an algorithm for differentiation of sounds into
three groups: frequent short pulses, less frequent pulses that last
for a few tenths of a second, and a combination of the two.
In the study, 15-min recordings were taken from eight subjects
amounting to a total of 15 h of data. Their technique identified
a bowel sound without human intervention, thus eliminating
subjective errors. They defined the existence of a bowel sound
as “when the mean absolute value of a signal for a given time
exceeds a predetermined level.” The program performed auto-
matic detection of the sounds through a threshold value, as well
as enveloping, and a FFT of the acoustic signals in slices of 0.2 s.
They argued that the sounds were not rhythmic in nature, but
in fact obeyed Poisson’s distribution. Although they reported a
mean duration of sound was 4.5 ms and a mean duration of si-
lence was 32 ms, it is worth noting that the results were recorded
after the subject had eaten, which may account, in part for the
short durations.

In 1997, Bray et al. [35] reported an analysis of bowel sounds
recorded from eight abdominal regions simultaneously. They
again performed an FFT and calculated the number of sounds
per minute at particular frequencies, in addition to the amplitude
and duration of sounds.

In the same year, Mansy and Sandler studied the bowel sounds
in sedated rats [36], [37]. Their work focused on the removal of
heart sounds through adaptive filtering. Adaptive filtering had
previously been found effective for removing noise from a signal
where the frequency ranges overlapped, something not possible
with traditional bandpass filters. A class of adaptive filtering,
known as the Woodrow–Hoff least mean square adaptation al-
gorithm was implemented due to its success in other biomedical
applications. For adaptive filtering to be effective, a reference
signal that correlates with the noise must be constructed. The
adaptive filter cancels the noise in the primary signal by remov-
ing parts of the signal that correlate with reference noise signal.
The output of the filter is continually reintroduced into the filter
in order to optimize the performance. A Hilbert transform en-
velope was also used to provide a measure of the instantaneous
amplitude for peak detection. Later they extended their work
in order to classify rats with and without small bowel obstruc-
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Fig. 4. Graphical representation of the time-domain features, i.e., the
IDW, the 2CD, and the TDW, adapted from [40].

tions by analyzing the duration of the sounds and the dominant
frequencies present [38].

Hadjileontiadis et al. performed extensive research on bowel
sound analysis from 2000 to 2005, which resulted in a num-
ber of detailed publications [39]–[43]. Their initial study [39]
implemented the WT algorithm, based on work performed by
Coifman and Wickerhauser [44], that had been developed for re-
moving heart sounds from lung sound recordings [39]. The WT-
based stationary–nonstationary (WTST-NST) filter was used to
remove the noise from the acoustic recordings of bowel sounds,
but did not require a reference noise signal to do so. Further-
more, the WTST-NST filter only removed the noise in locations
where it was present, leaving the original signal unchanged
where possible. The study included 35 subjects, 18 healthy,
and 17 with prediagnosed bowel diseases. An electronic stetho-
scope was used to record 16 min of bowel sounds; 8 min from
the right-lower abdomen, followed by 8 min from the left-lower
abdomen. The work focused on demonstrating the effectiveness
of the filter and did not examine the ability to diagnose any of
the bowel conditions.

Using the denoising filter and higher-order crossings-based
statistics, Liatos et al. [45] were able to define normal bowel
sound waveform characteristics and therefore developed a clas-
sification algorithm, which could detect abnormal bowel sounds.

The subsequent study used fractal dimension (FD) analysis
for detection of explosive lung sounds and bowel sounds [40].
The technique developed was capable of detecting the time, lo-
cation, and the duration of the sounds and the estimated FD
provided information about the complexity of the sounds in
terms of their waveform in the time-domain. The approach uti-
lized known properties of the waveforms such as their initial
deflection width (IDW), their two-cycle duration (2CD), and
their total deflection width (TDW) as shown in Fig. 4. The de-
veloped algorithm could accurately detect the number of bowel
sounds in a given sample but was not capable of extracting the
sounds from the background noise. They found that the advan-
tages of this technique were the low processing power required,
the high detection rate, and the low false positive rate, and as

such they found that it was an effective tool for detecting bowel
sounds from long-term recordings in real time.

