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Abstract—A developing field of interest for the distributed
systems and applied cryptography communities is that of smart
contracts: self-executing financial instruments that synchronize
their state, often through a blockchain. One such smart contract
system that has seen widespread practical adoption is Ethereum,
which has grown to a market capacity of 100 billion USD and
clears an excess of 500,000 daily transactions.

Unfortunately, the rise of these technologies has been marred
by a series of costly bugs and exploits. Increasingly, the Ethereum
community has turned to formal methods and rigorous program
analysis tools. This trend holds great promise due to the relative
simplicity of smart contracts and bounded-time deterministic
execution inherent to the Ethereum Virtual Machine (EVM).

Here we present KEVM, an executable formal specification
of the EVM’s bytecode stack-based language built with the K

Framework, designed to serve as a solid foundation for further
formal analyses. We empirically evaluate the correctness and
performance of KEVM using the official Ethereum test suite [1].
To demonstrate the usability, several extensions of the semantics
are presented and two different-language implementations of
the ERC20 Standard Token are verified against the ERC20
specification. These results are encouraging for the executable
semantics approach to language prototyping and specification.

I. INTRODUCTION

The practical and academic success of Bitcoin [2], one of

the early cryptocurrencies, has spawned a wide search for

potentially promising applications of blockchain technologies.

These blockchains and the blockchain-based systems they

create tackle a wide range of disparate problems, including

currency [2] [3], [4], distributed storage [5], academic research

on consensus protocols [6], and more [7].

One such system, Ethereum, implements a general-purpose

replicated “world computer” with a quasi-Turing complete

programming language [8]. One goal of Ethereum is to allow

for the development of arbitrary applications and scripts that

execute in blockchain transactions, using the blockchain to
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synchronize their state globally in a manner that is fully

verifiable by any system participant. Participants and contracts

in the Ethereum system transact in a distributed currency

known as Ether. Accounts on the Ethereum network can be

associated with programs in a virtual-machine based language

called the Ethereum Virtual Machine (EVM), described in the

Yellow Paper, a semi-formal semantics and specification [9].

These programs are called “smart contracts”, and execute

when a transaction calls the account. Among other features,

these contracts can tally user votes, communicate with other

contracts, store or represent tokens and digital assets, and send

or receive money in cryptocurrencies, without requiring trust

in any third party to faithfully execute the contract [10] [11].

The computation and state are all public1.

The growing popularity of smart contracts has led to in-

creased scrutiny of their security. Bugs in such contracts can be

financially devastating to the involved parties. An example of

such a catastrophe is the DAO attack [12], where 150 million

USD worth of Ether was stolen, prompting an unprecedented

hard fork of the Ethereum blockchain [13]. Worse still, the

DAO is one of many smart contracts which did not execute

as expected, inducing costly losses [14], [15], [16], [17].

In fact, many classes of subtle bugs exist in smart con-

tracts, ranging from transaction-ordering dependencies [18] to

mishandled exceptions [18]. Further complicating the problem

of obtaining high assurance, the EVM supports inter-contract

execution to allow re-use of code via calls to library contracts.

To address these issues in a principled manner, we make

use of the K Framework [19], [20]. K’s goal is to separate

construction of analysis tools from specification of particular

programming languages, making it easier to construct correct

tools based on a language’s specification. From a K definition,

many development tools are derived including a parser, inter-

preter, debugger, symbolic execution engine, and deductive

verifier. We believe this paradigm for rapidly prototyping

languages is particularly suitable to Ethereum; the EVM is

continuously evolving and it is important that the specification

1Though all information is public, accounts on the network are pseudonyms.
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Contract name Value Root cause
Parity Multisig 1 [16] $200M Private function exposure
Parity Multisig 2 [17] $165M Private function exposure
The DAO* [12] $150M Re-entrancy
SmartBillions [21] $500K Broken caching mechanism
HackerGold (HKG)* [22] $400K Typo in code

TABLE I: Smart contract failures impacting ≥ 400k USD.

Stars* indicate implementations of the ERC20 API [23]. (Ether

price data from https://coinmarketcap.com.)

of and tools around the EVM evolve along with it. Perhaps

more importantly, the specification should be held to the same

high testing standards as all official implementations of the

EVM, disqualifying any non-executable formalisms.

