Classification, Denoising, and
Deinterleaving of Pulse
Streams With Recurrent
Neural Networks

ZHANG-MENG LIU
National University of Defense Technology, Changsha, China

PHILIP S. YU, Fellow, IEEE
University of Illinois at Chicago, Chicago, USA

Pulse streams of many emitters have flexible features and com-
plicated patterns. They can hardly be identified or further processed
from a statistical perspective. In this paper, we introduce recurrent
neural networks (RNNs) to mine and exploit long-term temporal pat-
terns in streams and solve problems of sequential pattern classifica-
tion, denoising, and deinterleaving of pulse streams. RNNs mine tem-
poral patterns from previously collected streams of certain classes via
supervised learning. The learned patterns are stored in the trained
RNNs, which can then be used to recognize patterns-of-interest in
testing streams and categorize them to different classes, and also
predict features of upcoming pulses based on features of preceding
ones. As predicted features contain sufficient information for distin-
guishing between pulses-of-interest and noises or interfering pulses,
they are then used to solve problems of denoising and deinterleaving
of noise-contaminated and aliasing streams. Detailed introductions
of the methods, together with explanative simulation results, are pre-
sented to describe the procedures and behaviors of the RNNs in solving
the aimed problems. Statistical results are provided to show satisfying
performances of the proposed methods.

Manuscript received January 24, 2018; revised June 1, 2018; released for
publication September 22, 2018. Date of publication October 4, 2018; date
of current version August 7, 2019.

DOIL. No. 10.1109/TAES.2018.2874139

Refereeing of this contribution was handled by H. Mir.

This work was supported by the National Science Foundation of China
(61771477).

Authors’ addresses: Z.-M. Liu is with the State Key Laboratory of
Complex Electromagnetic Environment Effects on Electronics and In-
formation System, National University of Defense Technology, Changsha
410073, China, E-mail: (liuzhangmeng@nudt.edu.cn); P. S. Yu is with
the Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607 USA, E-mail: (psyu@uic.edu). (Corresponding
author: Zhang-Meng Liu.)

0018-9251 © 2018 OAPA

1624

[. INTRODUCTION

Analyses of pulse streams play important roles in cate-
gorizing mixed data, locating emitters, and identifying their
attributes [1]. Three of the most widely studied topics in the
area of pulse stream processing are classification [2]-[4],
denoising [5], and deinterleaving [6]. These problems are
becoming more and more difficult nowadays, as the elec-
tromagnetic environment is much more crowded than ever
before due to fast developments and usages of various ad-
vanced communication [7], navigation [8], and radar [9]
systems.

A simple but previously effective idea for classification
is categorizing pulses according to their statistical features,
such as frequency, pulse width (pw), angle-of-arrival, and
so on [1]. Intrapulse features embedded in emitter signals
can also be exploited to categorize pulses [3], [4], but they
are not available in some applications when emitter sig-
nals are not retained due to heavy storage and transmission
burdens. Therefore, we only take into account the above-
mentioned descriptive features to address pulse processing
tasks in this paper. If pulses from more than one emitter can
not be separated directly with respect to statistical features,
the temporal feature of pulse repetitive interval (pri) has
been exploited via numerical clustering to make in-depth
analyses into interleaved streams [10], which falls into the
area of denoising and deinterleaving [5], [6]. This idea ex-
ploits the pri feature also from a statistical perspective, by
preassuming that typical pris of an emitter’s pulse streams
will be highlighted on the pri spectrum if the stream is
long enough [11], [12]. Some denoising and deinterleaving
methods have been proposed following this guideline, such
as cumulant difference histogram (CDIF) [6] and sequen-
tial difference histogram (SDIF) [13], and they have been
widely studied and used in the past few decades.

There are many significant shortcomings in these stream
processing ideas and methods. First, only sufficiently long
streams can be processed by them, that is because statistical
features can hardly be extracted from short streams stably,
such as the pri spectra [11], [12]. Moreover, counting statis-
tical characteristics to realize pulse processing can only be
realized after collecting all the pulses, which greatly blocks
online applications of these algorithms. Second, features
of pulses and pulse tuples are separated to obtain multiple
statistical characteristics to realize stream categorization,
while joint patterns between them and temporal long-term
patterns are abandoned, which causes losses to available
features. For example, streams consisting of pulses with
feature combinations (A, By) and (A,, B,) are undistin-
guishable from ones consisting of pulses with feature com-
binations (A, B;) and (A,, B;) if the features are consid-
ered separately. And long-term patterns are as important
as statistical features for processing streams consisting of
functional pulse tuples. Typical examples are streams of
advanced electronic systems, such as imaging radar [14].

Some theoretically intense methods, such as Kalman fil-
ter based methods [15], [16], hidden Markov model based
methods [17], [18], and multiple hypothesis tracking based

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

https://orcid.org/0000-0001-9472-279X

methods [19], have also been proposed to categorize pulses
of different emitters from mixed streams. They treat the
stream analysis problem like a signal processing one, and
introduce techniques in the latter community to solve the
former problem. The algorithmic processes of these meth-
ods work only when some preassumptions are met for the
streams, and they are a bit too complicated to be packaged
for practical usages.

In this paper, we introduce recurrent neural networks
(RNNS5) [20] to address the problems of classification, de-
noising, and deinterleaving of pulse streams. The usage of
neural networks in pulse stream processing dates back to
early 1990s [21]. In previous literatures, shallow networks
were reported to extract features of each pulse very well and
succeed to categorize pulses according to separated or joint
features [21]-[24]. However, the problem of pulse catego-
rization is rather simple when compared with the problems
of classification, denoising, and deinterleaving, and can be
well solved by other numerical methods [6], [11]-[13]. Re-
cent developments in the area of machine learning indicate
that deep neural networks have much enhanced abilities of
representation than shallow ones [25], and RNNs have been
used to gain satisfying results on many sequence processing
problems, such as machine translation [26], [27] and stock
price prediction [28].

The RNN is used in this paper to extract long-term
patterns (patterns that last for more than two successive
pulses) from previously collected streams via supervised
learning. A classification RNN is then established to map
these patterns to emitter class indexes, and a group of
forward/backward prediction RNNs are established to
understand the current context of the pulses and predict
features of upcoming pulses, so as to deal with denoising
and deinterleaving problems. A new representation of pulse
features is presented to prepare streams for RNN process-
ing, and detailed explanations are made on how the RNN
outputs contribute to the solution of the oriented problems.
The training and using of the RNNs for classification,
denoising, and deinterleaving are end-to-end. All the net-
work parameters are tuned automatically during training
based on inputted streams and outputted ground truths
(class indexes of streams and features of upcoming pulses),
and the trained networks output necessary information
when testing streams are inputted. No expert knowledge
is required during processes of training and testing of the
RNNs. Simulation results also show that the RNNs are
able to learn abstract (instead of determined) patterns in
training streams, such as flexible scopes of constant pris
and dynamic modes of stagger pris, and embody them to
deterministic values according to local contexts. Statistical
simulation results demonstrate the satisfying performances
of the proposed methods on classification, denoising, and
deinterleaving, despite of demanding settings of short
streams, missing pulses, and interferential noises.

The rest of this paper is organized as follows. Section 11
presents a new representation of pulse streams and pro-
vide clues for potential applications of the RNN in stream
processing. Then, the three problems of classification,

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

denoising, and deinterleaving are addressed in details in
Section ITI-V, respectively. Simulations are carried out in
Section VI to demonstrate the performances of the pro-
posed methods. Section VII makes some complementary
discussions on aspects of the research that are not covered
in the text. Section VIII concludes the whole paper.

[I. PROBLEM FORMULATION

In most previous literatures, pulse streams have been
described with multiple numerical features, including fre-
quency, pw, time-of-arrival, etc. [1]. Such a representation
well fits the requirements of statistical methods. But nu-
merical values can hardly be understood by machines, they
should be digitized and regularized to facilitate their usage
in machine learning models. We present a new representa-
tion of pulse streams in this section, and analyze prelim-
inarily why RNN techniques can be introduced to solve
the tasks of classification, denoising, and deinterleaving of
pulse streams.

A. Representation of Pulse Streams

Sequential patterns are intrinsic characteristics that dis-
tinguish pulse streams from random noise trains, and also
from pulse streams of other emitters. These patterns contain
not only statistical features of each pulse, such as frequency,
pw, and angle-of-arrival, but also how pulses emerge along
the time axis, which derives a new feature of pri [1]. Af-
ter categorizing pulses according to preliminary statistical
features, pri can be exploited as a major feature to separate
pulses-of-interest from noises and aliasing pulses of other
emitters [6], [13].

In this paper, we mainly exploit the pri feature to han-
dle the tasks of classification, denoising, and deinterleav-
ing of pulse streams, and also take pw into consideration
to show how the other features can be used jointly with
pri. In order to prepare for stream processing afterward, we
convert the widely used numerical representations of pulse

. priy prip pri, Pri,y .
streams, 1.e., — pwW; — -+ —> pW, —> -+, 10 dis-
crete event sequences as {pri;, pw,}, ..., {pri,, pw,},

In both representations, we append an extra pri of O before
the first pulse to facilitate stream description and process-
ing. Sequential patterns of consecutive pulses can then be
represented by a series of feature combinations {pri,, pw,, },
where pri is defined as the interval between the current
data sample and the previous one without distinguishing
pulses and noises. Each of the feature combinations con-
tains not only information about the characteristics of the
pulse itself, but also the preceding context close to it. By
processing feature combinations of successive pulses effec-
tively, the sequential patterns of long pulse streams can be
extracted and further exploited in testing streams.