Another technique for extracting the bowel sounds from the
background noise, which was developed by Hadjileontiadis and
Rekanos [41] used a kurtosis-based detection (KD) method.
Kurtosis, which is a zero-lag fourth-order statistics parameter,
is a measure of how non-Gaussian like a signal is. Kurtosis is
typically higher in explosive bowel sounds compared to back-
ground noise. The results clearly show that the algorithm was
effective at detecting and extracting explosive bowel sounds
without the use of a reference noise signal. The approach was
successful even in cases with additive Gaussian or symmetri-
cally distributed noise. However, it is unclear whether it would
result in false positive results from random noise contamination,
such as those that have large amplitudes, or those that are very
similar to bowel sounds in the structure of their waveforms. The
technique again had the advantages of low processing and data
storage requirements. This work was later extended further by
Rekanos and Hadjileontiadis [46] to form an iterative KD (IKD)
that gradually separated the bowel sounds from the noise with
increased precision.

Kim et al. [47] suggested that the IKD method developed by
Rekanos and Hadjileontiadis had some limitations in the way
that the threshold values were calculated based on the ratio of
the standard deviation of the kurtosis and the standard devia-
tion of the background noise. If the bowel sounds were heavily
contaminated with frictional or environmental sounds, then the
standard deviation could be skewed resulting in an extremely
low threshold value, and unwanted erroneous sounds may be
detected as bowel sounds. Likewise, if the SNR was very low,
the threshold value may be too high and therefore some bowel
sounds may not be detected. Instead of calculating the threshold
values based on the standard deviation of the kurtosis, Kim et al.
[47] statistically analyzed a histogram of the kurtosis to obtain
the threshold values using experimentally determined constants.

Dimoulas et al. [34] performed extensive analysis of previ-
ous signal processing techniques for bowel sounds. The group
defined a general method for noise removal from both audio
and nonaudio signals. The first step was transformation of the
data into a different domain, such as from the time domain to
the frequency or time-frequency domain that maximized the
differences in the signal and the noise. The second step was pro-
cessing of the data with the goal of noise reduction or removal.
The final step was then inverse transformation in order to obtain
the original desired signal without noise contamination.

WTs are examples of decomposition and reconstruction tech-
niques, which are common in acoustic signal processing. A new
method was introduced using wavelet analysis that incorpo-
rated a Weiner filter. Their method had the following desired
attributes: improved robust noise cancelation, reduced signal
distortion and computational cost, and the ability to perform
long-term recordings. Many decomposition schemes were stud-
ied using various mother wavelets in order to analyze the per-
formance of the filter in terms of noise reduction and signal
enhancement.

Dimoulas et al. [34] highlighted the fact that many of the
previous denoising algorithms were effective at removing noise
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from explosive bowel sounds, but they were not sufficient for de-
noising regularly sustained bowel sounds. The wavelet domain
Weiner filter (WDWF) incorporated an exponential moving av-
erage for estimating the power of signal coefficients. Unlike an
STFT Weiner filter, the WDWF retained an approximate log-
arithmic frequency spacing rather than classical linear spacing
and increased time resolution with respect to classical wavelet
Weiner techniques. Their WDWF approach combined the effi-
ciency of a classical Weiner filter with bark scale wavelets, and
had a comparable computational cost of fast WT algorithms.
Four different WDWF approaches were implemented including
two types of six band discrete WT (DWT) Weiner filters and
two types of 17-band wavelet packet (WP) Weiner filters. The
two types differed slightly in the experimentally obtained val-
ues of their third and fourth coefficients. Joint time frequency
analysis algorithms were also implemented; however, they un-
derperformed against the DWT and WP algorithms in terms of
computational cost.

The performance of their filters was both qualitatively and
quantitatively evaluated. For qualitative evaluation, visual ex-
amination of the audio waveforms was continually performed
and physicians validated the quality of the audio signals by lis-
tening to the denoised bowel sounds. For quantitative evaluation,
a signal processing environment was set up in LabVIEW where
synthetic bowel sounds were constructed and then artificially
contaminated with different types of noise. This was performed
so that the effectiveness of noise removal from different types
of signals, for each of the four developed WDWF, could be
quantitatively compared. Pearson linear correlation was used to
estimate how similar the estimated signal was to the original
noise free signal. Furthermore, an effective SNR was calculated
after silent periods of the recordings were removed, to avoid
overestimating the performance of the filter by using the tradi-
tional SNR.

