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Traffic Risk Mining From Heterogeneous
Road Statistics

Koichi Moriya, Shin Matsushima , and Kenji Yamanishi

Abstract— At present, a large amount of traffic-related data
is obtained manually and through sensors and social media,
e.g., traffic statistics, accident statistics, road information, and
users’ comments. In this paper, we propose a novel framework
for mining traffic risk from such heterogeneous data. Traffic
risk refers to the possibility of occurrence of traffic accidents.
Specifically, we focus on two issues: 1) predicting the number of
accidents on any road or at intersection and 2) clustering roads
to identify risk factors for risky road clusters. We present a
unified approach for addressing these issues by means of feature-
based non-negative matrix factorization (FNMF). In particular,
we develop a new multiplicative update algorithm for the FNMF
to handle big traffic data. Using real-traffic data in Tokyo,
we demonstrate that the proposed algorithm can be used to
predict traffic risk at any location more accurately and efficiently
than existing methods, and that a number of clusters of risky
roads can be identified and characterized by two risk factors.
In summary, our work can be regarded as the first step to a new
research area of traffic risk mining.

Index Terms— Learning systems—unsupervised learning,
machine intelligence—pattern analysis.

I. INTRODUCTION

A. Background of Traffic Risk Mining

THE fact that published traffic data are becoming increas-
ingly varied and heterogeneous is noteworthy. Indeed,

the data may include not only traffic statistics but also informa-
tion collected through a variety of sensors and social networks.
Recent years have witnessed efforts to use such traffic data
for a wider range of purposes, such as safety management,
driver support, traffic infrastructure design, and disaster pre-
vention. For example, a private service called SAFETY MAP
is available on the internet [1] (see Figure 1). It shows various
traffic statistics, such as the frequencies of accidents and
braking at different locations on the road map. It also shows
comments posted online by drivers and pedestrians for these
locations. Such information has been used by Japanese local
governments to identify high-risk locations and adopt safety
measures accordingly (see [2]). However, such services present
a number of problems.

1) Necessity of Completing Risk Information: The first
problem is the unavailability of data for all of the locations on
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Fig. 1. Screen shot of SAFETY MAP [1]. The density of each red circle
indicates how many traffic accidents occurred at that location previously. Users
have the option of posting their opinions online, and this facility has been used
for actual decision making by Japanese local governments.

the map. Hence, there are some locations for which it is not
possible to predict the traffic accident risk regardless of their
high potential risk. This problem has prompted us to consider
developing a methodology for completing and predicting the
risk information at any location by using data from other
locations.

2) Necessity of Discovering Global Knowledge of Traffic
Risk: The second problem is the isolated nature of the traffic
risk information associated with each location, which com-
plicates the development of a comprehensive view of traffic
risk. If the traffic risk information could be shared among
locations with similar road conditions, it would be possible to
extract their common traffic risk patterns. Thus, it would be
possible to understand the degree of risk involved by referring
to the risk patterns. Therefore, it is necessary to combine the
information from all the locations in order to obtain a global
perspective that would be useful for ranking the risk associated
with different locations.

This paper describes our efforts toward solving the two
above-mentioned problems for real traffic data. Our contribu-
tions are twofold. First, we propose a novel framework for
traffic risk mining that involves the combined use of data
from heterogeneous sources, such as traffic statistics, sensor
data, and social networking data. Thus, we provide a unified
methodology for solving the two above-mentioned problems.
Second, we report the traffic mining results obtained for real
datasets, including (i) the results for predicting the number
of accidents on roads and at intersections and (ii) the results
related to knowledge discovery concerning traffic risk factors.
Finally, we discuss the usefulness of these results for road
design and safety management. In summary, we establish a
new research area of traffic risk mining.

B. Novelty and Significance of This Work

The novelty and significance of this paper can be
summarized as follows.
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1) A Novel Framework for Traffic Risk Mining Using
Feature-Based Non-Negative Matrix Factorization: We pro-
pose a framework for mining traffic risk information from
heterogeneous datasets consisting of traffic statistics (number
of accidents, traffic volume, roadway information, brake data,
and social opinion.) The framework has two main functions:
(A) predicting traffic risk (i.e., the number of traffic accidents)
at any location, and (B) knowledge discovery of traffic risk
patterns by clustering roadways. We introduce a novel method-
ology for achieving both (A) and (B) simultaneously by means
of feature-based non-negative matrix factorization (FNMF).

2) A Multiplicative Update Formula for FNMF: We develop
a new multiplicative update algorithm for FNMF, which
facilitates efficient and accurate processing of large amounts
of traffic data. Moreover, the proposed method and update
algorithm can be used to process other big data. This algorithm
enables us to predict the number of accidents more accurately
and efficiently than existing methods. Furthermore, we can
cluster risky locations with respect to several risk factors.

3) Empirical Demonstration of Our Methodology Using
Real Traffic Datasets: We demonstrate the effectiveness of
our methodology using real traffic data in Tokyo, Japan.
We show that our methodology can predict the number of
accidents with a mean absolute error of 0.50. We also show
that roads and intersections in Tokyo with high traffic risk can
be characterized in terms of two risk factors. In summary, our
work can be regarded as the first step toward a new research
area of traffic risk mining.

This paper extends the original work presented in [17] in
the following aspects:
• Thorough description of the multiplicative updates and

derivation of the multiplicative update formula for gener-
alized Kullback–Leibler (KL) divergence minimization.

• Verification of traffic risk mining by comparison with
linear regression model.

• Development of methods for evaluating and characteriz-
ing features of extracted clusters using stochastic decision
olist.

• Detailed cluster analysis using the proposed method and
characteristics of actual images of locations.

C. Previous Work

Several studies related to traffic data mining have been
reported. Most of these studies have focused on flow prediction
and path exploration (see e.g., [9], [16]). Bashah and Hill [4],
whose work involved data mining of traffic accidents, ana-
lyzed the causes of accidents using prediction methods.
Krishnaveni and Hemalantha [13] focused on prediction and
characterization of the severity of injury resulting from traffic
accidents. Chang and Chen [5] analyzed the factors underlying
frequent accidents. Bayam et al. [3] analyzed the relationship
between drivers’ age and accidents. Chong et al. [7] adopted
machine learning methods to model the severity of injury due
to traffic accidents.