The feature combinations are then digitized to obtain
regularized formulations. We introduce two large enough
upperbounds for pri and pw, and denote them by D,,; and
Dy, respectively. Outliers larger than the bounds are set to
0. Valid feature values in scopes of [0, Dyi] and [0, D,] are
digitized linearly with respect to units of dp; and dpy, i.e.,

1625

pw, pw, pw; pw,
- - - - - -
pri,=0 pri, pri, pri,
> L B | » >
t
Fig. 1. Pulse stream example with three pulses and one noise.

pridigital = Lprinumeric/ dpriJ and pwdigital = prnumeric/ dPWJ’
where subscripts (-)numeric and (-)gigital are used to indicate
numerical and digitized versions of features, |« | repre-
sents the largest integer not larger than «. After digitiz-
ing, pri and pw are represented by digits within scopes of
[0, | Dpri/dpiil] and [0, | Dpy, /dpy |1 with tolerable quanti-
zation errors. As we will mainly use digitized forms of the
features in this paper, the subscripts of (-)qumeric and (-)gigital
will be omitted for conciseness and digitized features will
be referred to by default unless otherwise stated.

In the following, we provide an example to explain
the new representation of pulse streams, as is shown in
Fig. 1. Four pulses are observed in total, with the three
represented by rectangles come from an emitter, and the
other one represented by a circle being noise. The emitter
pulses have a constant pri of 800 us. An emitter pulse is
lost between the two emitter pulses with their pws labelled
as pw, and pw,. The noise pulse is 500 ws apart from the
preceding emitter pulse. All four pulses have the same pw
of 2 us. Observation inaccuracies are not considered for the
pris and pws to simplify description.

The traditional representation of the pulse stream is

0 us 800 s 500 s 1100 us

—> 2 us —— 2 us

2 us 2 us.

The feature combination sequence is

{0 s, 2 us}, {800 s, 2 s}, {500 us, 2 us},
{1100 us, 2 us}.

After that, if we choose digitizing units as dy; =5 us
and dp,, = 0.2 us, the digitized representation of the pulse
stream is rewritten as

{0, 10}, {160, 10}, {100, 10}, {220, 10}.

Each of the digitized pris and pws can be represented
by a one-hot vector, with the location of its only nonzero
element of 1 indicating the value of the digitized features.
For example, if pri is upperbounded by Dy; = 5000 us
and digitized with a unit of dyi =5 s, then the one-hot
representation of 6.7 us is [0, 1,0,0,...,0]" € RIOIxI,
Similarly, if pw is upperbounded by Dy, = 4 us and digi-
tized with a unit of d,,, = 0.2 s, the one-hot representation
of 0.15 usis[1,0,0,0, ...,0]" € R*"*!. One-hot features
can be processed more easily by machine learning tech-
niques than their numerical counterparts.

However, one-hot features are much too sparse and may
make the learning process unstable. Researchers in the ma-
chine learning community have developed embedding ideas
to condense the dimension of the features to stabilize the
learning process [29]. This idea has gained great successes
in areas of natural language processing [29], recommen-

1626

dation [30], and so on. According to the embedding tech-
nique, the one-hot pri and pw features can be transformed as
follows:

€pri = E(pri)gpri (1)
and
€pw = E(pW)gpw 2)

where g, € RE7and g, € RE2*! are one-hot pri and pw
vectors, EPY ¢ Ri*L1 and EPY) € R2*L2 are embedding
matrices for the two features with /; <« Ly and [, < L,
ey € R and ey, € R2*! are embedded vectors. The
embedding matrices should be initialized properly and
trained via supervised learning.

Embedding matrices in (1) and (2) act like look-up ta-
bles. When a one-hot feature is given, one column of the
matrix is selected according to the location of the nonzero
vector element to represent the feature. The embedded fea-
tures are then fed to the neural networks as a train of inputs.
Well designed neural networks are required to extract inner
patterns within successive pulses, so as to identify differ-
ent emitters, and be aware of pulse contexts to distinguish
pulses from outliers.

B. How RNN Fits the Processing Tasks

Deep learning techniques have been developing fast in
the past decade, and systems based on the techniques have
been reported to reach or even surpass the level of human
beings [31], [32]. Two kinds of neural networks have been
widely used for deep learning, i.e., convolutional neural
networks and RNNs [25], [33]. The RNNs are designed
for processing sequential data and have gained great suc-
cesses in areas, such as machine translation and finance
[26]-[28]. They process sequential samples one by one to
extract information contained in streams [26], [27], or pre-
dict upcoming samples based on previous ones [28]. Some
of the successful applications of RNN are similar to the
pulse stream processing problems in this paper.

Emitters radiate pulse streams to implement certain
functions, which behave like human beings speaking out
sentences to express themselves. Sentences have been pro-
cessed with RNN for sentiment analysis in recent years
to judge whether the attitude of the speaker is positive,
negative, or neutral [34]. The networks read the embed-
ded words one by one, and extract information contained
in key words and phrases to distinguish between different
sentiments. Such networks are also expected to be able to
process pulse features sequentially, and extract distinguish-
ing patterns between pulse streams of different emitters.
There are preliminary patterns, such as particular values of
pri and pw, and also complicated patterns, such as dynamic
modes of successive pris. By extracting distinguishable pat-
terns from pulse streams, the trained RNN may succeed to
solve the problem of stream classification.

Another widespread application area of RNN is se-
quence prediction [28], [35]. RNNs have been used to pre-
dict upcoming data samples to forecast stock prices [28]

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

one— hot pri,

embedded pri,

Embedding embedded | pri,, pw, |

=

Concatenating

one— hot pw,,
embedded pw,,

. ' 1
//// Embedding : L
s

Fig. 2.

' GRUoutput
. probability
1 distribution

Classifier

Structure of the RNN for classification. Digitized one-hot features are embedded and concatenated to obtain an input vector f of the GRU

unit; the GRU unit processes the input vector and output state vector h; a fully connected layer transforms the GRU output to a probability distribution
vector.

and protein structures [35]. They extract stream patterns
from previously collected data, understand current context
based on preceding samples, and then succeed to predict
upcoming samples. Pulse streams are generally regularized
data trains, consisting of constant, periodic, or combina-
tional feature patterns. Features of pulses in the near future
are predictable based on these of the past ones. However,
practical pulse streams may be contaminated by noises or
interferential pulses, which cause negative effects to pat-
tern identification and prediction. Therefore, the RNN will
be introduced in this paper to predict features of upcoming
pulses based on that of the past ones, and distinguish be-
tween expected pulses and outliers, so as to realize stream
denoising and deinterleaving.

There have been long-lasting researches on RNN [33],
[36], and great progresses have been made in the machine
learning community since the proposal of long short-term
memory (LSTM) in 1997 [37]. LSTM introduces a forget-
ting mechanism into the original RNN framework, which
well solves the problem of vanishing gradients and suc-
ceeds to extract long-term patterns. The progresses con-
tribute a lot to the widespread applications of RNN [25],
[33], [38]. Recently, a gated recurrent unit (GRU) is pro-
posed as a substitution of LSTM [39], [40]. GRU has fewer
tunable parameters than LSTM, and gains comparable per-
formances in many applications. In this paper, we establish
GRU-based RNNs to solve the problems of classification,
denoising, and deinterleaving of pulse streams.

[ll. RECURRENT LEARNING FOR CLASSIfiCATION

In this section, we present our ideas for classifying pulse
streams with RNN. Detailed discussions will be provided
on the structure of GRU, how the embedded features are fed

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

into RNN for pattern learning, and how the trained networks
are exploited for testing.

A. Structure of RNN for Classification

A sketch of the classification RNN is shown in Fig. 2.
Digitized pris and pws at time instants of each pulse are
first represented with one-hot vectors, and then embedded
to lower dimensional features according to (1) and (2). The
two embedded features are then concatenated to form a
combined feature of x,, = [epn n €pw, T .17, which is the input
to the GRU module. This module extract sequential patterns
contained in pulse streams, and store them in the state of
GRU, which is denoted by h,, and also treated as the output
of this module. Finally, a fully connected layer is appended
to the GRU module to map its state vector to a probability
distribution along different classes.

Detailed algorithmic procedures of the GRU module
are described in (3)-(6) [39], [40]. Equation (3) describes
the update gate of GRU. In this equation, x, represents the
concatenation of embedded pri and pw at time instant n,
h,_, represents the GRU state at time instant n — 1 and
hy = 0, with each time instant corresponding to the arrival
of a data sample (may be a pulse or noise). The two vectors
are transformed linearly with respect to matrices W® and
U™, and then added with a bias vector b" to obtain the
final update vector z, via a logistic sigmoid function o (-).
In (4), a reset vector is obtained in a similar way with
the same input vectors but different tunable parameters.
Another group of tunable parameters of W, U, and b are
introduced to map inputs X, and h,_; to memory vector
f, using the new reset vector r, and a hyperbolic tangent
function tanh(-). In (6), the GRU state is updated from h,,_,
to h, based on the inputs and newly obtained update and

1627

reset vectors, and 1 is an all-one vector. In the equations, ®
stands for element-wise multiplication, and the dimensions
of tunable matrices and vectors can be derived from context

z, = O—(VV(M)Xn + U(u)hn—l + b(u)) (3)
r, = o(W"x, + U"h,_; +b") “4)
f, = tanh(Wx, +r, © Uh,_| +b) (5)
h, :anfn+(1_zn)®hn—l~ (6)

Denote the dimension of the GRU state vector by /, i.e.,
h, € R’*!, and the number of candidate classes by K, the
GRU state is finally mapped to a probability distribution
on classes ¢y, ¢a, ..., cx via a fully connected layer. The
mathematical model of this layer is

p=s(W”h, +b))

where W e RX>! is a weight matrix, b e R/*! is a bias
vector, s(-) is the softmax function.