All four WDWF performed favorably with respect to previ-
ously developed filters. The type 2 17-band filter performed the
best, although it was slightly less robust and had a higher compu-
tational cost than the type 2 six-band filter. Overall, the WDWFs
maintained the structure of the bowel sounds, whereas most au-
tomated threshold techniques seriously degraded the shape of
the signals. The WDWF approaches provided robust noise re-
moval combined with minimal signal distortion and performed
well for almost any signal unlike other techniques, which were
only advantageous with certain types of signals.

The study by Li et al. [48] details their simple method for
automatic identification of bowel sounds. The first step was
based on two assumptions: bowel sounds usually have a higher
amplitude than the background noise, and bowel sounds are
typically longer in duration (bowel sounds will maintain a high-
energy state for longer periods). Hence, the criteria for bowel
sound identification were: if the energy of the signal of the
current window is above a certain threshold and the duration of
the signal exceeds a threshold, then the bowel sound condition
is true, otherwise it is false. The main issue with this criteria
is that it will detect any erroneous external noise, which has
values above the thresholds, as bowel sounds. Their method did
however have an additional checking function whereby if the

Fig. 5. Checking algorithm, adapted from [48].

bowel sound condition was true for a single window, but the
two adjacent windows were false, then the true condition was
changed to false. Likewise, if the bowel sound condition for a
window was false, but the two adjacent windows were true, then
the false condition was changed to true. An example is shown in
Fig. 5. The researchers then implemented an adaptive filter for
noise reduction. However, rather than using a reference noise
signal, as in traditional adaptive filters, they used a new method
developed by Sasaoka et al. [49], where two types of adapted line
enhancers estimated the noise and the desired signal, followed
by a noise reconstruction filter. The delayed input signal was
then used as the reference signal. Once the bowel sounds had
been identified, statistical features were then extracted.

Ulusar et al. [50] developed a real-time bowel sound mon-
itoring system using a modified stethoscope incorporating a
microphone and a data acquisition card. The recoded data were
processed in 1 s chunks, which were first buffered and saved
to file. A second-order Butterworth 100-Hz high-pass filter, a
1-kHz low-pass filter, and a 50-Hz notch filter were then applied
to each segment. As the study focused on determining when
bowel motility had returned after abdominal surgery, their algo-
rithm used a statistical method based on the power of the signal
between 100 and 200 Hz. This specific frequency band was used
as the majority of bowel sounds occur around 150 Hz and most
of the noise contamination was typically above this range. The
additional parameters were empirically chosen so that, if at least
two bowel sounds were recorded in each sample continuously
for a period of 20 min, an alarm would be triggered indicating
that motility had returned. Their simple algorithm required very
low computation and performed well, although again a small
sample size was used to test its performance.

Lin et al. [51] used higher order statistics, in a similar way to
Hadjileontiadis and Rekanos [41], in conjunction with a radial
basis function network, for separating bowel sounds from exter-
nal noise. These methods rely on the fact that bowel sounds are
mainly non-Gaussian and the background noise is either Gaus-
sian or symmetrically distributed. A radial basis function net-
work is a type of artificial neural network that uses a radial basis
function, in this case a Gaussian function, to calculate a surface
in a higher dimensional space. This can be used to determine
the best fit to a set of training data, by analyzing the distance of
each data point from the center of the data set. The center of the
data set was determined using a k-means clustering algorithm.
The technique also used an adaptive line enhancement scheme
incorporating a delayed input signal as the reference signal, just
as Li et al. [48] had done. The quality of the filter was compared
against an adaptive filter with normalized least mean square al-
gorithm and an adaptive radial basis function with normalized
least mean square algorithm. Their new algorithm performed
significantly better than the others when bowel sounds were
contaminated with a number a different types of artificial noise.
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The performance of the algorithms were also tested using real
noise contaminated bowel sounds, which were then assessed
by physicians. Using analysis of variance from the results ob-
tained from the physicians, the new algorithm was shown to
perform best at enhancing the noisy bowel sounds. However,
the algorithm required significantly more computation time.

In 2015, the same group [52] applied their higher order statis-
tics method to the FD technique developed by Hadjileontiadis
and Rekanos [40]. Again their method showed increased perfor-
mance with respect to the original algorithm, particularly in the
form of less false positive results, and was more robust when the
bowel sounds were contaminated with different types of noise
at varying levels. However, there was again an increased com-
putational cost resulting in more than twice the amount of time
required to compute the algorithm. There was unfortunately
no comparison of the performance of this algorithm with their
previous work using a radial basis function.