A. Motivations

Smart contracts are ideal targets for verification, as they are

small, terminating, deterministic programs. Moreover, these

programs manage large amounts of Ether (often worth in

excess of 100M USD), and exploits lead to Ether being

transferred irreversibly [2]. Since all contract code is public,

attackers can probe the system with full knowledge, testing

and refining their attack privately before deploying it publicly.

All this means that there are huge financial incentives to

attack the network, and all actors in the ecosystem are assumed

adversarial – from the users submitting transactions, to the

miners processing them, and even the nodes relaying them to

the network. Indeed, Table I identifies and categorizes several

contracts which have experienced high-profile exploits. Most

of, if not all, these failures and others [14] could have been

prevented through the use of formal analysis tools, saving the

smart contract ecosystem hundreds of millions in past (and

likely future) losses. Fortunately, it also means that developers

are more inclined to put in the extra effort required to formally

verify contracts. While there once was a dearth of usable

software quality-assurance tools to safeguard against these

attacks, the community is moving towards an ecosystem where

formal analysis is not uncommon.

To tackle this complex mix of demand for high assurance

and a rich adversarial model, the community has turned to

formal methods, even issuing open calls for tool proposals [24]

as part of what has been described as a “push for formal

verification” [25]. In these proposals, the Ethereum Foundation

has specifically called for “a human- and machine-readable

formalization of the EVM, which can also be executed”,

“developing formally verified libraries in EVM bytecode or

Solidity”, and “developing a formally verified compiler for a

tiny language” [24]. In this paper, we present the headway we

have made into tackling these problems.

B. Challenges in Formalizing the EVM

Though the EVM is assembly like, it has several features

which distinguish it from typical assembly languages and

complicate the formalization. We briefly touch upon two of

the challenges that are unique to the EVM.

• During the execution cycle of individual opcodes, the

EVM has several points which can throw exceptions.

Section 9.4.2 of the Yellow Paper [9] documents how

exceptions can be thrown. There, it is specified “that no

instruction can, through its execution, cause an excep-

tional halt” and an execution model which checks for

exceptional states before executing is proposed. Initially,

we attempted to follow this model, but soon realized that

several additional points in the execution cycle can throw

exceptions. To handle this, we re-built the semantics on

top of a custom exception-based control-flow machine

unique to the EVM, described fully in section III.

• In order to prevent Denial of Service (DoS) attacks caused

by infinite computations, execution of EVM opcodes

consumes a finite resource called “gas”. As the EVM has

evolved, this gas model has changed to facilitate and/or

discourage the use of specific opcodes. To account for

this, we took great care to make KEVM parametric in the

particular chosen fee schedule. This means that KEVM

actually defines a family of EVMs, one for each chosen

fee schedule (see section III-E for more details).

C. Contributions

We present a formalization of the EVM in K. This

specification is:

• Unambiguous: K itself is based on sound foundations in

Reachability Logic, leaving little room for dispute about

the specification’s meaning.

• Readable: K code itself is readable with some expe-

rience, and this project utilizes literate programming to

make the specification as accessible as possible.

• Executable: A reference interpreter and debugger is gen-

erated from the specification.

• Faithful: Using the derived interpreter, we execute and

pass the official test suites for EVM implementations.

• Performant: In section IV, we demonstrate the practicality

of our automatically generated interpreter in a perfor-

mance comparison with available specialized EVM tools.

• Formally Useful: The derived deductive verifier is demon-

strated briefly on real world smart contracts (see sec-

tion V). Our proofs to date are at https://github.com/

runtimeverification/verified-smart-contracts.

All of these factors together have led to the Ethereum

Foundation considering adopting our work as an official spec-

ification of the EVM (see section VI-A for details). To further

KEVM’s utility to developers and researchers, we provide a

complete web-based semantics at https://jellopaper.org.

II. BACKGROUND

We now provide some required background for our work,

including a high-level overview of smart contracts, the EVM

smart contract language, and the K Framework.