Each element of the output vector p indicates the prob-
ability that the pulse stream belongs to a certain class. The
class with the largest probability is then chosen as the clas-
sification result.

B. Training of RNN Classifier

Many parametric weight matrices and bias vectors are
introduced for the implementation of RNN-based classifi-
cation. They should be tuned to output correct class labels
for pulse streams. An efficient way to tune the parameters is
supervised learning. That is, a set of pulse streams tagged
with true class labels is fed into the RNN, a probability
distribution will be computed based on current network
parameters. The estimated probability distribution is then
compared with the given label to calculate a loss, which
measures the deviation between the estimated and targeted
probability distributions. Finally, the parameters are tuned
to decrease the loss to obtain better classification results.
After several rounds of parameter tuning, the trained RNN is
expected to perform satisfyingly in classifying test streams.

Before training starts, the GRU state hy is initialized to
0, and all the weight matrices and bias vectors are initialized
randomly according to Gaussian distributions with variance
0.1. Each time when a new data sample is observed, the
corresponding pw and pri are digitized and transformed
to one-hot vectors. The one-hot vectors are fed into the
RNN, and then embedded and concatenated to form an
input vector x,, of the GRU module. The GRU module
processes the input vector according to (3)—(6) and finally
output a state vector h,,, which is updated recurrently when
new data samples arrive. When the last sample of a stream
has been processed, the final state vector is inputted to the
fully connected layer to obtain a probability distribution
estimate p = [p1, ..., px]’ € RX*! on the K classes.

The ground truth of the probability distribution estimate
associated with a stream is p=1[0,...,0,1,0,...,0]" €
RX>! with the location of the only nonzero element indi-
cating the true label. The estimate of the probability dis-
tribution vector may deviate from its truth for both zero
and nonzero elements, i.e., the estimated probability for the

1628

pulse no. 1 pulse no. 2

°
°

°
=

°

=

°
°

°

probability
o

probability

°

probability
o
=

°

|

0.0 05 10

°

25 30 0.0 05 10

15 15
class index class index

Fig. 3. Probability distribution estimates of the classifier RNN at
different time instants when tested on a pulse stream with stagger pris.

true class is smaller than 1, and these for the other classes
are larger than 0. A loss function is defined following the
binary cross-entropy criterion to evaluate the deviation of
the estimated probability vector from its groud truth, i.e.,

loss = =2/ [pr log(pr) + (1 — pp)log(1 — pp)l. (8)

The loss function reaches the only minimum of 0 when
P = p, and has positive values otherwise. The farther that
p deviates from p, the larger the loss will be. The training
process tunes RNN parameters to minimize the loss, and
gradually modifies the RNN to become a better classifier.

Backpropagation is the most widely used method for
minimizing loss functions in neural networks [41], [42]. It
calculates the derivations of the loss function with respect
to each tunable parameter [43], including elements of em-
bedding matrices, weight matrics, bias vectors, and then
modify the parameters along the opposite direction of the
derivations, i.e.,

dloss
o

where « represents any one of the tunable parameters, 7 is
a self-defined positive learning rate smaller than 1. Many
literatures have made in-depth discussions on the details
of backpropagation of RNN [43], [44], and most machine
learning platforms, such as Pytorch [45] and Tensorflow
[46], provide callable instructions for computing the gra-
dients automatically. Therefore, we skip over details of the
backpropagation process here and refer readers interested
in it to these literatures and platform documents for detailed
explanations.

Parameter settings and dataset descriptions for training
and testing the classifier RNN are delayed to Section VI.
Missing pulses and observation noises are included in the
datasets to better simulate practical pulse streams. As an
example to show how RNN behaves in classification, we
feed a noise-free stream with stagger pris to the RNN for
testing. The streams of this emitter have undistinguishable
statistical features from these of the other emitters, which
have constant pris, but have different long-term patters that
last for several successive pulses. Fig. 3 shows dynamic
probability distributions of the trained RNN after receiving
the first, second, fourth, and tenth pulses.

€))

Upew = Qold — 1]

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

When only one or two pulses have been received, the
RNN can not collect enough information to distinguish be-
tween different classes; thus, all the four classes have signif-
icantly nonzero probabilities. After receiving four pulses,
the probability of the third class vanishes to O as it has a
different pw from the received pulses, and the fourth class
now has a much larger probability than the first and second
classes, which have undistinguishable statistical features
from the fourth class. This phenomenon indicates that the
RNN has succeeded to gathered temporal patterns from very
limited successive pulses to complement statistical features.
When as many as ten pulses are processed, the probability
associated with the fourth class overwhelms these associ-
ated with the other ones, and the outputted probability vec-
tor approaches the ground truth of [0, 0, 0, 117 very well.

[V. FEATURE PREDICTION FOR STREAM DENOISING

In practical applications, pulse streams may be contam-
inated by interferential pulses from other emitters or ran-
dom noises, which are called observation noises or outliers
in this paper. Measurement inaccuracies in the features will
not be considered except in the simulations in Section VI,
and the term “noise” is used to indicate outliers exclusively
to avoid confusions unless otherwise stated.

In this section, we assume that pulse streams have been
classified correctly beforehand using the RNN presented in
Section III, and establish another RNN to realize feature
prediction of upcoming features and deal with the problem
of stream denoising.

A. Structure of RNN for Feature Prediction

Statistical features such as pw can be exploited before-
hand to filter out outliers that diverge largely in appearance
from pulses-of-interest, and the remained outliers are gener-
ally undistinguishable from pulses directly. A feasible way
to separate pulses from outliers is to make use of contextual
features, e.g., pri, according to a criterion that whether the
context centered at a certain data sample obeys the pattern
of an emitter’s pulse streams.

The feature prediction RNN has a structure shown in
Fig. 4. The digitized one-hot features are first embedded,
concatenated, and recurrently processed in the same way as
that in the classifier RNN shown in Fig. 2. The GRU output
state is then inputted to a fully connected layer to predict
features of the upcoming pulse separately. We take pri and
pw as pulse features in this paper, and mathematical models
of the output layer are

ﬁipri) — S(W(Pri)hn + b(Pri)) (10)
PP = s(WP¥h, 4+ ™) (11)

where superscripts (-)P™ and (-)®" indicate variables as-
sociated with features of pri and pw, respectively, subscript
(+), indicates variables corresponding to the nth time in-
stant, and s(-) stands for the softmax function.

The final outputs associated with the features are nor-
malized vectors, and they have the same dimensions as the
inputted one-hot feature vectors. Each element of the output

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

one— hot pri,

1
Embedding =
_

: Embedding

-

Concatenating

]
1 .
one—hot pw, . l .
1 -
. 1

V2 [
~/ Embedding *

Fig. 4. Structure of the RNN for next-pulse feature prediction. The
network has the same structure as the classifier RNN, except that the final
outputs divide into multiple vectors associated with different pulse
features.

vector indicates the probability of the next pulse feature tak-
ing a certain digitized value. Take the pulse stream in Fig. 1,
for example. Suppose that the prediction RNN is able to
distinguish the pulse features and temporal patterns of this
stream based on the first two pulses, i.e., constant pw of 2 us
and constant pri of 800 us. Then, bias-free pri and pw pre-
diction vectors should be pgp”) =[0,...,0,1,0,...,0]",
with 1’s index being 161,321,481, ... to indicate pri values
of 800 us, 1600 s, 2400 us, . .. by taking missing pulses
into account, and pgpw) =10,...,0,1,0,...,0]", with I’s
index being 11 to indicate a pw value of 2 us. According
to the predictions, the noise that departs from the second
emitter pulse by 500 us does not have an expected time-of-
arrival, thus, is distinguished as noise and skipped over to
the next data, which obeys the predictions and is processed
as a pulse for further predictions.

B. Training of RNN Predictors

The prediction RNN is trained with labeled pulse
streams beforehand to predict features of upcoming pulses.
Our training strategy of the prediction RNN is shown in
Fig. 5(a), where rectangles stand for pulses and circles for
noises, dashed, and arrowed lines point to pulses to be
predicted at each time instant. Pulse streams belonging to
known classes are simulated or collected with electrical
systems, and noises are added to the streams artificially to
enhance the robustness of trained RNNs. Each of the data
sample in the noise-contaminated streams are tagged with
a pulse or noise label. The streams are fragmentary as some
of the pulses are missed with a certain probability, and the
added noises interrupt the pri features.