C. Feature Extraction and Machine Learning

In the same study as mentioned earlier, Kim et al. [47] used
three sensors positioned at different colonic locations and specif-
ically used the jitter and shimmer of individual bowel sounds as
features to estimate bowel motility through colonic transit time.
The jitter and the shimmer are a measure of how the period and
the amplitude of the fundamental frequency varies over time, re-
spectively. As multiple channels and time segments were used,
a total of 21 features were extracted and the most significant
features were determined using regression modeling. K-fold
cross validation was implemented, where 75% of the samples
were used to train the algorithm and 25% were used to test
its performance. A sensitivity of 86.3 ± 6.0% and a specificity
of 91.0 ± 6.1% were obtained, although a small sample size
was used. Overall, the modified IKD algorithm had improved
performance with respect to the original algorithm.

In subsequent work, Kim et al. [53], [54] used the same detec-
tion and feature extraction method, including jitter and shimmer
features, although they implemented an artificial neural network
rather than a regression model to estimate bowel motility. The
correlation coefficients for both models were similar, although
the backpropagation neural network [55] had lower estimation
errors than the regression model.

Yin et al. [56] followed on directly from the work performed
by Kim et al. utilizing the jitter and shimmer of the bowel sounds
to characterize gastrointestinal states. An adaptive filter incorpo-
rating the least mean square algorithm was again used for noise
cancelation, although in this case Yin et al. used a dual adaptive
filter with two separate signals for removal of the external and
the internal noise. A total of 420 features from both the time do-
main and the frequency domain were used to train the algorithm
and a back propagating neural network was implemented for
classification. The algorithm was used to classify digestion into
three distinct states: the initial digestive state where the stomach
was full, the interdigestive state, and the final state where the
stomach was empty. They later extended the work to include
Legendre fitting of logarithmic bowel sound spectra [57]. The

technique extracted the number of bowel events per minute,
which was then used to quantitatively estimate bowel activity.

In 2001, Ranta et al. [58] expanded on work by Hadjileon-
tiadis and Rekanos involving wavelet analysis of bowel sounds
for denoising, to include segmentation and characterization.
Ranta et al. explicitly explained the need for objective and
quantitative descriptions of bowel sounds rather than subjective
statements or labels such as “gurgling sounds or clicks.” After
implementing the denoising algorithm, the bowel sounds were
identified through segmentation of the signal using a method
which was applied to the wavelet coefficients. Wavelet decom-
position was then used to extract features of the bowel sounds
including the duration of the sound and the power distribution
within each frequency band. A fixed point approach, based on
the orthogonality of the WT was used for optimization. As such
their denoising algorithm performed four times faster than the
original algorithm developed by Hadjileontiadis et al. by remov-
ing the threshold iteration of the wavelet coefficient vector [59].
It was proposed that this method of feature extraction could lead
to classification of the bowel sounds, and because multiple mi-
crophones were used simultaneously, localization of the bowel
sound could also be achieved.

Ranta et al. [60] continued to develop new techniques for
improved interpretation of bowel sound features. Based on the
methods mentioned earlier, they extracted nine features from
each of the 168 min of recordings, from six channels. Each
of the features represents one dimension of the data set, and
the entire data set formed a 3024 × 9 matrix. The first step in
improved interpretation was to create a correlation matrix in
order to remove any redundancy in the data. Principle compo-
nent analysis was then used to transform the matrix into a new
matrix containing the same number of dimensions described by
uncorrelated principle components. The principle components
each represented variances, which were ordered in terms of sig-
nificance. In their study, Ranta et al. reduced the dimensionality
of the data set by retaining the three largest components, hav-
ing a variance greater than 1, meaning the resulting data set
was 3-D and still maintained over 70% of the variance of the
data.

The main problem with dimension reduction techniques is
that it is extremely difficult to correlate the reduced dimension
data set with the original features and therefore relate them back
to clinical information. However, Ranta et al. proceeded to ana-
lyze the new data set in order to understand the physical meaning
of the new features. A correlation between the original features
and the new ones was made using correlation circles. The first
component was hence interpreted as a measure of the sound
level, the second was interpreted as a measure of sparsity, and
the third was interpreted as a measure of pitch for each minute
of data. As each of the stethoscopes corresponded to specific
regions of the abdomen, it was then possible to analyze the dif-
ferences in each region by projecting the data onto principle
planes generated by the three main principle components. Fi-
nally, the following conclusions were drawn from analyzing the
variation in the component values over time, region 3 produced
higher frequency sounds, and more bowel sound were produced
in region 4 than in the other regions.
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In 2005, the same group reported a technique used for de-
tection and removal of outliers, which was related to the pre-
viously discussed denoising algorithm [61]. They showed that
under certain conditions, the developed technique was a pa-
rameter free method for threshold computation, which adapted
to the shape of the distribution of the data. Moreover, under
Gaussian conditions, it performed better than traditional outlier
rejection methods. As the technique could successfully detect
and remove outliers it could therefore be used as a quasioptimal
method for identifying data close to the mean, which is useful
in some clustering algorithms.