Matrix factorization has been applied to prediction problems
in which the prediction of unknown data is considered as
the completion of missing data (see [11]); its applications

Fig. 2. Concept of matrix factorization-based framework: we aim to represent
i-th row of the data matrix, Xi: , by

∑K
k=1 uik Vk:, a linear combniantion of

rows of V denoted by Vk:. By doing so, we can interpret V as a set of row
vectors that represents typical patterns for Xi: , and uik as the strength of
the k-th pattern contained in Xi: . In our work, Xi: and Vk: represents each
location and its typical pattern, respectively.

include recommendation [15], image recognition [21], and
power spectrum identification for voice data [18]. In addition,
it has been used for inference from traffic data [19].

The remainder of this paper is organized as follows.
In Section 2, we review existing work based on the use of
non-negative factorization and its application to prediction
and clustering. In Section 3, we introduce our methodol-
ogy for analyzing integrated traffic data and derive a new
multiplicative update formula for a variant of feature-based
matrix factorization. In Section 4, we empirically demonstrate
the effectiveness of our methodology using real traffic data.
In Section 5, we develop a method for evaluating and char-
acterizing the obtained clusters and perform cluster analysis
on the obtained results. Finally, in Section 6, we conclude the
paper.

II. MATRIX FACTORIZATION FOR

PREDICTION AND CLUSTERING

A. Matrix Factorization-Based Framework

The matrix factorization method is a well-established tech-
nique for extracting latent information from data. The family
of matrix factorization methods includes principal component
analysis (PCA), canonical correlation analysis (CCA), and
non-negative matrix factorization (NMF). In this paper, we use
a matrix factorization-based method to extract risk factors from
data originating from high-risk locations for predicting the
number of accidents at unseen locations and categorizing high-
risk locations into clusters (see Figure 2). More specifically, we
factorize a matrix in which each row corresponds to a high-
risk location and each column corresponds to its attributes.
We aim to realize a factorization that represents each high-
risk location by a combination of representative patterns of
high-risk locations, with corresponding coefficients for each
pattern.

Matrix factorization is known as a useful methodology for
extracting components capable of explaining the underlying
structure of a data matrix of interest. Two methods based on
this methodology are non-negative matrix factorization (NMF)
and feature-based matrix factorization (FMF). Our model,
which is introduced in Section 3, is based on these two
methods. Next, we review these two methods and describe
how they can be applied to prediction and clustering problems.

B. Non-Negative Matrix Factorization

In particular, NMF focuses on the analysis of non-negative
matrices. Imposing non-negative constraints on the model
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parameters allows for enhanced interpretability of the extracted
components and clustering using the estimated parameters.

Given a matrix X ∈ R
N×M+ , we aim to find U, V such

that X ≈ U V . In typical cases where rank(X) � N, M
holds, we expect that X can be approximated by U ∈ R

N×K+ ,

V ∈ R
K×M+ with a small rank, K � N, M . The parameter

estimation problem can be formulated as the following mini-
mization problem using an approximation measure E(xi j , x̂i j ):

minimize
∑

i, j

E(xi j , x̂i j ), (1)

subject to x̂i j =
K∑

k=1

uikvkj . (2)

We denote the (i, j)-th element of X by xi j and so forth for
U and V . For the approximation measure E , the mean squared
error and generalized KL divergence are well known [8]:

MSE(xi j , x̂i j ) =
(
xi j − x̂i j

)2
,

KL′(xi j , x̂i j ) =
(

xi j log
xi j

x̂i j
− xi j + x̂i j

)

.

Furthermore, an iterative method with a multiplicative
update formula is well known [14], [25] and widely used. In
the case of MSE(xi j , x̂i j ), we perform the following update
until the values of the parameters converge:

uik ← uik

∑
j xi j vkj

∑
j,l uilvkj vl j

, vkj ← vkj

∑
i xi j uik

∑
i,l vl j uikuil

.

This update formula can be derived using the expecta-
tion maximization (EM) algorithm, which is not necessarily
derived from a statistical problem. The key idea for under-
standing the EM algorithm in this way is that the E-step
provides an upper bound for the target objective function,
which is derived from Jensen’s inequality, whereas the M-step
minimizes the derived upper bound.

The update formula in matrix form can be validated from
the perspective of the EM algorithm, i.e., minimization with
respect to uik in the M-step is independent of the other ele-
ments of U given a fixed V and vice versa. Thus, we can com-
pute U (t+1) using

(
U (t), V (t)

)
and V (t+1) using

(
U (t+1), V (t)

)
,

which results in the following update formula:

U (t+1) = U (t) � X (V (t))T

U (t)V (t)(V (t))T
,

V (t+1) = V (t) � (U (t+1))T X

(U (t+1))TU (t+1)V (t)
,

where � denotes element-wise multiplication and fractional
expressions of matrices represent element-wise division.

C. Feature-Based Matrix Factorization

When additional information is available about a particular
element, row, or column of X , it is desirable to incorporate
such information to explain the elements of X , in addition to
using the term

∑
j uikvkj . Chen et al. extended the general

matrix factorization model to the following form, which is

referred to as feature-based matrix factorization (FMF) [6]:

minimize
∑

i, j

(xi j − x̂i j )
2 + r,

subject to x̂i j = μ+
N∑

i ′=1

ai ′αi ′ (i, j)

+
M∑

j ′=1

b j ′β j ′(i, j)+
L∑

l=1

clγl(i, j)

+
K∑

k=1

( N∑

i ′=1

ui ′kαi ′ (i, j)

)( M∑

j ′=1

vkj ′β j ′(i, j)

)

,

r = λ1

∑

i,k

u2
ik

+ λ2

∑

k, j

v2
kj+λ3

∑

l

c2
l + λ4

∑

i

a2
i + λ5

∑

j

b2
j .

α, β, and γ constitute auxiliary information that is used to
estimate the elements of X , and a, b, and c are the corre-
sponding parameters to be estimated. μ is the mean value of
xi j . a, b are dependent only on i, j , respectively, whereas c
is independent of i, j . The last term is an extended form of
matrix factorization (2). Each λ is a hyperparameter dependent
on the problem. When we set μ = 0, c ≡ ∅, a ≡ ∅, b ≡
∅, αi ′ (i, j) =

{
0 (i ′ 
= i)

1 (i ′ = i)
, β j ′(i, j) =

{
0 ( j ′ 
= j)

1 ( j ′ = j)
, λ = 0,

the model coincides with standard matrix factorization. Thus,
using this formulation, we can learn more complex models
compared to those using matrix factorization. However, the
new form of the model is no longer able to derive multi-
plicative updates. Therefore, gradient descent was used for
parameter estimation in [6], which is expected to be much
slower compared to multiplicative updates.