During RNN training, data samples in the stream are
processed sequentially without discriminating pulses and
noises. However, only pulse features are taken as ground
truths for RNN prediction. Moreover, both forward and

1629

(a) Training for next — pulse prediction

forward prediction

PW,.s PW,., PW,_ pw, PW,i1 PWyio PW,.3 PWnia
A" ‘<> ‘<> A" \4» ‘<>
- * - ~
> > > > < P> > > -
pri,_; pri,_, pri,_, pri, pri, ., Pl’im,z prin+3 pri, ., pri,.s t
4 v - - - A -
v v o
backward prediction
(b) Start — pulse choosing
forward prediction
(priy 5, pw,) (pri,_y, pw, o) (i, pw, i) (pri,,pw,] (priy..pW,..)(pris.. pw,..) [Priyes, pW,.s) (Priyess PWea)
N
o 0 A < 7 N o <
. -~
>
« - « - ¢
Dpri Dpri
(c) Next — pulse prediction for denoising
forward RNN warm—up forward prediction for denoising
PW,_; pw,_, PWn_y bW, PW i1 PW,.2 PWnis
- - « Jo s Nl Rls
«»
a > > > -
> > > i . i i
i i i pri, ., ri pri,., pri,.,
Pri .~ pri,_; o pri, - n+ pri,., < n+ n t
backward prediction for denoising backward RNN warm—up

Fig. 5. Sketch map for training and using prediction RNN. (a) Forward and backward RNN are trained by processing pulses up to a certain time
instant and taking next-pulse features as ground truths. (b) Pulse, together with its context, that best obeys the learned sequential patterns is chosen as
a start-pulse for denoising. (c) Forward and backward denoising are applied after warming up.

backward RNNs are trained for each class to mine and
exploit bidirectional patterns in pulse streams. We take
the four-sample stream in Fig. 1 for example to explain
more concretely the training process. The stream samples
have tags PPNP, where P stands for pulse and N for noise.

priy

. . . pn
The numerical representation of the stream is —> pw, —>

priy priy . .
pw, — pw; — pw,, and the event-like representation

is {{pri}, pw,}, {pri;, pw,}, {pris, pws}, {pris. pw,}} with
pri; = 0. The feature combinations are processed by a
forward RNN one-by-one, and the corresponding ground
truths at the four time instants are {{pri,, pw,}, {priz +
prig, pw4}, {priy, pw4}, {—, —}}, where the noise is skipped
over in the expected prediction outputs and the last pro-
cessing step has no outputs. The inversed formulation of the
stream is {{pri;, pw,}, {priy, pw3}, {pri3, pw,}, {pri,, pw, }}
with pri; =0, and the ground truths of prediction are
{{priy + priz, pw,}, {priz, pw,}, {priy, pw,}, {—, —}}.
Denote the outputted feature vectors of the prediction

RNN by f)E,pr_i) and pP", and the corresponding ground
truths by pP™ and pP™, which are one-hot formulations

of the upcoming pulse features. Then, the prediction loss at
time instant n is

loss, = nloss®™ + nylossP™ (12)

where loss"™ and loss{"™ are cross-entropy loss functions
between (PP, pP™) and PP, pP™) defined in a similar

way as that in (8), and 7, and 7, are weight coefficients

1630

indicating different importances of pri and pw prediction
accuracies. In this paper, we set ; = 1, = 1 for simplicity.

The total loss of the RNN for predicting a whole noise-
contaminated pulse stream is calculated by cumulating
losses at each time instant, i.e.,

Loss = = loss, (13)

where N represents the length of the stream. It should be
noted that some of loss,, are set to O when 7 is close to N
and there are no upcoming pulses. The total loss is then
used to tune RNN parameters via backpropagation as that
in (9).

Another important issue in feature prediction is the
scope of pri and pw, i.e., Dyi and Dp,, in Section II-A.
Dy, can be set according to the statistical mean and stan-
dard deviation (STD) of pws in a certain class, and the
setting of Dy, is relatively complicated. More concretely,
Dy,i should be large enough for the RNN to predict the time
instant of the next pulse in despite of missing pulses, and
meanwhile, too large pri s may be very difficult to predict as
they seldom emerges in training datasets. Detailed settings
of Dy, and Dp,; will be made clear in Section VI, and we
mention them here to complete the introduction for testing
the prediction RNN.

C. Using RNN Predictors for Denoising

In the classification task, the RNN is trained and tested
in the same way by processing each pulse stream from
start to end, and outputs a classification result when all the

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

pulses have been processed. However, denoising via next-
pulse prediction is a sequential task, only pulse features
(with noises skipped over) are taken as ground truths of
RNN output during training. The testing process is dynamic
and more complicated. Data samples of a to-be-denoised
stream should be distinguished one-by-one in a temporal
order to determine whether they are pulses or noises. Pulses
will be remained for future processing and predicting, and
noises will be skipped over to avoid causing interferences
to temporal patterns of successive pulses.

A brief sketch of using the trained prediction RNN for
denoising is shown in Fig. 5(b) and (c). The pulse stream is
first processed with the forward RNN sample-by-sample,
since no prior information can be exploited to distinguish
pulses from noises. A confidence degree is computed for
each sample as follows:

B =52, p0"

Ja

(14)

where Q represents the number of data samples with tem-
poral distances smaller than D,,; from the current sample,
iy and j, are indexes of digitized temporal distance and
width of the gth upcoming sample in p®? and p®V. For
example, in Fig. 5(b), there are two samples with temporal
distances smaller than D,,; with respect to the pulse indexed
by n — 3, thus Q = 2, i and i, equal to digitized values of
pri,_, and pri,_, + pri,_;, and j; and j, equal to digitized
values of pw,_, and pw,,_,.

The confidence degree indicates how much the context
of each sample obeys the temporal pattern of emitters in a
certain class, the better the pattern is obeyed, the larger the
degree will be. Two major factors contribute to the degree.
One is whether the prediction RNN is well warmed-up
based on previous data samples, the other is how much the
subsequent samples within a temporal scope of [0, Dyl
is consistent with the predicted features in p® and pP*.
Noises generally have small confidence degrees, since the
RNN state may be significantly interfered by processing a
new {pri, pw} combination of a noise, which does not obey
the stream pattern, and features of the pulses following up
can hardly be predicted as they do not have regularized pri
s with respect to the noise. The larger the confidence degree
is, the more probable the data sample is actually a pulse, and
the better the features of upcoming pulses can be predicted.
Therefore, we tag the sample with the largest confidence
degree as a pulse, and choose it as the start-point of the
forward/backward denoising processes.

After selecting the starting pulse, we first warm up the
forward prediction RNN by processing the substream be-
fore the selected pulse, as is shown in Fig. 5(c). Then, in
the rest of the stream, we update pri and pw probability
distributions of p® and p®* after processing each pulse,
and distinguish each upcoming pulse by evaluating how
much its features match the predictions. All samples with
temporal distances smaller than Dy,; from the current pulse
are evaluated according to a matching score defined as

B =pPp (15)

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

1000

2000

i (us)

23000

2.51
4000
3.01
5000 P S ||

1000 2000 3000 4000 5000 o 1 2 3
pri (us)

pw (us)

(a) (b)

Fig. 6. Row-wise coherence of the weight matrices in the output layer
of the denoising RNN. (a) WP™_ (b) WPW),

where i and j are indexes of the sample’s digitized temporal
distance and pw in p®™ and p®V. The sample with the
largest matching score is chosen as the next pulse, and all
the other samples between the current and the chosen pulses
are tagged as noises.

When the forward denoising process has been com-
pleted, we exploit the trained backward RNN to denoise
the preceding substream of the starting pulse. The tagged
noises are skipped over during the warm-up procedure of
the backward RNN, and the prediction for denoising pro-
cedure begins at the initially chosen starting-pulse, as is
shown in Fig. 5(c).

A major concern may arise on the ability of the de-
noising RNN for predicting diversed feature values. Take
pri for example, the time instant of the next pulse may be
pri, 2pri, . . . in a stream with constant pri due to pulse miss-
ing. As pri is significantly nonzero, these feature candidates
are much diverged in value, then how can the prediction re-
sult pP™ be able to indicate all the possibilities of the next
pri?

Actually, all information about the possibilities of can-
didate feature values are contained in the GRU output h,,,
which is then mapped onto the feature spectra p.’ ™ and pPV
using mapping matrices W®? and W®"), The similarity of
different feature values in the prediction space can be in-
dicated by the coherence between different rows of W®
and WP In Fig. 6, we plot grey images of the coherence
matrices associated with a denoising RNN trained for an
emitter with constant pri between 700 us and 900 us and
perturbed pw with a mean of 3 us. It can be concluded from
the matrices that rows of W®™ corresponding to harmon-
ics of a certain pri within [700 us, 900 ws] are exclusively
correlated with each other, which means that if the GRU
module is able to learn the constant pri pattern from pre-
ceding pulses, the output layer will map the GRU state to
harmonics of the stream’s basic pri. The pw cohenrence
matrix also indicate that values close to 3 us are strongly
recommendated by the RNN. Therefore, if the RNN is able
to learn stream patterns from preceding pulses correctly,
the output layer will map the state vector to numerically
diversed but contextually close feature candidates.