A. Ethereum

Ethereum [8], like Bitcoin, is a public blockchain trans-

action ledger. While Bitcoin’s blockchain only stores trans-

actions that exchange Bitcoin between addresses, Ethereum’s

blockchain holds addresses with EVM code. Transactions
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contract Token {
mapping(address=>uint) balances;
function deposit() payable {
// (msg is a global representing
// the current call)
balances[msg.sender] += msg.value;

}

function transfer(address recipient,
uint amount) returns(bool success) {
if (balances[msg.sender] >= amount) {

balances[msg.sender] -= amount;
balances[recipient] += amount;
return true;

}
return false;

}
}

JUMPDEST
PUSH F*40
CALLER
AND
PUSH 0
SWAP1
DUP2
MSTORE
...
PUSH 40
SWAP1
SHA3
DUP1
SLOAD
CALLVALUE
ADD
SWAP1
SSTORE

Fig. 1: Simple Solidity Token smart contract (left) and excerpt

of compiled EVM deposit function (right).

recorded on the blockchain are invocations to the aforemen-

tioned code, and contain information about the data passed

to the program as input. These programs are interpreted by a

limited virtual machine called the Ethereum Virtual Machine

(EVM) and are expressed in its corresponding language. This

language is assembly-like, stack based, quasi-Turing complete

and consists of 65 unique opcodes [9].

B. Smart Contracts

Smart contracts are computer programs which execute

through blockchain transactions that are able to hold state, in-

teract with decentralized cryptocurrencies, and take user input.

The blockchain however, only stores EVM bytecode, which

is too low level for development. Contracts are often written

in a High Level Language like Solidity[26] or Viper[27] and

compiled to EVM bytecode before blockchain deployment.

One example of a smart contract is shown on the left side

of Figure 1. This contract represents a simplification of an

on-chain token, a cryptographic asset able to be transferred

and exchanged between users2. A mapping called balances

stores an association between a user’s address (derived from a

private key that is required to authorize transactions from that

account) and a balance in our example token. The user is able

to deposit Ether into this contract with the deposit function,

which is correspondingly marked payable. On deposit, the

balances array for the sender of the transaction is increased by

the amount of the deposit, minting new supply for our token.

There is also a transfer function which allows users who have

balance in the system to transfer tokens to other accounts,

decreasing their balance and increasing the receiver’s balance.

This is a simplistic contract with several flaws, including the

presence of potentially unexpected arithmetic overflow in both

functions and the lack of a withdraw function which means

Ether is never withdrawable from the contract. Nevertheless, it

illustrates the important features of the smart contract platform,

including the ability to manipulate world-readable contract

2On-chain tokens are custom currencies implemented as ledgers on the
Ethereum network. Their value is not directly correlated to the value of
Ethereum, but they use the Ethereum network for consensus.

state (via the balances mapping) and process decentralized

cryptocurrencies programmatically.

C. Ethereum Virtual Machine (EVM)

Figure 1 also shows an annotated excerpt of our example

Solidity token contract compiled to EVM. Specifically, this

excerpt reads the balance of the sender from the contract’s

storage / world state, adds the value of the current call to this

contract’s balance (creating new tokens in exchange for Ether

sent to the contract), and stores this new sum back into the

relevant entry of the balances mapping. Addressing in the

global storage for maps is based on the SHA33 hash of the

map’s offset in the contract and the key being looked up.

To prevent programs from executing indefinitely, the sender

of each transaction pays a fee to the miners of their smart

contract interaction on the blockchain (miners are users se-

quencing these transactions into blocks in the blockchain).

This fee is charged proportional to how much gas is used

by the contract. The fee schedule for execution is fully

agreed upon by the network, and each transaction specifies

a maximum amount of gas it is willing to use, as well as its

exchange rate between Ether and gas. If a transaction runs

out of gas during execution, it is aborted, its state updates

are reverted, and miners keep the transaction’s gas fees. This

places an execution bound on all EVM transactions, enforcing

termination, and allows the network to charge transactions

proportional to the computational cost they incur.

D. The K Framework

The K Framework is a rewriting based framework for

defining executable semantic specifications of programming

languages, type systems and formal analysis tools. Given the

syntax and semantics of a language, K generates a parser, an

interpreter, as well as formal methods analysis tools such as a

model checker and a deductive verifier. This avoids duplication

while improving efficiency and consistency. For example,

using the interpreter, one can test the semantics immediately,

which significantly increases the efficiency of and confidence

in semantics development. The verifier uses the same internal

model for verifying programs, and that confidence carries over.

Verification is discussed in section V and [28].

There exists a rich literature on using K for defining

languages, including an online tutorial [29]. K has been used

to formalize large languages like C [30] [31], Java [32] and

JavaScript [33], among others. We will introduce K by need, as

we discuss our formalization of the EVM in the next section.