D. Prediction by Completion

Here, it is assumed that all the elements in X are occupied
by observed values. Prediction can be performed by incor-
porating missing values of the elements of matrix X and
setting target entries to be predicted for the missing values.
By completing the missing entries of X using an estimated
parameter, we can obtain predictions for the respective missing
entries.

Zhang et al. [24] proposed weighted non-negative matrix
factorization (WNMF) to process a data matrix with missing
values by rewriting the objective function of matrix factor-
ization (1) as

∑
xi j∈Xo E

(
xi j , x̂i j

)
, where Xo is the set of

observed values in X . We define the weight matrix W with
the same size as X as an indicator to distinguish between
observed or missing values:

W = (wi j ),wi j =
{

1 xi j ∈ Xo

0 xi j /∈ Xo.

Then, the update formula can be represented as

U (t+1) = U (t) � (W � X) (V (t))T
(
W � (U (t)V (t))

)
(V (t))T

,

V (t+1) = V (t) � (U (t+1))T (W � X)

(U (t+1))T(W �U (t+1)V (t))
.
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Fig. 3. Proposed framework for traffic risk mining.

This formulation can also be applied to other models, such
as FMF.

E. Clustering by Factorization

We are motivated to extract patterns and clusters of traffic
locations that share the same risk patterns. Clustering using
NMF has been studied especially for document clustering tasks
[12], [20], [22]. As NMF approximates i -th row of the data
matrix Xi: by a linear combniantion of rows of V , we can
interpret V as a set of row vectors that represents typical
patterns for Xi:, and uik as the strength of the k-th pattern con-
tained in Xi:. When the i -th row of the data matrix represents
the number of occurrences of each type of accident at a high-
risk location i , we can interpret Vk: as a typical pattern of high-
risk locations, and uik as the degree to which the i -th location
belongs to the k-th pattern. Clustering of the rows can be per-
formed according to this interpretation. Xu et al. [22] proposed
a clustering method using the result of NMF for labeling each
row i by the label li on the basis of the following rule:

li = argmax
k=1,...,K

uik .

Note that this can be done only in the case of NMF. Without
the non-negativity, each parity can be chosen arbitrarily.

III. PROPOSED METHOD

In this section, we introduce our method for traffic risk
mining, which consists of the following three processes:
• Form a matrix by unifying all the datasets and scaling

them appropriately, and find the initial value for U, V
by using the k-means method only with respect to traffic
accident data.

• After several updates of non-negative matrix factoriza-
tion, learn a variant of feature-based matrix factorization
by using a new multiplicative update formula.

• Perform clustering by using information of the estimated
parameters and determine the number of clusters on the
basis of the data related to accidents in each cluster.

The entire flow of the framework is shown in Figure 3.
In the following sections, we discuss the details with respect
to each of these three processes. For details of the data,
see Section IV-A.

A. Scaling and Initialization

In most cases, data that are suitable for NMF processing,
such as review data, voice data, and image data, have a matrix
with the same order of values for each row and column. By
contrast, for data matrices with values whose order varies from
column to column, the minimization procedure

minimize
∑

i, j

wi j (xi j − x̂i j )
2

would have a major influence on summands with larger values
of xi j , which is likely to result in summands with relatively
small values of xi j being ignored. Therefore, if NMF is applied
naively to such a data matrix, we obtain parameters that result
in small errors for columns of larger orders, while generating
comparatively large errors between xi j and its prediction,
where the order of xi j is relatively small. Therefore, shrinking
the order of the values of such columns with a large number
of values would facilitate improved performance in terms
of prediction of the accident statistics by suppressing the
influence of columns for which we are not interested to make
predictions. However, shrinking these columns excessively
could cause them to be ignored, which would ultimately have
a negative impact on the prediction accuracy.

Our aim is to classify accident patterns and predict missing
entries using heterogeneous roadway information. We use
datasets consisting of traffic flow, brake rates, and other
roadway statistics, such as intersection density, velocity limits,
and the number of lanes. Thus, scaling appears to be an issue
when we perform matrix factorization with respect to a matrix
integrating such attributes. We adopt a scaling rule,

xs
i j =

αxi j

maxi xi j
(∀ j ∈ S, i = 1, . . . , n),

where xs
i j is the value after scaling, S ⊂ {1, . . . , M} is the set

of columns that has to be scaled, and α is a small positive
number (1 ≤ α ≤ 3). Note that the order of the scaled values,
0 ≤ xs

i j ≤ α, is always less than the order of the number
of traffic accidents, 0 ≤ xi j ≤ 10. The issues here are to
determine (1) which columns should be in S, and (2) what
value must be set for α. For (1), we adopt the following scaling
rule:
• Values provided as percentages are divided by 100 unless

the maximum observed value is less than 10.0.
• Traffic flows per hour are divided by the maximum values

in the day/night time for each category.
• Values representing the length of streets, total flows,

and velocity limits are divided by the maximum of the
respective rows

• Values representing the number of lanes, density of
intersections, and other values that are always smaller
than 1 are not scaled.

For (2), we determined the value of α by performing compar-
ative experiments, the details of which appear in Section IV-B.

In general, matrix factorization significantly depends on the
choice of the initial parameters. Therefore, we specified a
value for the initial parameter with the aim of controlling
the quality of the results. We applied the k-means method
to the part of the matrix that contains traffic accident data,
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such that the factorization reflected the different types of risks.
Given the mean vectors ck ∈ R

ma×1 for each cluster k and the
labels for each row li = argmin k

∥
∥xi,1:ma − ck

∥
∥ as a result

of the k-means method, we define Ĉ = (
ĉT

1 , ĉT
2 , . . . , ĉT

K

)T
by

ĉk =∑
i:li=k xi,ma+1:M , and we set V (1) = [C, Ĉ] as the initial

value for V . Here, xi,1:ma is the part corresponding to traffic
accident statistics, i.e., ma < M is the number of attributes
pertaining to traffic accidents, and C = (

cT
1 , cT

2 , . . . , cT
K

)T
.

For U , we define

U (1) = (uik), uik = ‖xi,1:ma − ck‖−1
2

∑
l ‖xi,1:ma − cl‖−1

2

.

This expression reflects the similarity between each traffic
accident data value and the mean vector of each cluster.