In Fig. 7, we provide more concrete results to describe
the behaviors of the denoising RNN in feature prediction.
Two forward denoising RNNs are trained for two emit-
ters in Section VI, one has a constant but unknown pri

1631

|

H W,WJMMMM_WW

1000

probability

6

0.004

0002

0.000] Amdian]
G

3000
pri (us)

(b)

probability
probability

——
5| paee
=

P
pw (us)

()

00 500
pri (us)

©

probability
probability

os l ; o1
o0 o0 L1l
5w O G o 1 s W

500 3000
pri (us)

P
pw (us)

© (®

Fig. 7. Behaviors of forward denoising RNN in predicting next-pulse
features. (a) pri prediction spectrum of the second pulse in a constant pri
stream. (b) pri prediction spectrum of the second pulse in a stagger pri
stream. (c) pri prediction spectrum after processing ten pulses in a stream
with constant pri of 975 us. (d) pw prediction spectrum after processing
ten pulses in a stream with perturbed pw having a mean of 2 us. (e) pri
prediction spectrum after processing ten pulses in a stream with stagger
pri of 780 1¢s/880 ws/1080 ws/1280 ws. (f) pw prediction spectrum after
processing ten pulses in a stream with perturbed
pw having a mean of 3 us.

within the scope of [700 us, 1200 ws], its pw has a mean
of 2 us and STD of 0.1 ws; the other has stagger pris
/(t + 100us)/(t + 300 us)/(r + 500 us) with t selected
randomly within [700 us, 800 us] for each stream, its pw
has a mean of 3 s and a STD of 0.1 us. Then, two noise-
free complete pulse streams with a constant pri of 975 us
and stagger pris with 7 = 780 us are inputted to the two
RNNS, respectively, for feature prediction. Detailed settings
of the two emitters can be found in Section VI labelled as
emitters of Class 3 and 4.

Fig. 7(a) and (b) shows the p® s of the two RNNs af-
ter receiving the first pulse. Although no information about
the pri is contained in the first data sample, the predicted
pri spectra are still able to indicate pri scopes of the next
pulse. The second pulse of the stream with constant pri is
expected to emerge after 700—1200 s with high proba-
bilities, and if this pulse is missed, the temporal distance
will be 1400-2400 ps with lower probabilities. This scope
overlaps with the distance scope of [2100 us, 3600 us]
when two successive pulses are both missed. The next pri
of the stagger stream has more special characteristics, as is
shown in Fig. 7(b). Each of the single pris in the stagger
pri sequence of 780 ws/880 ws/1080 ws/1280 us and the
sum of any two or more successive pris are indicated by the
probability distribution.

1632

When as many as ten pulses have been received and
processed, the prediction spectra of the next pri and pw are
shown in Fig. 7(c)—(f). The predicted pw [see Fig. 7(d)]
and pri [see Fig. 7(c)] of the first stream concentrate around
2 pus and on harmonics of the basic pri of 975 us, and
slight deviations exist due to measurement noises in the
training dataset. For the stream with stagger pris, the tenth
pulse with a pri of 780 s has just been processed, and the
upcoming pris should be 880 us, 1080 us, 1280 us, 780 us,
... in atemporal order, therefore, the time instant of the next
pulse should be 880 s, 1960 us, 3240 us, 4020 us, etc.
Candidates within [0, 5000 us] have all been indicated by
the predicted pri spectrum in Fig. 7(e). The predicted pw
concentrates around 3 us in Fig. 7(f).

The results in Figs. 6 and 7 imply that the prediction
RNNs are able to mine and store abstract temporal patterns
in streams of a certain class during training, and understand
the current context and embody originally dim patterns ac-
cording to detailed features in the testing stream, such as
refining pri values within a certain scope or determining
a certain stagger mode. Moreover, different probabilities
of feature estimates also indicate diverged chances of up-
coming pris and pws. If pulses of a stream are missed with
the same probability p,,, then the cumulant probability of
missing g successive pulses is p,(1 — p,,), which decays
with ¢. Therefore, probabilities of predicted pris according
to higher order harmonics decrease in Fig. 7(a)—(c) and (e).

V. DEINTERLEAVING VIA ITERATIVE DENOISING

Interleaved pulse streams contain multiple substreams
radiated by different emitters. From the perspective of each
emitter, the interleaved stream can be deemed as a noise-
contaminated one, and may be processed using the denois-
ing RNNs. Actually, the denoising RNNs do help to solve
the deinterleaving problem, but two major differences be-
tween the denoising and the deinterleaving problems should
be considered during this process. First, it is difficult to
classify interleaved streams using the classification RNN
proposed in Section III before deinterleaving them. That
is because the classification RNN is designed to output a
single class label, and is unable to analyze the substream
components in detail and output multiple labels for them.
Second, a deinterleaving task requires extracting each of
the substreams associated with the interleaved emitters, in-
stead of focusing on a certain substream and eliminating
the rest ones.

Due to these reasons, we skip over the classification
procedure before deinterleaving, and integrate all prediction
RNNs corresponding to each candidate class to propose a
deinterleaving sketch, as is shown in Fig. 8. Substreams
belonging to each emitter are extracted from the original
stream in an iterative manner, and the remained stream is
processed according to the same procedures until very few
pulses are left behind.

Each iteration of stream deinterleaving follows a sim-
ilar procedure as denoising. But as the stream class is not
known beforehand, all the trained forward denoising RNNs

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

original pulse stream

: \J \J \J '
i RNN RNN RNN

O# #2 #M .
'----------------v ---------------

m-th RNN, n-th pulse

v
forward deinterleaving

v
backward deinterleaving

undeinterleaved pulse
stream

v

stream too short?

,ves
END

Fig. 8. Integrated deinterleaving sketch based on trained denoising

RNNSs of all classes.

are used to process the interleaved stream and choose a
starting-point according to (14). Then, the largest confi-
dence degree associated with the mth denoising RNN and
the nth data sample is chosen for starting the current deinter-
leaving iteration. Forward and backward prediction based
deinterleaving procedures are then implemented in the same
way as that shown in Fig. 5(c), and a substream can be
extracted when the backward deinterleaving process is fin-
ished. The deinterleaved pulses are deleted from the origi-
nal stream, and the remained stream is inputted for a new
deinterleaving iteration.

In Fig. 9, we provide a descriptive sketch of the dein-
terleaving procedures by showing detailed steps for dein-
terleaving a stream consisting of rectangles and triangles.
Two groups of forward and backward denoising RNNs are
assumed to have been trained beforehand for the rectangle
streams and triangle streams, respectively, and we denote
them by REC-RNN and TRI-RNN. In step (a), both forward
REC-RNN and TRI-RNN are used to process the stream se-
quentially, and confidence degrees are calculated for each
data sample according to (14). Suppose that the line-filled
rectangle has the largest confidence degree according to
the REC-RNN, the REC-RNN, and the line-filled rectangle
are chosen for starting this deinterleaving iteration. For-
ward and backward denoising procedures are implemented
in turn to extract rectangles from the original stream. This
deinterleaving iteration may be not perfectly accurate, and
some of the rectangles are left behind in the remained stream
when this iteration is finished. Then, the remained stream is
processed in a second iteration. By choosing the TRI-RNN
model and a proper starting pulse, the triangle substream
can be extracted via forward and backward deinterleav-
ing procedures. When the second iteration finishes, only a
few rectangles and triangles are left behind. The remained

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

stream is shorter than a user-defined threshold and the dein-
terleaving procedure is terminated.

VI, SIMULATIONS

In this section, we carry out simulations to demonstrate
the performances of the RNN-based classification, denois-
ing, and deinterleaving methods. The simulation settings
are much different from the ones addressed in previous
literatures. The streams considered in this paper are gen-
erally very short, incomplete and noise-contaminated, and
pulses of different emitters can hardly be distinguished us-
ing statistical features. Most of existing methods fail in
such circumstances and cannot be used as baseline meth-
ods for performance comparison. Therefore, we concen-
trate mainly on the behaviors of the proposed methods in
this section.

A. Simulation Settings

Five classes of pulse streams are considered in this sec-
tion, with their attributes listed in Table 1. Stream features
of different classes overlap in a statistical perspective, and
can hardly be categorized straightforwardly.

Gaussian distributed deviations (STD) are added to pri
and pw observations to simulate measurement noises, and
the pris of emitters belonging to the first four classes are
set within a certain scope to increase the difficulty of the
processing tasks. The fifth emitter class has stagger pw
and pri features that can hardly be distinguished from each
of the other classes directly, so as to further increase the
difficulty of classification and deinterleaving. In each of the
training and testing streams, a certain t is selected and kept
unchanged throughout the stream.

Missing pulses and observation noises are included in
training and testing streams of the classification and de-
noising tasks. Each pulse is assumed to miss with a certain
probability p,,, and noises are added between each two
adjacent pulses with their number obeying a poisson distri-
bution with a mean of p,(1 — p,,). In this way, the ratio of
noise number to pulse number is guaranteed to be p,, in av-
erage in the streams. Noise pws obey the same distribution
as pulse pws in the same stream, and their time instants are
selected randomly. In interleaved streams, no noises are in-
cluded, and substreams belonging to different emitters are
generated with the same missing probability p,, and then
interleaved with respect to an initial time shift randomly
chosen within [0, Dy]. The number of samples (including
both pulses and noises) in each stream in denoising tasks
and also that of pulses in each substream in deinterleaving
tasks are set randomly within [20, 25]. Stream lengths in rel-
atively easier classification tasks are shortened to the scope
of [10, 15]. During RNN training for both classification and
prediction, p,, and p, are fixed at 0.5 and 0.2, respectively.
But different values of p,, and p, are chosen during test-
ing, so as to show the generalization ability of the trained
networks. A deinterleaving process is terminated when the
remained stream is shorter than 10 or the iteration number
exceeds 5.