III. K SEMANTICS OF EVM (KEVM)

A K specification includes three main components:

• a syntax of the language, supplied in an EBNF style,

• a description of the state/configuration, and

• the transition rules which drive execution of programs.

Here, we describe the KEVM definition structure as an

introduction to both the EVM and to K. Only the main

semantics files data.md and evm.md are explained in depth.

3The actual hash function used is Keccak256, slightly different than SHA3.
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Fig. 2: The K approach as described in [28]

A. Utilities and Data Structures

Large parts of the KEVM definition are made simpler

by defining simple data-structures and functions over them.

Here several examples of this functional data are provided to

introduce readers to K syntax.

Below we declare a new term pow256 of builtin sort Int.

The keyword syntax adds new productions to the grammar

of terms. Since it is a “pure” function (that is, evaluation of

pow256 does not depend on surrounding context) we declare

it with the [function] attribute.

syntax Int ::= "pow256" [function]
// ----------------------------------

rule pow256 => 2 ˆInt 256

The semantics of pow256 is defined using a rewrite rule

(with keyword rule). If a term under consideration matches

the pattern to the left of the rewrite arrow ( => ), it is replaced

with the pattern to the right. Here, ˆInt is a builtin K

function that implements integer exponentiation. 4

These patterns may be symbolic, i.e. contain variables. If

K finds an assignment to the variables that makes the left hand

side of the rule match a term, it replaces the matched term to

the right hand side after applying the assignment. A requires

clause can be supplied with a rule to state additional boolean

pre-conditions to the rule firing. For example, chop( ),

defined below, is used throughout the EVM semantics to

ensure that EVM words stay within the 256 bit width.

syntax Int ::= chop ( Int ) [function]
// --------------------------------------

rule chop ( I:Int ) => I %Int pow256
requires I <Int 0 orBool I >=Int pow256

rule chop ( I:Int ) => I
requires I >=Int 0 andBool I <Int pow256

Here, the (seemingly redundant) requires clauses are an

optimization to enhance performance (%Int is expensive) and

simplify queries made to K’s SMT solver (currently Z3 [34])

when doing symbolic reasoning. Once again, %Int , -

>=Int and <Int are builtin K operators for Int.

4To facilitate discussing operators used in the semantics, we implicitly give
each operator a name with argument positions are replaced with underbars .
For example, the top-level operator in 3 +Int 4 is named +Int .

Because the EVM operates over 256 bit words, we im-

plement functions for modulo arithmetic operations using

chop( ). Here, operators +Word and /Word are pro-

vided as examples. Note that EVM specifies that division by

zero results in a zero value [9] (which, controversially, is meant

to save gas).

syntax Int ::= Int "+Word" Int [function]
| Int "/Word" Int [function]

// -----------------------------------------
rule W0 +Word W1 => chop( W0 +Int W1 )
rule W0 /Word 0 => 0
rule W0 /Word W1 => chop( W0 /Int W1 )
requires W1 =/=K 0

EVM is a stack-machine, meaning that wordstacks (stacks

of words) are a necessary part of the definition. We implement

a cons-list data structure for sort WordStack with empty

element .WordStack and cons operator : . Also shown, the

WordStack append operator ++ concatenates two stacks:

syntax WordStack
::= ".WordStack" | Int ":" WordStack
| WordStack "++" WordStack [function]

// -----------------------------------------
rule .WordStack ++ WS' => WS'
rule (W : WS) ++ WS' => W : (WS ++ WS')

The definition of operator ++ here is entirely analogous

to the definition of the cons-list append function from many

functional languages. Indeed, the functional subset of K

(when the keyword function is added to productions), is

very similar to normal functional programming.

B. Representing State (Configuration)

K represents program execution state using a configuration.

The configuration is an unordered list of (potentially nested)

cells, specified in K using an XML-like notation.

When declaring transitions (as rewrites) over this state,

any subset of the cells present in the configuration can be

mentioned. This allows the user to specify only the necessary

parts of the state for a given transition, letting K assume that

the remaining parts of the configuration remain unchanged.

The KEVM configuration is split into two components: that

of an active VM (for executing transactions and contracts), and

the state of the network as a whole (e.g. account information).