B. Feature-Based Non-Negative Matrix Factorization
and Its Multiplicative Update

In Section II-B, we have seen that NMF can be used for
both prediction and clustering owing to the non-negativity of
the parameters and that it allows for efficient multiplicative
updates. On the other hand, in Section II-C, we have seen that
FMF can represent a much more complex model; however,
a less efficient method of gradient descent has been used.
We consider the combination of both models to establish a
more complex model than NMF to allow clustering and mul-
tiplicative updates. We consider the following model, which
we refer to as feature-based non-negative matrix factoriza-
tion (FNMF).

minimize
∑

i, j

wi j E(xi j , x̂i j ), (3)

subject to x̂i j = c + ai + b j +
K∑

k=1

uikvkj , (4)

uik ≥ 0, vkj ≥ 0, x̂i j ≥ 0. (5)

Note that the non-negativity constraints are only applied to
U, V , X̂ , and not to a, b, c. This model is strictly broader than
the NMF model when K is set to the same value. In the sense
of the argument presented in Section II-B, the EM algorithm
is unable to process negative values of parameters directly;
therefore, we propose an analytical form for updating a, b,
and c as well as U and V .

First, we consider the mean squared error for the approxi-
mation measure E . Therefore, we minimize

∑

i, j

wi j (xi j − x̂i j )
2.

The minimization problem (3) is equivalent to the maximiza-
tion problem of the function J (U, V , a, b, c) defined by

∑

i, j

(

2(xi j − ai − b j − c)
∑

k

uikvkj −
(∑

k

uikvkj

)2

− a2
i − b2

j − c2 − 2ai b j − 2ai c − 2b j c

+ 2(ai + b j + c)xi j

)

.

Setting the parameter before and after an update to (u0
ik , v

0
kj )

and (uik , vkj ), respectively, we define h0
i j k =

u0
ikv0

kj
∑K

l=1 u0
il v0

l j

.

Then, by Jensen’s inequality,

−
(

∑

k

uikvkj

)2

= −
(

∑

k

h0
i j k

uikvkj

h0
i j k

)2

≥ −
∑

k

h0
i j k

(
uikvkj

h0
i j k

)2

= −
∑

k

1

h0
i j k

(
uikvkj

)2
.

Therefore, we have J (U, V , a, b, c) ≥ J ′(U, V , a, b, c),
where J ′(U, V , a, b, c) is equal to

∑

i, j

(∑

k

(

2(xi j − ai − b j − c)uikvkj − 1

h0
i j k

(
uikvkj

)2
)

− a2
i − b2

j − c2 − 2ai b j − 2ai c − 2b j c

+ 2(ai + b j + c)xi j

)

.

We aim to monotonically increase the objective function
by maximizing J ′(U, V , a, b, c). By incorporating the con-
straints (5), we can write the Lagrangian L(U, V , a, b, c,
α, β, γ ) as

J ′ −
∑

i,k

αik uik −
∑

k, j

βkj vkj

−
∑

i, j

γi j

(
∑

k

uikvkj + ai + b j + c

)

.

By differentiating J ′ with respect to uik , we obtain

u(t+1)
ik = u(t)

ik

∑
j (xi j − ai − b j − c)v(t)

kj
∑

j,l u(t)
il v

(t)
kj v

(t)
l j

.

Note that the update formula of vkj uses u(t+1)
ik instead

of u(t)
ik when vkj is updated after uik . Then, we obtain the

update of vkj :

v
(t+1)
kj = v

(t)
kj

∑
i (xi j − ai − b j − c)u(t+1)

ik
∑

i,l (u
(t+1)
ik )2/u(t)

ik v
(t)
l j u(t)

il

.

By the Karush–Kuhn–Tucker (KKT) conditions, we can
see that αik uik = 0. If uik > 0, then αik = 0, and
we get ∂

∂uik
L(U, V , a, b, c, α, β, γ ) = ∂

∂uik
J ′(U, V , a, b, c)+

αik = 0. Otherwise, we can get this equation satisfied by set-
ting uik = 0 and αik to an appropriate positive number. Thus,
we obtain the update for uik ; similarly, we get the updates
for vkj . Next, by differentiating J ′ with respect to ai , we get

ai ←
∑

j

(
xi j − b j − c −

∑

k
uikvkj

)
/M.

If there exist i and j such that
∑K

k=1 uikvkj + ai + b j + c < 0
holds, we can satisfy the KKT conditions by setting∑K

k=1 uikvkj + ai + b j + c = 0. Thus, we can set ai to
max j

∑K
k=1 uikvkj +ai +b j + c. We can derive the update for
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bi and c similarly. When we incorporate the missing values,
the above-mentioned argument holds similarly.

Finally, we introduce the weight matrix for prediction, and
the update formula becomes

Ȳ = (ȳi j ), ȳi j = wi j (xi j − ai − b j − c),

Y (t) = U (t)V (t),

P = Ȳ (V (t))T

(W � Y (t))(V (t))T
,

Q = (U (t+1))TȲ

(U (t+1) � P)T(W � Y (t))
,

U (t+1) = U (t) � P,

V (t+1) = V (t) � Q,

u(t+1)
i j ← max(0, u(t+1)

i j ), v
(t+1)
i j ← max(0, v

(t+1)
i j ),

a(t+1)
i = max

(∑
j wi j

(
xi j − yi j − b(t)

j − c(t)
)

∑
j wi j

,

× max
j

(−yi j − b(t)
j − c(t))

)

,

b(t+1)
j = max

(∑
i wi j

(
xi j − yi j − a(t+1)

i − c(t)
)

∑
j wi j

,

× max
i

(
−yi j − a(t+1)

i − c(t)
) )

,

c(t+1) = max

(∑
i, j wi j

(
xi j − yi j − a(t+1)

i − b(t+1)
j

)

∑
i, j wi j

,

× max
i, j

(−yi j − a(t+1)
i − b(t+1)

j )

)

.

Next, we consider the KL divergence for the approximation
measure. We minimize

∑

i, j

wi j

(

xi j log
xi j

x̂i j
− xi j + x̂i j

)

.

The minimization problem is equivalent to the maximization
problem of the function J (U, V , a, b, c) defined by

∑

i, j

(

xi j log

(∑

k

uikvkj + ai + b j + c

)

− x̂i j

)

.

We set the parameter before and after an update to (u0
ik , v

0
ik )

and (uik , vkj ), respectively, and we set ai , b j , c likewise.
We consider the sequence pi j defined by

(pi j )k,k=1...K+3 = {ui1v1 j , ui2v2i , . . . , ui K vK j , ai , b j , c}.

If we write (pi j )
0
k , it denotes the parameter (pi j )k before an

update. We define

h0
i j k =

(pi j )
0
k

∑K+3
l=1 (pi j )

0
k

.

Then, by Jensen’s inequality,

log x̂i j = log
K+3∑

k=1

(pi j )k

= log
K+3∑

k=1

h0
i j k

(pi j )k

h0
i j k

≥
K+3∑

k=1

h0
i j k log

(pi j )k

h0
i j k

.