1633

(al) Start — pulse choosing via REC — RNN

forward prediction

“ O e “ “ LN

i e | \ || 1] -
- - t
Dpn
(bl) Forward deinterleaving of rectangles
REC—RNN warm —up | predicting for deinterleaving
“ - Al "t - - -
g »

(c1) Forward deinterleaving of triangles

TRI — RNN warm—up predicting for deinterleaving

N

>
t

(a2) Start— pulse choosing viaTRI — RNN

forward prediction

“ “ Al R et - “ “ -
N
L) N \ | ol - -
DR - - t
Dprv
(b2) Backward deinterleaving of rectangles
predicting for deinterleaving | REC—RNN warm —up
» - r - - -
g >
t
(c2) Backward deinterleaving of triangles
predicting for deinterleaving | TRI — RNN warm—up
14 > 14 14 - - - »
N
>

t

Fig. 9. Visual sketch of deinterleaving a stream consisting of rectangles and triangles. (a) Choose denoising RNN and starting pulse by comparing all
candidate RNN and pulse choices. (b) Deinterleaving rectangles via forward and backward denoising. (c¢) Deinterleaving triangles via forward and
backward denoising.

TABLE I
Attributes of Simulated Stream Classes

pw type pw mean pw STD | pri type pri mean pri STD
class 1 | constant 3us 0.1us constant T € [700us, 900us] 2us
class 2 | constant 3us 0.lus constant T € [1000us, 1200us] 2us
class 3 | constant 2us 0.1us constant T € [700us, 1200us] 2us
class 4 | constant 3us 0.1us stagger | 7/(7+ 100)/(7 + 300) /(7 + 500) with 7 € [700us, 800us] 2us
class 5 | stagger | 2us/2us/3us/3us 0.1us stagger 7/(T 4+ 100) /(7 4+ 300) /(7 4+ 500) with 7 = 800us 2us

A classification RNN is trained for distinguishing each
stream among the five classes in Table I, and a group of
forward/backward prediction RNNs are trained for each of
the classes. Ten thousands of streams are generated to train
each of the RNNs, while the forward and backward pre-
diction RNN of the same class share the same group of
training datasets. The RNNs are trained on the platform of
Pytorch [45] with a batch size of 64 and a learning rate
of n = 0.05. Each of the batch is selected randomly from
the corresponding dataset, and 5000 batches are selected in
total to train each RNN. The pri feature is upperbounded
by Dpi = 5000 us, and digitized with a unit of dy; = 5 us,
and the pw feature is upperbounded by Dy, = 3.5 us, and
digitized with a unit of dp,,, = 0.2 us. Thus, the dimen-
sions of the one-hot pri and pw features are L; = 1001 and
L, = 18. The two features are embedded to vectors with
dimensions /; = 120 and /, = 8 according to (1) and (2),
respectively, and the dimension of the GRU input x has a
dimension of 128. The dimension of the GRU output vector
h is also set to be [= 128.

B. Classification

Five thousands of testing streams are generated in to-
tal, with each stream belonging to one of the five classes
with randomly chosen t according to Table I. Four pulse
missing probabilities of p,, = 0.0, 0.2, 0.5, 0.7 are set for

1634

Probability of Missing: 0.0 Probability of Missing: 0.2

S

o
o

o
©
°
©

o

©
o
©

o

<
°
3

—e— class 1
= class 2
0] —— class 3
—— class 4
0.5| —— class 5

—e— class 1
—m— class 2
—— class 3
—4— class 4
—*— class 5

Probability of Detection

°
>
Probability of Detection

o
>

o
[

0.0 02 0.4 06 08 10 0.0 02 04 0.6 08 10
Noise Ratio Noise Ratio

(a) (b)

Probability of Missing: 0.5 Probability of Missing: 0.7

o
©

o =
© °

o
©
o
©

—o— class 1
= class 2
—4— class 3
—— class 4

—*— class 5

)
<

0.7 —e— class1
= class 2
—— class 3

0.6/ —#— class 4
—— class 5

Probability of Detection
Probability of Detection

°
o

0.0 02 0.4 0.6 08 1.0 0.0 02 04 0.6 08 1.0
Noise Ratio Noise Ratio

(© (d

Fig. 10. Classification performance of streams belonging to the four
classes for different p,, s when p,, varies from O to 1. (a) p,, = 0.0.
(b) Pm = 0.2.(¢) Pm = 0.5.(d) Pm = 0.7.

the streams, and noise-to-pulse ratio p, varies from 0.0 to
1.0. The classification performance is evaluated in terms of
detection probabilities, i.e., the ratio of correct classifica-
tion number to total stream number for each class. Fig. 10

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

shows detection probabilities of all the five classes under
different settings.

It can be concluded from Fig. 10 that streams belonging
to the third class are classified with probability 1 in all en-
vironments. That is because their pw are totally 2 us, while
the pws of the other classes are totally or partially 3 us. The
pw feature distinguishes streams belonging to the third class
well from these belonging to the other classes. Such a re-
sult indicates that different features provide complementary
information in solving steam processing tasks. The classi-
fication performance of the fifth class deteriorates slightly
from that of the third class, that is mainly because the pw
feature now partially overlaps with that of the other three
classes, and the difference will be more difficult to track in
cases of large missing probabilities and noise ratios. De-
tection probabilities of streams in classes 2 and 4 decrease
with p, in a similar manner for different p,, s. When p, is
as large as 1.0, the classification probabilities is still higher
than 50%. The reason for the performance deteriorations is
that observation noises emerge between pulses randomly,
causing great damages to originally regularized pri pat-
terns, and making them undistinguishable from streams in
the other classes. The classification probabilities of streams
in class 1 are very high when p,, is small, and only de-
crease slightly with increasing p,. However, for larger p,,
s, the probabilities decrease more quickly with p,. That is
because only large pris exist in streams with high missing
probabilities, and the smaller pris, which distinguish class 1
from classes 2, 4, and 5, disappear partially in the streams.

C. Denoising

A sketch of training and testing the forward and back-
ward denoising RNNs for each class is shown in Fig. 5.
A slight modification is made in the simulations to take
measurement inaccuracies of pri and pw into considera-
tion, i.e., a small neighborhood of 5 units are included to
calculate the confidence degree of each sample for pre-
diction, and p™™ and pP" are replaced by £2__,pP")

) p; D; placed by 2x__»Dita

and Ei:_z ﬁ;‘r’g, respectively, in (14) and (15). Three hun-

dreds of noise-contaminated streams are generated for each
class to evaluate the performance of the method in each
environment.

As the aim of denoising is to distinguish observation
noises from pulses, we count the numbers of three different
kinds of pulses for the performance evaluation:

1) true positive (TP): noises being detected as noises;
2) false positive (FP): pulses being detected as noises;
3) false negative (FN): noises being detected as pulses.

And two criteria of precision and recall are calculated
to evaluate denoising performances [47]

.. TP (16)
recision = ——
P TP + FP
TP
recall = ———. (17)
TP 4 FN

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

0.950

0.925

0.900

0.875

0.850

Precision

0825 —e— class 1 —e— class 1

—m— class 2 —&— class 2
—+— class 3 0.04| —&— class 3
—— class 4 —— class 4
—+— class 5 093 ™ class 5

0.800
0.775

0.750
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Noise Ratio Noise Ratio

(a) (b)

0.995
0.990
0.985

T 0.980

Precision

g
&
0.975
—o— class 1
0.970
—— class 4 0.965
0.70] = class 5

0.960
00 01 02 03 04 05 06 07
Probability of Missing

(© (d)

—o— class 1
—m— class 2
—— class 3
—— class 4
—— class 5

00 01 02 03 04 05 06 07
Probability of Missing

—e— class 1
0.95) —m— class 2
—4— class 3
094/ —#— class 4
—— class 5

0.0 0.1 0.2 03 0.4 05
Probability of Missing

(® (6]

06 07 00 01 02 03 04 05

.. . . 0.6 0.7
Probability of Missing

Fig. 11. Denoising performance of streams belonging to the four
classes for different p,, s and p, s. (a) and (b) Show precision and recall
with fixed p,, = 0.5 and varying p,, from 0.1 to 1. (c) and (d) Show
precision and recall with fixed p, = 0.2 and varying p,, from 0 to 0.7.
(e) and (f) Show precision and recall with fixed p, = 0.5 and varying p,,
from 0 to 0.7.

The criterion of precision indicates the ratio of actual noises
in the collection of samples being detected as noises, and
recall indicates how many of the observation noises are
correctly detected as noises.

In the simulations, we fix one of p,, and p, and vary the
other one within a certain scope. The obtained statistical
precision and recall are shown in Fig. 11. In Fig. 11(a) and
(b), pn is fixed at 0.5 and p, varies from 0.1 to 1, and
precision increases with p, while recall decreases. That
is because the number of FP does not change largely for
different p, s, and precision increases with the number of
TP when p, increases and more noises are contained. But
for larger p, s, noises have more chances to emerge at
neighborhoods of missed pulses and will be misdetected as
pulses, so recall decreases slightly with p,. However, recall
is still larger than 90% when p,, is as larger as 1, which
indicates that the prediction RNNs have satisfying abilities
in distinguishing pulses from noises even in highly noisy
environments.

