Abstract:
Extracting aspect terms and opinion terms are two fundamental tasks in opinion mining. The recent success of deep learning has inspired various neural network architectur...Show MoreMetadata
Abstract:
Extracting aspect terms and opinion terms are two fundamental tasks in opinion mining. The recent success of deep learning has inspired various neural network architectures, which have been shown to achieve highly competitive performance in these two tasks. However, most existing methods fail to explicitly consider the syntactic relations among aspect terms and opinion terms, which may lead to the inconsistencies between the model predictions and the syntactic constraints. To this end, we first apply a multi-task learning framework to implicitly capture the relations between the two tasks, and then propose a global inference method by explicitly modelling several syntactic constraints among aspect term extraction and opinion term extraction to uncover their intra-task and inter-task relationship, which seeks an optimal solution over the neural predictions for both tasks. Extensive evaluations on three benchmark datasets demonstrate that our global inference approach is able to bring consistent improvements over several base models in different scenarios.
Published in: IEEE/ACM Transactions on Audio, Speech, and Language Processing ( Volume: 27, Issue: 1, January 2019)