Therefore, we obtain

J (U, V , a, b, c) ≥
∑

i j

(

xi j

K+3∑

k

h0
i j k log

(pi j )k

h0
i j k

− x̂i j

)

= J ′(U, V , a, b, c).

By differentiating J ′ with respect to uik , we get

uik =
∑

j
xi j u0

ik v0
kj

x0
i j∑

j vkj
.

Here, x0
i j =

∑
k u0

ik v0
kj + a0

i + b0
j + c. Likewise, we obtain

the update formula of vkj , ai , b j , c:

vkj =
∑

i
xi j u0

ik v0
kj

x0
i j∑

i uik
,

ai = a0
i

M

∑

j

xi j

x0
i j

,

b j =
b0

j

N

∑

i

xi j

xi j 0
,

c = c0

N M

∑

i j

xi j

xi j 0
.

Finally, we introduce the non-negative subjections and the
weight function. Note that the update formula stated above
satisfies the non-negative subjections if we set non-negative
initial values. The update formula becomes

x̂ (t)
i j =

∑

k

u(t)
ik v

(t)
kj + a(t)

i + b(t)
j + c(t),

y(t)
i j =

∑

k

u(t)
ik v

(t)
kj ,

u(t+1)
ik =

∑
j

wi j xi j u(t)
ik v

(t)
kj

x̂ (t)
i j

∑
j wi j v

(t)
kj

,

v
(t+1)
kj =

∑
j

wi j xi j u(t+1)
ik v

(t)
kj

x̂ (t)
i j

∑
i wi j u(t+1)

ik

,

a(t+1)
i = a(t)

i∑
j wi j

∑

j

xi j

x̂ (t)
i j

,

b(t+1)
j = b(t)

j
∑

i wi j

∑

i

xi j

x̂ (t)
i j

,

c(t+1) = c(t)
∑

i, j wi j

∑

i j

xi j

x̂ (t)
i j

.
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In terms of computational time, our method requires more
time for one iteration than NMF. For both of these methods,
i.e., our update and the original form of NMF, the dominant
computation in terms of order is the matrix multiplication,
such as Y = U V appearing in the update formula, which
is practically O(K N M). The other element-wise multiplica-
tion or comparison requires O(N M) time to compute. The
computation of the update of a, b, c requires us to pay the
additional cost of O(15N M) to perform the computation in
NMF, which is comparable to O(K N M) in our case for small
values of K . In such cases, the computation time required
for one iteration of our algorithm is longer than that required
when the normal NMF method is used. Therefore, we took
advantage of the NMF method by using its intermediate result
as an initial value for our model. Its effect is examined in the
experimental section.

C. Selection of the Number of Clusters

We aim to perform prediction and clustering using the
FNMF model. Therefore, we must choose K such that both
prediction and clustering are performed optimally. As K
corresponds to the number of clusters, its role in terms of
clustering is expected to be more important compared to
prediction. Here, we specify K such that the obtained clusters
appropriately represent the corresponding types of risk.

We choose K by applying certain information criteria to
the clusters obtained using FNMF, related to only that part
containing information about traffic accidents, as it reflects
the pattern of risks in which we are interested. Given the final
output of U by the proposed matrix factorization, we regard
li = arg maxk uik as the cluster of the corresponding row i .
The set of rows for each cluster is defined as Ck = {i | li = k}.
The mean μ̂k and covariance �̂k related to the accident data
in each cluster and the log-likelihood p(X :,1:ma , l; K , θ̂ ) can
be estimated as follows:

μ̂k =

∑

i∈Ck

xi,1:ma

|Ck | ,

�̂k =

∑

i∈Ck

(xi,1:ma − μk)
T(xi,1:ma − μk)

|Ck | ,

p(X :,1:ma , l; K , θ̂ )

=
∏

i

( |Cli |
N
×

(
(2π)ma |�̂li |

)− 1
2

× exp

(

−1

2
(xi,1:ma − μ̂li )�̂

−1
li

(xi,1:ma − μ̂li )
T
))

.

Then, the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) can be computed using the
following equations [10]:

AIC(K ) = −2 log p(X :,1:ma , l; K , θ̂ )+ ma(ma + 3)K + K ,

(6)

BIC(K ) = −2 log p(X :,1:ma , l; K , θ̂ )

+ ma(ma + 3)K

2

K∑

k=1

log |Ck | + K log N. (7)

The smaller the values of these criteria, the better is the
clustering in terms of each criterion.

IV. EVALUATION OF THE PROPOSED METHOD

In this section, we evaluate our method, which is based on
the FNMF model. First, we describe the datasets that we used;
then, we describe the approach that we used to integrate them.
Second, we show that our scaling and initialization methods
are effective in improving the prediction performance. Third,
we show that the multiplicative update can find the parameters
for our model in an efficient manner, thereby outperforming
other methods in terms of prediction.

A. Integration of Datasets

We used the traffic accident dataset, which is collected
and published by the Institute of Traffic Accident Research
and Data Analysis (ITARDA). The data consist of statistics
on traffic accidents at high-risk locations, where accidents
occurred most frequently in 2012, and of individual records of
accidents that occurred at these high-risk locations in Tokyo.
It also provides the number of accidents for each category
of accidents, i.e., day or night, number of injured persons,
and additional information related to each location. Locations
are categorized as either intersections or streets. Approxi-
mately 70% of 914 high-risk locations are at intersections.
In total, 6201 individual records were collected for 914 high-
risk locations.

The dataset containing the traffic flow data is collected
and published by the Ministry of Land, Infrastructure, Trans-
portation and Tourism. The statistics include the number and
type of vehicles that pass through a particular intersection
every hour daily. The roadway data statistics, including the
number of lanes, width of lanes, and densities of intersections,
are produced by ©Sumitomo Electric Industries, Ltd. These
datasets are offered by ©Kokusai Kogyo Co., Ltd. The brake
data represent the rate of brake application and are calculated
with respect to those locations where sufficient flows are
observed. Brake data are collected and offered by Honda
Motor Company, Ltd.

All of these datasets were integrated to form one matrix.
Each row of the matrix corresponds to a high-risk location
listed in the accident dataset. For each high-risk location i ,
the part xi,1:ma corresponds to an accident and the other
statistics, such as traffic flow and brake rates, correspond to
xi,ma+1:M . The values for which the corresponding statistics
were missing were treated as missing values.