We then fix p, at 0.2 and 0.5 and vary p,, to obtain
precision and recall in Fig. 11(c) and (d) and Fig. 11(e)
and (f), respectively. The recalls are close to 1 when the
streams are complete, i.e., p,, = 0, and are still larger than
0.96 and 0.93 for p, = 0.2 and p, = 0.5 when p,, is as
large as 0.7. The results again demonstrate the ability of

1635

TABLE I
Probabilities of Correct Deinterleaving

Probability of Missing: 0.3
c1 co c3 c4 cs
c1 | 0920 | 0977 | 0981 | 0.965 | 0.922
c2 0.920 | 0.983 | 0.960 | 0.931
c3 0.954 | 0.984 | 0.936
cq 0.933 | 0.921
cs 0.864
Probability of Missing: 0.5
c1 c2 c3 N cs
c1 | 0902 | 0.966 | 0.980 | 0.955 | 0.913
c2 0913 | 0981 | 0.959 | 0.925
c3 0.934 | 0970 | 0917
cq 0.873 | 0910
cs 0.839
Probability of Missing: 0.7
C1 Cc2 C3 C4 C5
c1 | 0.865 | 0.941 | 0.966 | 0.927 | 0.904
co 0.892 | 0.954 | 0.924 | 0915
c3 0.902 | 0.959 | 0.904
c4 0.840 | 0.899
C5 0.810

the prediction RNNs in distinguishing pulses from noises.
However, precision decreases faster with respect to p,, than
recall, that is mainly because more pulses are not detected
during prediction due to heavier interferences in RNN states
caused by noises. Moreover, we obtained larger precisions
for p, = 0.5 than p, = 0.2, just because TP is larger in the
former case.

D. Deinterleaving

Interleaved streams are deinterleaved with the trained
denoising RNNs following the sketch shown in Fig. 8.
Pulses in aliasing streams may be deinterleaved correctly or
incorrectly, or left behind when the deinterleaving process
is terminated. The performance of deinterleaving is evalu-
ated according to the ratio of correctly deinterleaved pulses
to the length of the original stream.

The missing probabilities of the substreams are set to be
pm =0.3,0.5,and 0.7. For each p,, and each combination of
two streams generated from the class set {cy, ¢2, ¢3, ¢4, 5},
300 streams are generated for deinterleaving, and the ob-
tained statistical probabilities of correct deinterleaving are
shown in Table II.

Most of the deinterleaving probabilities are larger than
92% when p,, = 0.3, and do not decrease significantly when
pm increases from 0.3 to 0.7, which indicates that the predic-
tion RNNs perform satisfyingly even when the streams are
highly incomplete and interfered heavily by other emitter
streams. Aliasing streams can be deinterleaved more easily
when one of the substream belongs to class 3, as pulses of
streams belonging to this class have a more distinguishable
pw feature, and its pri feature is simple. Interleaved streams
corresponding to the class combination of {c;, ¢, } also have

1636

very large deinterleaving probabilities for different p,, s,
that is because streams belonging to the two classes both
have easily recognizable constant pri patterns. However, as
substreams of class 4 have more complicated stagger pris,
and the pri values overlap with that of the other classes, the
interleaved streams with a substream generated from class
4 have slightly smaller deinterleaving probabilities than
streams generated from class combinations of {c;, ¢z, c3}.
Substreams generated from class 5 have coupled pw and
pri patterns, both of which are stagger and change syn-
chronously, the complex patterns make their pulses very
difficult to track. As a result, when a substream of the in-
terleaved streams is generated from class 5 and the other
substream from one of the other classes, the deinterleaving
probabilities further lowers but is still higher than 90% in
most of the cases considered.

A more demanding task is deinterleaving streams con-
sisting of substreams with similar or the same patterns,
such as combinations of two substreams generated from
the same class in Table I. The deinterleaving probabilities
in such environments decrease by about 5% to 10% due to
the hardly undistinguishable patterns of the two interleaved
substreams. The deinterleaving performance becomes the
worst when both substreams are generated from class 5,
that is because the pw pattern is stagger and the pris are
determined (instead of chosen randomly from a scope and,
thus, can be diverse in the two substreams), making it more
difficult to track along a certain substream and distinguish
between the two substreams with the same patterns. In de-
spite of the performance deteriorations, we can still ob-
tain deinterleaving probabilities higher than 80% in all the
simulations. As traditional deinterleaving methods, such as
CDIF [6] and SDIF [13], are unable to deinterleave such
substreams having the same statistical features, the pro-
posed method has gained great performance margins over
its existing counterparts.

VII. FURTHER DISCUSSIONS

This paper introduces RNNs to solve the problems
of classification, denoising, and deinterleaving of pulse
streams. The networks have been demonstrated to be able
to “remember” statistical and local patterns of streams, and
can also embody the originally abstract patterns in a stream
after processing a few pulses. Actually, the proposed ideas
can be extended in various aspects to gain performance
enhancements, or solve new problems that have not been
addressed in previous literatures. Due to space limitations,
we only provide brief discussions on some of them in this
section, and leave in-depth research for future work.

1) Prediction for classification: A major reason for the de-
terioration of the classification performances in Fig. 10
is that noises and missing pulses damage temporal pat-
terns of streams. But the results in Fig. 11 and Table II
demonstrate that the prediction RNNs are robust to these
imperfections in streams. Moreover, the step-wise pre-
diction results in Fig. 7 show that the difference in pre-

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

dicted patterns of streams corresponding to different
classes are obvious. Performance improvements are ex-
pected to be obtained by using the prediction RNNs to
solve the classification problem.

2) Adaptation to streams with more complicated patterns:
Only streams with constant or stagger pws and pris are
considered in the simulations in this paper mainly for
reasons of enhancing readability of the text and visual-
ization of the results. The results in Fig. 7 have partially
shown that the trained prediction RNNs are able to store
temporal patterns and predict multiple features of up-
coming pulses. For some advanced emitters with more
complicated patterns, the RNNs can also be trained to
extract and store the manner of the joint variations of
multiple features, and predict the features of upcom-
ing pulses when the preceding ones are given. The pre-
dicted features can be exploited to realize denoising
and deinterleaving of streams with more complicated
patterns.

3) Application in online processing: In this paper, the prob-
lems of classification, denoising, and deinterleaving are
solved in an offline manner, just for convenience of the
performance evaluation. But actually, both the classifi-
cation RNN and the forward prediction RNN process
the streams sequentially. This processing manner adapts
to online processing requirements very well (the back-
ward prediction procedure can be abandoned here). In
online processing tasks, pulses and noises are received
one-by-one, the RNNs can be used to reveal stream at-
tributes and identify local patterns in current contexts,
and then classify the stream or predict features of up-
coming pulses to realize classification, denoising, and
deinterleaving on line.

VIII. CONCLUSION

In this paper, several RNN frameworks are established
based on the GRU, so as to address problems of classifi-
cation, denoising, and deinterleaving of pulse streams. The
RNNSs are trained via supervised learning and tested in var-
ious environments. Typical simulation results show that the
RNNs are able to mine and abstract statistical and local pat-
terns of streams with different feature types, and the mined
patterns can be used easily to refine classification and pre-
diction results when only a few pulses are available. Statisti-
cal performances show that the proposed methods solve the
classification, denoising, and deinterleaving problems well
in despite of demanding simulation settings, such as short
stream lengths, large pulse missing probabilities, and noise
ratios. Classification and denoising performances generally
deteriorate with increasing pulse missing probabilities and
noise ratios. But in most of the environments considered,
the performances deteriorate not very significantly, which
demonstrates the robustness of the proposed methods to
different environments. Some possible extensions of the
presented work have also been discussed briefly as clues of
future research.

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS

REFERENCES

(1]

(2]

(3]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[16]

[17]

R. G. Wiley
ELINT: The Interception and Analysis of Radar Signals. Nor-
wood, MA, USA: Artech House, 2006.

J. Liu, J. P. Lee, L. Li, Z.-Q. Luo, and K. M. Wong
Online clustering algorithms for radar emitter classification
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1185-1196, Aug. 2005.

F. Digne, A. Baussard, A. Khenchaf, C. Cornu, and D. Jahan
Classification of radar pulses in a naval warfare context using
bezier curve modeling of the instantaneous frequency law
IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1469—
1480, Jun. 2017.

T. R. Kishore and K. D. Rao
Automatic intrapulse modulation classification of advanced
LPI radar waveforms
IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 2, pp. 901—
914, Apr. 2017.

S. Sirianunpiboon, G. Noone, and S. D. Howard
Robust and recursive radar pulse train parameter estimators
In Proc. 4th Int. Symp. Signal Process. Appl., Gold Coast, Qld,
Australia, 1996, pp. 475-478.

H. Mardia
New techniques for the deinterleaving of repetitive sequences
Proc. Inst. Electr. Eng. Radar, Sonar Navigat., vol. 136, no. 4,
pp. 149-154, 1989.

H. Arslan
Cognitive Radio, Software Defined Radio, and Adaptive Wire-
less Systems. Berlin, Germany: Springer, 2007.

D. C. Robbins, R. K. Sarin, E. J. Horvitz, and E. B. Cutrell
Advanced navigation techniques for portable devices
U.S. Patent 7 327 349, Feb. 5, 2008.