More recently in 2010, Ranta et al. reported a more compre-
hensive description of their complete methodology for anal-
ysis of bowel sounds [62]. They detailed extensive statisti-
cal data analysis and evaluation of their method and results
as well as the drawbacks of the hardware. Verification of the
quality of the recordings, in terms of clinical interpretation,
was performed by experienced medical practitioners who lis-
tened to sampled recordings. Ranta et al. conclude “that the
frequency response of the instrumentation does not distort the
physiological information carried by the abdominal sounds.”
Perhaps one of the most interesting outcomes from the work
performed by Ranta et al. was their ability to give their re-
sults physical meaning, such as locations of increased activity,
etc., even when using dimension reduction algorithms. This was
achieved by using guided feature selection, linking the most
significant principle components to the most correlated original
features.

Dimoulas et al. [63] extended the FD technique developed by
Hadjileontiadis and Rekanos to include WT coefficients. A long-
term wavelet domain segmentation and summarization method
was developed incorporating a WDWF and a FD pause detector
(FDPD). The approach was specifically developed for long-
term recordings, in addition to detecting regularly sustained
bowel sound rather than just explosive bowel sounds. The re-
searchers comprehensively compared the performance of many
different types of denoising filters as well as different detec-
tion strategies. WTST-NST and WT FD denoising techniques
were inappropriate for long-term unsupervised processing as
they could distort the shape and structure of the signals, and
required increased computation. In conjunction with denoising
using the WDWF, signal detection, segmentation, and summa-
rization, using envelopes representing energy with respect to
time, were performed using an FDPD. Both time and frequency
domain features, such as short-term energy level, signal strength,
and zero crossing rate, are commonly used for signal detection
and identification of silent periods. Methods including higher
order statistics, singular value decomposition, and sliding FD
were effective in applications where computational cost was
not a significant factor. However, for this long-term application,
the FDPD was implemented since it was more sensitive than
energy-based comparison methods, more adaptive, and did not
require threshold selection. Finally, as four sensors were used,
localization of bowel sounds was achieved through an energy
analysis.

Ulusar [14] expanded on his previous work by implementing
a naive Bayesian and minimum statistics detection algorithm.
The method used the same filtering as his earlier work and the

Fig. 6. Example of a time domain signal showing the burst detection
threshold (horizontal red line) and the Hilbert transform envelope (black
line), adapted from [14].

background noise power was estimated using minimum statis-
tics during quiet periods. The magnitude of the noise and a
Hilbert transform envelope were used to determine the adaptive
burst detection threshold in a similar way to Mansy and San-
dler’s technique [38]. Fig. 6 shows an example of a time domain
signal with the burst detection threshold. The following three
spectral features were then extracted from a frequency band of
100–500 Hz.

1) Spectral centroid.
2) Spectral bandwidth.
3) Subband normalized Energy.

Mathematical definitions of the features are given in [14].
A naive Bayesian method was then used to classify the sig-
nals into quiet periods, additive broadband noise, movement
and frictional noise, and examination room noises, as well as
single burst, and multiburst bowel sounds. The naive Bayesian
approach assumes that each of the features are statistically in-
dependent and calculates the probability distribution of each
class during training. The naive Bayesian method was used in
this real-time monitoring application as it was easy to interpret
and modify and had low computational cost. The remainder
of the paper focused on the performance of the algorithm for
determining the reintroduction of motility.

A feature-based autoregressive moving average (ARMA)
method was developed by Emoto et al. [64] for automatic de-
tection of bowel sounds. First, an objective definition of a bowel
sound was ascertained. In their study, they argued that bowel
sounds were periodic signals, which were amplitude modulated
and had “beat tone like frequency properties” [64]. The average
of the frequencies of the mixed waves was therefore defined as
the beat-related frequency (BRF) and a bowel sound was defined
as “an episode containing sound with detectable periods of the
BRF.” Subsequently, the BRF was detected as a sharp spectral
peak in the ARMA spectrum that could be characterized by
the 3 dB bandwidth at the peak frequency. Hence, automatic
detection of bowel sounds was achieved. They then proceeded
to correlate the sound to sound interval with bowel motility.
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Fig. 7. Stethoscope placement on the abdomen, adapted from [66].