As statistics besides those related to accidents are always
associated with roadways, they cannot be used directly
for obtaining xi,ma+1:M if the location i is an intersection.
However, most of the accident records referring to accidents
at intersections list the roadway on which the accident
occurred. Using these records, we incorporated statistics for
the rows corresponding to intersections. More specifically,
given an intersection i and a set of accident records that
contain roadway information Ai , we formed the statistics

xi,ma+1:M for intersections such that xi,ma+1:M =
∑

a∈Ai
x(a)

|Ai | ,
where x(a) ∈ R

1×m−ma is the statistic corresponding to an
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TABLE I

COMPARISON OF SCALING RULES

accident a. When a statistical record for accidents does not
exist in Ai , we treat the part xi,ma+1:M as missing values.
Thus, we obtained 41 categories of accidents (ma = 41) and
291 attributes for the other roadway data from the 42-nd
feature to the 332-nd feature, including flow statistics in the
range from #89 to #331 and the brake rate as the 332-nd
feature. Therefore, overall, a 914 × 332 matrix was formed.

B. Effect of Scaling and Initialization

We compared the prediction performance of our method
using the data matrix described in the previous subsection
by obtaining the results without scaling and with the scaling
rules defined in Section III-A. The results are listed in Table I.
Each factorization was performed 50 times and the absolute
error in relation to the true value was measured in several
ways. First, we calculated the absolute error among all of the
accidents for each location and evaluated the average value for
each location, denoted by MAE. Furthermore, as it is more
important to correctly predict the accident category as being
the category of accidents that occurred most frequently at each
location, we evaluated the absolute error for the most frequent
category at each location and measured the average among all
the locations, which we denoted by MAE_most. In addition,
we computed the prediction error in the following way: we
selected one row and deleted all the information about traffic
accidents from the chosen row, and the learned parameters
were treated as missing values. We calculated the absolute
error between the predicted value and the true value, and we
took the average for 50 trials. This procedure was repeated
for all the rows. We denoted the values for all the cate-
gories and the maximum as MAE_pred and MAE_pred_most,
respectively.

We terminated the algorithm when the rate of decrease
on the objective value was below 0.05%. We set ai = 0,
b j = 0, c = 0 for the initial value and K = 5. A value
of approximately 9.5 was obtained as the prediction error
when no scaling was performed, which is of no realistic
use. When the matrix factorization method is applied only
to the accident data, the model parameter is estimated so that
it models a particular part of the matrix. Compared to this
situation, factorizing the entire X balances the error in the
part of the accident data and the part of the other data. Thus,
in principle, using the entire X is not considered useful for
producing smaller error values with respect to the part of
accident data compared to using only accident data, given the
same parameter space. However, note that we cannot predict
missing values by inferring from the knowledge of the other
part, unless we incorporate the other data.

Fig. 4. (upper) Number of iterations vs. Accidents MSE (lower) Time vs.
Accidents MSE.

When α is set to a moderate value, the accuracy is slightly
worse than the value of “only accidents”, but it is of the
same order. Thus, we conclude that by introducing α, we can
reduce the influence of the part other than the accident part to
improve the performance in terms of accuracy. The value of
α only affects the accuracy slightly. With respect to accident
prediction, α = 3 results in the best performance; therefore,
we adopted this value for our calculations.

C. Comparison of Prediction Performance

The aim of this section is to demonstrate the efficiency of
our update formula. This was done by comparing the proposed
algorithm with the existing gradient descent for FMF, the mul-
tiplicative update for NMF, and linear regression. In addition,
we compared our update without starting from the NMF para-
meters. The objective function, MAE with respect to accidents,
and the prediction error are plotted in Figure 4, 5, and 6,
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TABLE II

OBTAINED VALUES OF PERFORMANCE MEASURES FOR RESPECTIVE METHODS

Fig. 5. (upper) Number of iterations vs. Accidents MAE. (lower) Time vs.
Accidents MAE.

respectively. All the obtained values are listed in Table II. For
the gradient descent, we set the stepsize η = 9.0× 10−6. The
calculation was repeated 50 times for each algorithm and the
progress of each measure was plotted with respect to a trial that
gave the best value for the objective function. For the linear
regression, we assumed that each element in the accident data
is a dependent variable and the other road and traffic data are
predictor variables. Each missing element was replaced by the
mean of the observed data in its column. The accident data in
one row were predicted by the linear regression model.

The best MAE was achieved by FNMF with multiplicative
update, while the proposed method achieved the same level of
accuracy with shorter computational time. The performances
of these two methods were also comparable in terms of
the Accidents MAE value. In terms of the prediction error,
the proposed method appears to have the best performance.
FNMF with multiplicative update delivered the best prediction

Fig. 6. (upper) Number of iterations vs. Missing Accidents MAE. (lower)
Time vs. Missing Accidents MAE.

accuracy in the middle, but its performance degraded as the
updates proceeded. This indicates that learning the model para-
meter does not necessarily lead to high prediction accuracy.
Compared to NMF and linear regression, we can see that the
prediction accuracy improves considerably after switching to
our model, implying that our model is effective in terms of
the prediction accuracy.

D. Selection of the Number of Clusters

The number of clusters was determined by using the pro-
posed method to perform the calculation 50 times for each
K in 2 ≤ K ≤ 10 and to compute the AIC and BIC
defined by equations (6) and (7), respectively. We terminated
the algorithm when the rate at which the MSE decreased
reached 0.05%. For the initialization, we adopt the method
described in Section IV-B. The progress of the average and
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Fig. 7. Minimum and average of AIC and BIC among 50 trials of our method
for each value of K .

minimum of AIC and BIC for each value of K is shown
in figure 7. In the case of K = 2, the value of the minimum and
the average for each criterion were nearly the same. In the case
of K = 3, we obtained the minimum value in the minimum for
each criterion while the average value was the largest among
all K . In the case of K = 4, the values for the minimum and
average, which are in the middle between the minimum and
average of K = 3, are again nearly the same. After a slight
decrease in the minimum at K = 5, the increase for every K
was constant. According to the meaning of the information
criteria, we ideally want to compute them with respect to the
optimal parameter. Therefore, we adopted the value K = 3
that resulted in the smallest value for both AIC and BIC.

V. CLUSTER ANALYSIS

A. Evaluation of the Features of Each Cluster

In this section, we investigate the characteristics of high-
risk locations in each cluster obtained using our framework.
We learned FNMF 50 times and chose the result that produced
the lowest value for the sum of the squared errors within
clusters. We collected the locations with the largest value at
maxk uik for each cluster k, such that each cluster contains at
least 20 locations. The average values of the features for each
cluster are shown in Figure 8, by comparing them with the
average value of all the rows of X .