We omit the full configuration, which contains 70+ cells.

a) VM state: Execution of EVM programs must main-

tain the executing account (<id> cell), the current program

counter (<pc> cell), and the current program (as a map

from program counters to opcodes in the <program> cell).

The <wordStack> and <localMem> cells provide memory

in the form of a bounded wordstack and scratchpad RAM,

respectively. The <gas> cell maintains how much longer

execution can continue before the VM forcibly terminates the

program (to avoid DoS attacks). The comments to the right of

the cells indicate the names used in the Yellow Paper [9] for

these components of the state.

configuration
<k> $PGM:EthereumSimulation </k>
<evm>
<id> 0 </id> // I_a
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<program> .Map </program> // I_b
<pc> 0 </pc> // \mu_pc
<wordStack> .WordStack </wordStack> // \mu_s
<localMem> .Map </localMem> // \mu_m
<gas> 0 </gas> // \mu_g
...
</evm>
...

When declaring a configuration (using the configuration

keyword), the initial values are supplied. K replaces the $PGM

placeholder with the code for the program being run, usually

specified as a command line parameter or input file. In the case

of the test suite, this is a JSON object describing the network

state at the time of execution, the code for the program being

executed, and a set of post conditions expected at the end of

execution. Traditionally, the <k> cell is used to drive execution

and holds the next execution step of a K semantics.

b) Network state: The Ethereum blockchain forms a log

of transactions on the network, which when replayed lead to

the current world/network state. In our semantics, we choose to

store the current world/network state over the append-only log

of transactions leading to this state. In a given state, there may

be any number of active accounts and pending transactions.

Here we show part of the <network> sub-configuration,

specifically the portion corresponding to account states.

configuration
...
<network>
<activeAccounts> .Map </activeAccounts>
<accounts>
<account multiplicity="*" type="Map">
<acctID> 0 </acctID>
<balance> 0 </balance>
<code> .WordStack </code>
<storage> .Map </storage>
<nonce> 0 </nonce>

</account>
</accounts>
...

</network>

The <accounts> cell holds information about the accounts

on the blockchain. Each <account> holds the accounts as-

sociated <balance>, <code> (smart contract), <storage>

(persistent memory), and <nonce>5. By adding attribute

multiplicity="*", we state that 0 or more <account>

cells can exist at a time (that is, multiple accounts can exist at

a time on the network). As an optimization, we additionally

state that accounts can be treated internally as a map from their

<acctID> (by specifying type="Map" on the <account>

cell and listing <acctID> as the first sub-cell)6.

C. Execution

a) Exception-based control-flow: Exceptions are part of

the low-level control-flow of the EVM – they may occur

in case of invalid opcodes, JUMPs to PCs that haven’t been

5This nonce is a globally accessible monotonically increasing integer value
that counts the number of transactions performed by this account.

6This adds the extra requirement that any access of an <account> cell
in a rule must mention the corresponding <acctID> cell.

marked as JUMPDESTs, if there is insufficient gas to pay for

execution, or in case of stack over/under-flow. We built a

simple imperative language for throwing/catching exceptions

in KEVM. Exceptions consume anything following them on

the <k> cell until they are caught.
syntax KItem ::= Exception
syntax Exception ::= "#exception" | "#end"

// ------------------------------------------
rule EX:Exception ˜> (_:Int => .)
rule EX:Exception ˜> (_:OpCode => .)

Note that here, the <k> cell is not explicitly mentioned in

the rule; when no cell is mentioned and the operator being

rewritten is not a function, it’s assumed that the rule applies

only at the front of the <k> cell. The operator ˜> ships with

distributions of K and acts as an associative binary sequencing

operation (read as “followed by”, and similar to the semicolon

in many imperative languages).

Here, we show how exceptions consume any following

Int or OpCode by rewriting them to the empty computation

(.) (which is the empty/identity element of the operator

˜> ). These rules can be read as “when something of sort

Exception is at the front of the <k> cell, it dissolves anything

of sort Int or OpCode following”. Note that the rewrite arrow

( => ) scope here is local: matching happens on the entire

rule but the state change only happens inside the parentheses.