D. Localization

A study by Craine et al. [65] included the localization of
sounds emitted from the bowel. The area of the bowel was
separated into four quadrants and three electronic stethoscopes
were used to simultaneously record and triangulate the bowel
sounds. Whilst the study statistically analyzed the frequency
of the bowel sounds generated, it was difficult to make any
convincing conclusions as the sample size was very small.

Ranta et al. [66] explored localization of bowel sounds using
six different stethoscope locations as shown in Fig. 7. They first
examined the ability to measure the location of the origin of a
bowel sound based on the time of arrival. A previous study had
assumed that the abdomen was a hollow cavity and the speed of
sound was therefore approximately 340 ms [67]. This assump-
tion is obviously inaccurate as it is understood that the abdomen
mainly consists of soft tissue and the speed of sound through the
tissue is approximately 1500 ms [68]. In addition, the abdomen
is by no means completely uniform in material density. Due to
these constraints, it was concluded that localization using time
of arrival techniques was difficult to implement as the distances
between the source and the detectors were too small.

The researchers proposed two alternative methods, a nonab-
sorbent and an absorbent model, based on triangulation using
sound intensity. However, the models still assumed an isotropic
environment within the abdomen. In both cases, the localization
was estimated by minimizing a cost function related to differ-
ence between the power received at the detectors and the power
of the source. However, it was shown that at small propaga-
tion distances, as in this case, the absorption and nonabsorp-
tion models were almost equivalent. Unfortunately, their results
showed that the calculated error in the localization was relatively
large and therefore highly inaccurate. They concluded that the
aforementioned techniques could not be used for bowel sound
location and that, simply assigning each sound to a specific de-
tector with largest recorded intensity and eliminating it from the
others, was the simplest and most precise method.

In 2016, Dimoulas [69] reported the results of a study
that focused on abdominal sound localization. Building on
work by Craine et al. [65] and Ranta et al. [66], Dimoulas

initially estimated the origin of abdominal sounds by analyzing
abdominal sound power at each of the four sensors placed
in each quadrant of the abdomen. An accelerometer was also
placed on the center of the four quadrants and its localization
performance was compared against the performance of the
four sensors. Sound field maps were generated from the sound
energy data using the inverse square law.

Agreeing with the earlier work by Ranta et al., Dimoulas
proposed that the nonuniformity of the abdomen would not
significantly influence the localization results. This was because
the acoustic waves emanating from the abdomen would have
relatively long wavelengths at frequencies below 2 kHz, given
that the speed of sound through the medium was approximately
1500 ms−1 . Moreover, the absorption of the waves would be
insignificant at such short distances.

Dimoulas used a physical model consisting of artificial sound
sources, six sensors, and layers of different materials, as well
as software simulations to validate the obtained results. Over-
all Dimoulas proposed that the addition of sound field imaging
techniques could lead to more sophisticated analysis of abdom-
inal sounds, potentially allowing them to be analyzed using
machine learning visual recognition techniques.

E. Complete Signal Processing Systems

All of the earlier work by Ranta et al. culminated in “a
complete toolbox for abdominal sounds signal processing and
analysis” [70]. This included a description of the physical in-
strumentation and some of the potential issues associated with
multichannel recordings as well as all of the signal processing,
feature extraction, and data analysis steps. One of the notewor-
thy sections of the procedure was the elimination of artifacts.
A detailed discussion of the limitations of the signal processing
techniques, in terms of removing unwanted artifacts that over-
lapped the frequency of the bowel sounds, was given. More-
over, they defined qualitative criteria for eliminating unwanted
signals resulting from friction, movement, and heart beats and
respiration.

An autonomous intestinal motility analysis system (AIMAS)
was developed for long-term unsupervised monitoring of bowel
sounds by Dimoulas et al. [12]. This approach used wavelets and
neural networks incorporating time domain and frequency do-
main features, and wavelet parameters. A block diagram show-
ing the different stages of the signal processing is displayed in
Fig. 8. The implemented wavelet neural network gave an ac-
curacy of almost 95%, although the author’s stated that “it is
estimated that AIMAS performance can be further extended.”