Cluster #1, represented by the red line, has a smaller value
than the entire average of the traffic flow, which corresponds
with the two panels on the right, although for any category of
accidents, the number of accidents considerably exceeds the
average and other clusters. Thus, we can say that Cluster #1
contains higher-risk locations, which have a low amount of
traffic flow and large number of accidents. As it has been
considered that the number of accidents is larger when the
traffic flow increases in general, Cluster #1 that we obtained
implies that the tendency is opposite when we can look at
specific accidents in detail. Cluster #2 has large traffic flow
values at night time, especially from 7 p.m. to 9 p.m. However,
the number of accidents on the upper left panel is lower than
the entire average. Cluster #3 is very close to the average

TABLE III

NUMBER OF LOCATIONS AND OCCUPATION RATE OF
OPINIONS IN EACH CLUSTER(%)

in terms of the number of accidents except for accidents
involving collisions. On the other hand, Cluster #3 has the
largest value among the three clusters representing traffic
flows. Locations such as these are considered to be situated on
large roads, such as arterial roads and highways. In summary,
the characteristics of each cluster can be described as follows
• Cluster #1 (red): relatively small amount of traffic, but

large number of accidents with a spike in the number of
bicycle accidents.

• Cluster #2 (blue): high density of intersections. Large
amount of traffic flow at night time, but a small number
of accidents.

• Cluster #3 (green): high traffic flows and number of lanes.
Collision accidents are high.

B. Evaluation by External Viewpoints

We used the opinions of pedestrians and drivers, which were
collected by Honda Motor Company, Ltd. This information
is totally distinct from the model. Hence, it can be regarded
as a test of learnability of traffic risk characteristics from
an external viewpoint. The opinions were grouped into four
categories: the road is narrow, the location on the street has low
visibility, there are a large number of speeding vehicles, and
there are many pedestrians rushing across the road. We show
the ratio of each of these categories of opinions regarding the
accidents in each cluster in Table III. We can see that the over-
all opinion differs for each cluster. Cluster #1 resulted in many
opinions about speeding vehicles and rushing pedestrians. This
presents high risk in terms of car vs. pedestrian accidents
and supports the characteristics determined by our analysis.
Cluster #2 did not attract any opinions about possible risks,
which is also consistent with our understanding of the cluster.
Cluster #3 drew opinions about low visibility, which would be
able to lead to collision accidents. This enabled us to conclude
that the clusters created by our proposed method successfully
captured the characteristics of the high-risk locations, which
were highly consistent with the opinions of pedestrians and
drivers.

Next, we show the images of locations in Figure 9. These
images were captured by Google Street view in Google Maps,
and they are images of locations that have the largest and
the second-largest values of uik for each k. The two images
on the left correspond to locations in Cluster #1. The upper
image shows the location at which most of the accidents
occurred in the entire city of Tokyo. This location is at the
center of a complex connection of roads with many possible
traveling patterns for vehicles, which is consistent with a large
number of accidents, even though the amount of traffic is
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Fig. 8. Tendency of each feature in each cluster. The horizontal axis represents the features and the vertical axis represents the average value of the high-risk
locations in each cluster. The upper left panel shows the features from #1 to #41, which correspond to accident statistics. The upper right panel shows the
features corresponding to the roadway data, whereas the rest of lower panels show the features corresponding to the traffic flows. The lower left panel presents
the flow in each hour. The features from #89 to #196 correspond to the traffic flow from 7 a.m. to 7 p.m. for each type of vehicle for going up and down
and the features from #197 to #304 correspond to those from 7 p.m. to 7 a.m. The lower right panel from #305 to #331 shows the total flow in the day time,
night time, and throughout the day.

Fig. 9. Images of the high-risk locations that belong to Cluster#1 (left), Cluster#2 (middle), and Cluster #3 (right). The images at the top are those with the
largest value of uik , whereas those at the bottom have the second-largest values.

comparatively low. The images in the middle correspond to
locations in Cluster #2. We can see that these roads have
guardrails or median strips that would be expected to reduce
the number of collision accidents. The images on the right
correspond to locations in Cluster #3. By contrast, these roads
tend not to have guardrails or median strips. These images also
imply that the clusters that were obtained captured important
characteristics of traffic risks.

C. Evaluation by Varying the Number of Clusters

This section describes our investigation of the characteristics
and transitions between clusters when the number of clusters
is increased. We performed our method by setting K = 5,

at which there is a sub-optimal peak for both AIC and
BIC in Figure 7, after which we obtained five clusters. The
parameters and condition to belong to each cluster were the
same as those in Section V-A.

In Table IV, we show how the high-risk locations in each
cluster in the case of K = 3 transitioned to the clusters in the
case of K = 5. It can be seen that the new Cluster #1 and
Cluster #3 correspond to the previous Cluster #1 and
Cluster #2 in the case of five clusters, respectively, as more
than 80% of the locations are now contained by the new cor-
responding cluster. Apart from this, we can see that Cluster #2
corresponds to Cluster #5. The average values of xi for each
cluster are also shown in Figure 10.
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Fig. 10. Tendency of each feature in each cluster in the case of K = 5. The horizontal and vertical axes are the same as those in Figure 8.

TABLE IV

TRANSITIONS BETWEEN K = 3 AND K = 5

Cluster #3 and Cluster #4 can be seen as newly produced
clusters. Cluster #3 contains the lowest number of high-risk
locations. The density of intersections in this cluster is high
and the number of accidents when turning a corner is higher
than the average. Although only 20 locations belong to this
cluster, a large number of social opinions were posted for these
locations. Cluster #4 includes some locations that previously
belonged to Cluster #1 and Cluster #3 in the case where
K = 3 and the number of collision accidents is higher than the
average. Therefore, this cluster can be considered to contain
another group of high-risk locations. Many social opinions
regarding speeding vehicles and rushing pedestrians are also
posted. In summary, we can say that we observed consistent
clusters as before and newly produced clusters, which imply
the existence of various risk factors when the number of
clusters is increased.

D. Quantitative Evaluation of Cluster Features

This section describes the quantitative evaluation and char-
acterization of each cluster. We extracted a set of conditions,

represented as a stochastic decision list, that represents the
membership of each cluster. The stochastic decision list [23] is
a set of conditions on features X that characterizes a variable
of interest Y ∈ {0, 1}. Here, features refers to interpretable
features, such as accident features, road features, and traffic
features, whereas the variable of interest denotes whether a
location is assigned to each cluster. According to the minimum
description length principle, the model is better when the code
length of the model is shorter. Therefore, we define the code
length of each stochastic decision list and choose one for each
cluster, which gives the shortest code length among a fixed
number of candidates.