M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin
Principles of Modern Radar. Stevenage, U.K.: Scitech Pub-
lishing, 2010.

P. S. Ray
A novel pulse TOA analysis technique for radar identification
IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 3, pp. 716—
721, Jul. 1998.

R. J. Orsi, J. B. Moore, and R. E. Mahony
Spectrum estimation of interleaved pulse trains
IEEE Trans. Signal Process., vol. 47, no. 6, pp. 1646-1653,
Jun. 1999.

K. Nishiguchi and M. Kobayashi
Improved algorithm for estimating pulse repetition intervals
IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 2, pp. 407—
421, Apr. 2000.

D. Milojevi¢ and B. Popovic¢
Improved algorithm for the deinterleaving of radar pulses
Proc. Inst. Electr. Eng. Radar, Sonar Navigat., vol. 139, no. 1,
pp. 98-104, 1992

R. Sullivan
Radar Foundations for Imaging and Advanced Concepts.
Herts., U.K.: IET, 2004.

J. B. Moore and V. Krishnamurthy
Deinterleaving pulse trains using discrete-time stochastic
dynamic-linear models
IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3092-3103,
Nov. 1994.

T. Conroy and J. B. Moore
The limits of extended kalman filtering for pulse train deinter-
leaving
IEEE Trans. Signal Process., vol. 46, no. 12, pp. 3326-3332,
Dec. 1998.

A. Logothetis and V. Krishnamurthy
An interval-amplitude algorithm for deinterleaving stochastic
pulse train sources
IEEE Trans. Signal Process., vol. 46, no. 5, pp. 1344-1350,
May 1998.

1637

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

1638

N. Visnevski, S. Haykin, V. Krishnamurthy, F. A. Dilkes, and P.
Lavoie
Hidden Markov models for radar pulse train analysis in elec-
tronic warfare
In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process..,
vol. 5, 2005, pp. 597-600.

J. Liu, H. Meng, Y. Liu, and X. Wang
Deinterleaving pulse trains in unconventional circumstances
using multiple hypothesis tracking algorithm
Signal Process., vol. 90, no. 8, pp. 2581-2593, 2010.

J. B. Pollack
On connectionist models of natural language processing
Ph.D. dissertation, Dept. Comput. Sci., Univ. Illinois, Peoria,
IL, USA, 1987.

J. A. Anderson, M. T. Gately, P. A. Penz, and D. R. Collins
Radar signal categorization using a neural network
Proc. IEEE, vol. 78, no. 10, pp. 1646-1657, Oct. 1990.

E. Granger, Y. Savaria, P. Lavoie, and M.-A. Cantin
A comparison of self-organizing neural networks for fast clus-
tering of radar pulses
Signal Process., vol. 64, no. 3, pp. 249-269, 1998.

A. Ata’a and S. Abdullah
Deinterleaving of radar signals and PRF identification algo-
rithms
IET Radar, Sonar Navigat., vol. 1, no. 5, pp. 340-347, 2007.

N. Petrov, 1. Jordanov, and J. Roe
Radar emitter signals recognition and classification with feed-
forward networks
Procedia Comput. Sci., vol. 22, pp. 1192-1200, 2013.

Y. LeCun, Y. Bengio, and G. Hinton
Deep learning
Nature, vol. 521, no. 7553, pp. 436444, 2015.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur
Recurrent neural network based language model
In Proc. Interspeech, 2010, vol. 2, p. 3.

D. Bahdanau, K. Cho, and Y. Bengio
Neural machine translation by jointly learning to align and
translate
in Proc. Int. Conf. Learn. Represent., San Diego, CA, May
7-9, 2015.

T.-J. Hsieh, H.-F. Hsiao, and W.-C. Yeh
Forecasting stock markets using wavelet transforms and recur-
rent neural networks: An integrated system based on artificial
bee colony algorithm
Appl. Soft Comput., vol. 11, no. 2, pp. 2510-2525, 2011.

T. Mikolov, K. Chen, G. Corrado, and J. Dean
Efficient estimation of word representations in vector space
in Proc. Int. Conf. Learn. Represent., Scottsdale, Arizona, May
2-4,2013.

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor
Recommender Systems Handbook. Berlin, Germany: Springer,
2015.

D. Silver et al.
Mastering the game of go with deep neural networks and tree
search
Nature, vol. 529, no. 7587, pp. 484-489, 2016.

D. Silver et al.
Mastering the game of go without human knowledge
Nature, vol. 550, no. 7676, pp. 354-359, 2017.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Schmidhuber
Deep learning in neural networks: An overview
Neural Netw., vol. 61, pp. 85-117, 2015.

D. Tang, B. Qin, and T. Liu
Document modeling with gated recurrent neural network for
sentiment classification
In Proc. Conf. Empirical Methods Natural Lang. Process.,
2015, pp. 1422-1432.

G. Pollastri, D. Przybylski, B. Rost, and P. Baldi
Improving the prediction of protein secondary structure in three
and eight classes using recurrent neural networks and profiles
Proteins: Structure, Function Bioinformatics, vol. 47, no. 2,
pp. 228-235, 2002.

I. Goodfellow, Y. Bengio, and A. Courville
Deep Learning. Cambridge, MA, USA: MIT Press, 2016.

S. Hochreiter and J. Schmidhuber
Long short-term memory
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

F. A. Gers, J. Schmidhuber, and F. Cummins
Learning to forget: Continual prediction with LSTM
Neural Comput., vol. 12, no. 10, pp. 2451-2471, 2000.

K. Cho, B. Van Merriénboer, D. Bahdanau, and Y. Bengio
On the properties of neural machine translation: Encoder-
decoder approaches
In Proc. 8th Workshop Syntax, Semantics Structure Statist.
Translation, 2014, pp. 103-111.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio
Empirical evaluation of gated recurrent neural networks on
sequence modeling
in Proc. NIPS 2014 Workshop Deep Learn., Dec. 2014.

D. Williams and G. Hinton
Learning representations by back-propagating errors
Nature, vol. 323, no. 6088, pp. 533-538, 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams
Learning representations by back-propagating errors
in Neurocomputing: Foundations of Research, J. A. Anderson
and E. Rosenfeld, Eds., Cambridge, MA, USA: MIT Press,
pp. 696-699, 1988.

B. A. Pearlmutter
Gradient calculations for dynamic recurrent neural networks:
A survey
IEEE Trans. Neural Netw., vol. 6, no. 5, pp. 1212-1228, Sep.
1995.

J. Martens and 1. Sutskever
Learning recurrent neural networks with hessian-free optimiza-
tion
In Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1033-1040.

N. Ketkar
Introduction to Pytorch
in Deep Learning with Python. Berkeley, CA, USA: Apress,
2017, pp. 195-208.

M. Abadi et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems
in Proc. 12th USENIX Symp. Operat. Syst. Design Implement.
Savannah, GA, Georgia, Nov. 2-4, 2016.

D. M. Powers
Evaluation: From precision, recall and f-measure to ROC, in-
formedness, markedness and correlation
J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37-63, 2011.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

Zhang-Meng Liu received the Ph.D. degree in statistical signal processing from National
University of Defense Technology (NUDT) of China, Changsha, China, in 2012.

He is currently an Associate Professor with NUDT, working in the interdiscipline
of electronics engineering and computer science, especially electronic data mining and
machine learning for information processing. He was a visiting scholar with the Computer
Science Department, University of Illinois at Chicago, from April 2017 to March 2018,
researching on data mining and deep learning in the group led by Philip S. Yu. He has
authored or coauthored more than 30 journal papers in various areas of array signal
processing, passive localization, and pulse data processing.

Philip S. Yu (F’93) received the B.S. degree in electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1972, the M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, USA, in 1976 and 1978, respectively, and the
M.B.A. degree from New York University, New York, NY, USA, in 1982.

He is currently a Disthinguished Professor with the Department of Computer Science,
University of Illinois at Chicago (UIC), Chicago, IL, USA, and also holds the Wexler
Chair in Information and Technology. Before joining UIC, he was with the Software Tools
and Techniques Department, IBM Thomas J. Watson Research Center, where he was a
Manager. He has authored or coauthored more than 970 papers in refereed journals and
conferences with more than 74 500 citations and an H-index of 127. He holds or has applied
for more than 300 U.S. patents. His main research interests include big data, data mining
(especially on graph/network mining), social network, privacy preserving data publishing,
data stream, database systems, and Internet applications and technologies.

Dr. Yu is currently a Fellow of the ACM. He is the recipient of ACM SIGKDD 2016
Innovation Award for his influential research and scientific contributions on mining, fusion,
and anonymization of big data, the IEEE Computer Society’s 2013 Technical Achievement
Award for “pioneering and fundamentally innovative contributions to scalable indexing,
querying, searching, mining, and anonymization of big data,” and the Research Contri-
butions Award from the IEEE International Conference on Data Mining in 2003 for his
pioneering contributions to the field of data mining. He was also the recipient of the IEEE
Region 1 Award for “promoting and perpetuating numerous new electrical engineering
concepts” in 1999. He is the Editor-in-Chief for the ACM Transactions on Knowledge Dis-
covery from Data. He is on the steering committee of ACM Conference on Information and
Knowledge Management and was a steering committee member of the IEEE Conference
on Data Mining and the IEEE Conference on Data Engineering.

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1639

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