In their more recent work, Dimoulas et al. [13] developed
a hybrid expert system (HES) used for abdominal sound pat-
tern classification. Initially, an abdominal sound pattern analy-
sis scheme was implemented so that the desired signals and the
noise could be classified into specific groups. The abdominal
sound pattern taxonomy resulted in the following bowel sound
groups.

1) SCL: solitary clicks.
2) RCL: repeated clicks.
3) SICS: sequences of irregularly concatenated segments.
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Fig. 8. Development phases of the AIMAS project, [12].

4) CRSW: crepitating sweeps.
5) WSSW: whistling sweeps.

A complete description is given in [13, Table 2]. Additionally,
the different types of noise were separated into the following
groups.

1) SP: additive broadband noise.
2) RESN: respiration related noise.
3) SN: movement and friction noise.
4) AN: examination room noise.
5) IHS: heartbeat related noise.

The HES AIMAS was then used to classify all of the recorded
abdominal sounds. Standard machine learning techniques were
then used to split the data up in order to train and test the
algorithm, and the performance was validated using k-fold cross
validation. The samples were randomly split into train and test
data sets, which was repeated k-times until a local test error
minimum was found, resulting in trained centers with minimum
error. An overall classification accuracy of 94.3% was reported.

Kumar [71] took a different approach to bowel sound anal-
ysis (in addition to lung and heart sounds) using fuzzy logic.
Fuzzy logic systems are useful for obtaining information where
the variables in the system do not take on exact values. Instead
the variables are assigned a truth value, somewhere between 0
and 1, and are usually described using non-numeric linguistic
terms. For example, a temperature variable may be described
in terms of hot, warm, cool, or cold. These types of variables
are described by corresponding membership functions. A set of
rules are then applied to the membership functions, which are
interpreted by a computer as the control logic. Kumar defined
input variables including the presence or absence of sound and
duration of bowel sounds. Depending on the probabilities of
the input variables, a prediction whether the subject had paral-
ysis, peritonitis, perforation, large intestinal obstruction, small
intestinal obstruction or a normal condition could be made. The
advantage of this system was that a logical link between the
input features and the five conditions was retained.

IV. CONCLUSION

After reviewing the literature pertaining to acoustic signal
processing techniques for analysis of bowel sounds, the
following conclusions have be drawn. Data acquisition has

been achieved through the use of customized sensors using
electret condenser microphones and piezoelectric transducers,
in addition to commercial electronic stethoscopes. The choice
of which has depended on the constraints of the research aims,
such as cost and acquisition time. Although as demonstrated by
Dimoulas et al., piezoelectric transducers generally satisfy the
requirements whilst needing minimal additional electronics.

Following computerized analysis of bowel sounds, acoustic
characteristics have been extracted from signals in both the time
domain and the frequency domain. From the early 2000s, WTs
have enabled more complex features to be extracted. These
advanced feature extraction techniques have corresponded with
the introduction of machine learning methods in the analysis of
bowel sounds. Furthermore, higher order statistical analysis and
adaptive filtering has contributed to better signal enhancement.
However, more recently some researchers have abandoned some
of the more complex signal processing methods in favor of
simplified approaches, which require lower processing time and
are easier to interpret.

An attempt has been made by a few researchers to determine
the location of the origin of sounds produced in the abdomen.
However, progress has been limited due to the high speed and
long wavelength of the acoustic waves as well as the short transit
distances through the body and the nonuniformity of the bowel.

Different machine learning methods such as decision trees, di-
mension reduction, and clustering algorithms have been applied
to bowel sounds, although artificial neural networks including
back-propagation and radial basis function networks have often
been implemented for characterization of bowel sounds.

One of the most significant research groups in bowel sound
signal processing is Hadjileontiadis et al. The group has pro-
duced six publications in this field and have made substantial
progress in noise reduction and signal enhancement of bowel
sounds resulting from analysis of acoustic signals in both the
time domain and the wavelet domain. Currently, the best and
most complex analysis of signal processing techniques for ab-
dominal sounds has been performed by Kim et al., Ranta et al.,
and Dimoulas et al. Each of these groups have expanded on
the initial work by Hadjileontiadis et al. as well as others, to
produce a number of detailed approaches for analysis of bowel
sounds, including a constructive critique of methods used by
other researchers.
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