The code length of the stochastic decision list is represented
by the summation of the code length of the data and that of the
model. The code length of the model in which Y is correctly
selected is short, but the code length of the complicated model
is long. Therefore, a simpler and well-explaining model gives
a shorter code length overall.

The model of the stochastic decision list is expressed as

If X1 ≥ a1 then Y = 1 with probability θ
(1)
1

Else if X2 ≥ a2 then Y = 1 with probability θ
(2)
1

...

Else if X K ′ ≥ aK ′ then Y = 1 with probability θ
(K )
1 .

In each condition, not only ≥ but also ≤ is allowed. Now, con-
sidering a set of data, xi j , y j (i = 1, . . . , K , j = 1, . . . , N),
we define the number of data satisfying the model’s condition
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TABLE V

SELECTED FEATURES FOR CLUSTERS

for Y = 1 and actually Y = 1 as n11, and the number of data
satisfying the model’s condition for Y = 1 but actually Y = 0
as n10. n00 and n01 are defined in the same manner. Then,
we define the code length of data as

(n10 + n11)H

(
n11

n10 + n11

)

+ (n00 + n01)H

(
n01

n00 + n01

)

+ 1

2

(

log2
(n10 + n11)π

2
+ log2

(n00 + n01)π

2

)

,

where H (x) = −x log2(x) − (1 − x) log2(1 − x) and
H (0) = H (1) = 0.

Next, we define the code length of the model. The model
consists of a set of conditions and each condition includes one
feature, one sign of inequality, and one threshold. The code
lengths are assigned to each of them in the condition, and the
sum of these code lengths is the code length of the model. The
variable in each condition can be represented by log2 K ′ bits.
The direction of inequality, ≥ or ≤, can be represented by
1 bit. The code length required to represent the thresholds
depends on how the thresholds are set. For instance, if we
split the Xi -axis five-fold and restrict a threshold to be
one of them, log2 4 = 2 bits are required to represent the
threshold. Finally, we compare the total code length, the sum
of code lengths for data and a model, and select the best
model.

We have a completed vector x̂i and cluster ci for each
location i from the result of the matrix factorization clustering.
We determined candidates of conditions for each cluster as
follows from the mean vector of each cluster. In terms of
accident feature, one of all the rows or the sum of rows 1-16
(total number of accidents) are candidates of condition vari-
ables. In terms of road feature, columns that are remarkably
larger than the mean of all data (such as number of traffic
lanes or intersection density) are candidates. In terms of traffic
feature, total day time traffic flows, night time traffic flows,
or all-day traffic flows, or their combinations are candidates.
Thresholds of conditions for each feature are determined as
follows. If the minimum of the cluster is larger than the mean
of all locations, we set the minimum to be the threshold.
If the maximum of the cluster is smaller than the mean of all
locations, we set the maximum to be the threshold. Otherwise,
the mean of all locations is set to be the threshold.

The final form of the stochastic decision list is repre-
sented as combinations of the conditions explained above.
For instance, the condition such as “the number of collision
accidents is larger than the minimum, the number of road lines
is larger than the mean, day time and one-day traffic flows are
larger than the mean” is constructed as a candidate. Therefore,

the number of models we consider is (41+ 1+ 1)× 2A × 23.
Here, A represents the number of candidate features (A = 0
in Cluster #1 and A = 2 in Cluster #2, #3). We calculate the
code length for each model and select the best one.

First, we consider Cluster #1. In Cluster #1, the numbers
of accidents are larger than the mean, but no feature of the
road data can be found. Traffic flows are smaller than the
mean. Then, for (41 + 1 + 1) × 23 = 344 conditions that
“one of the accident features is larger than the threshold,
one of the combinations of three traffic flows is smaller than
the thresholds,” we compute the code length. In Cluster #2,
the number of accidents is small and traffic flow is large. Two
features about injunction density are remarkable in the road
data. Therefore, for (41+1+1)×22×23 = 1376 conditions that
“one of the accident features is smaller than the threshold, one
of the combinations of two features about injunction density
is larger than the threshold, and one of the combinations of
three traffic flows is larger than the threshold,” we compute the
code length. In Cluster #3, the number of collision accidents
is remarkable and wide roadways and many car lanes can be
seen. Traffic flows are as many as in Cluster #2. Therefore,
for (41 + 1 + 1) × 22 × 23 = 1376 conditions that “one of
the accident features is larger than the threshold, one of the
combinations of the roadway width and the number of car
lanes is larger than the threshold, and one of the combinations
of three traffic flows is larger than the threshold,” we compute
the code length.

In Table V, we show the obtained results. For Cluster #1,
the condition “the number of accidents while turning to the
right in the night is larger than 0.937” is selected. This
condition is satisfied by two locations (in no cluster) except
locations in Cluster #1. We can see “the number of accidents
while turning to the right in the night” is a typical feature
of Cluster #1. On the other hand, the small traffic flows are
not selected as distinct features. For Cluster #2, the condition
“the number of accidents by passenger car is smaller than the
mean and the density of injunctions without a traffic signal
is larger than 16.23” is selected. The injunction density is
valued but the traffic features are not selected. For Cluster #3,
the condition “one of day/night/one-day traffic flows is smaller
than the minimum (121543, 64929 and 184110 respectively),
and the number of car lanes is larger than 7.02”. Features on
accidents are not selected, but the number of car lanes and
large traffic flows are selected. These conditions appeared to
be equivalent in our data, and the combination of these two
conditions only yields a larger code length of the model. These
results correspond with the features we assess from the mean
vector of each cluster qualitatively.
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VI. CONCLUSION

In this paper, we established a novel framework for traffic
risk mining that is designed to simultaneously predict the num-
ber of accidents and cluster high-risk locations. Our method
is based on an algorithm that uses multiplicative updates of a
variant of FMF, which is also considered an extension of NMF.

We identified two clusters that represent latent risks and that
divide high-risk locations. One of these clusters contained a
group of comparatively large roadways that present a high
collision risk between vehicles. The other cluster contains a
group of locations with low traffic flows but which have a
high number of accidents. This implies that we succeeded
in extracting locations with comparatively higher risk from
among a large number of locations.

From the results of clustering, we could create a ranking
of risky locations. Locations could be sorted by the degree
to which they belong to the risky cluster, and comparing the
number of accidents occurring at the location could facilitate
the estimation of the risk. We also established methods of
evaluation and characterization of the obtained clusters. In
summary, our work can be regarded as the first step toward a
new research area of traffic risk mining.
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