To use exceptions for control flow, we provide a branching

choice operator #? : ?# which chooses the first branch when

no exception is thrown and the second when one is.
syntax KItem ::= "#?" K ":" K "?#"

// ----------------------------------
rule #? B1 : _ ?# => B1
rule #exception ˜> #? _ : B2 ?# => B2

The anonymous variable ( ) is used to tell K that we do not

care about the a subterm value when matching or rewriting.
b) Execution Cycle: Execution in KEVM is driven by the

internal operator #next, which loads and triggers execution

of the next opcode. As described in section 9.4 of the Yellow

Paper [9], execution of a single opcode follows these steps:

1) Perform quick checks for exceptional opcodes.

2) Execute the opcode if the checks passed.

3) Increment the program counter.

4) Revert state in case of any exceptions.

Here is the K rule which gives semantics to the #next

operator, performing the above steps:
rule <k> #next

=> #pushCallStack ˜> #exceptional? [ OP ]
˜> #exec [ OP ]
˜> #pc [ OP ]

˜> #? #dropCallStack : #popCallStack ?#
...
</k>
<pc> PCOUNT </pc>
<program> ... PCOUNT |-> OP ... </program>

Note that this rule reaches across multiple cells in the con-

figuration (including the <k>, <pc>, and <program> cells).

The ellipsis (..., called structural frames) in these rules

are not omission of details, but syntax supported by K for

abstracting uninteresting parts of the state. We match on the
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current program counter PCOUNT along with the corresponding

key/value pair anywhere in the program map to retrieve the

next opcode OP. The operator |-> is K’s builtin map-

binding operator, which creates one key/value pair of the Map

sort. Another rule in the semantics handles the case where the

PCOUNT key is not present in the <program> map indicating

that the program has run to termination.

Upon successfully finding the next opcode, first the

current execution state is saved with internal operator

#pushCallStack. Then, steps 1, 2, and 3 from above are

performed using internal operators #exceptional?, #exec,

and #pc. If an exception is thrown at any point during this,

it consumes everything up to the choice operator #? : ?#

and takes the second branch which reverts the execution state

with a call to #popCallStack. Given that no exception is

thrown, the saved-off state is instead forgotten with a call to

#dropCallStack (to save memory).

D. Example OpCodes

Opcodes are declared with sort corresponding to their

arity to simplify the process of loading arguments from the

<wordStack>. For example, BinStackOps consume two

Words from the <wordStack>.

syntax BinStackOp ::= "SUB" | "DIV"
// -----------------------------------

rule SUB W0 W1 => W0 -Word W1 ˜> #push
rule DIV W0 W1 => W0 /Word W1 ˜> #push

SUB and DIV perform simple arithmetic on their arguments

then use internal operator #push to push the result onto the

<wordStack>. In contrast, the opcodes SLOAD and SSTORE

access the current accounts <storage>. In both cases, the

current account ACCT is matched so that the appropriate

<account> cell is selected for matching.

Here, SLOAD grabs a single word at position I from the

<storage> and #pushes it onto the wordstack. A second

rule (omitted here) specifies the behavior when the index I

does not exist in the current account storage.

syntax UnStackOp ::= "SLOAD"
// ----------------------------

rule <k> SLOAD I => V ˜> #push ... </k>
<id> ACCT </id>
<account>
<acctID> ACCT </acctID>
<storage> ... I |-> V ... </storage>
...

</account>

SSTORE is used to write value V to index I in the current

account <storage>. Notice that here, rewrite arrows are

present in three cells: <k>, <storage>, and <refund>. This

notational convenience allows users to specify rules more com-

pactly, without having to duplicate parts of the configuration

that remain unchanged on both the left and right-hand sides

of the rule. The updates to state in each of the cells happens

simultaneously, only if the overall left-hand side matches and

the requires clause (if present) is met.

syntax BinStackOp ::= "SSTORE"
// ------------------------------

rule <k> SSTORE I V => . ... </k>

<id> ACCT </id>
<account>
<acctID> ACCT </acctID>
<storage>
... I |-> (OLD => V) ...
</storage>
...

</account>
<refund> R =>

#ifInt OLD =/=Int 0 andBool V ==Int 0
#then R +Word Rsstoreclear < S >
#else R
#fi

</refund>
<schedule> S </schedule>

Here, a quirk of the EVM is also demonstrated with the

<refund> cell. If the OLD value in <storage> is non-zero

but the new value V is zero, the current executing account

is refunded some gas for freeing up memory. Notice that

the refund amount, Rsstoreclear, is parametric over S (the

current fee <schedule>) as explained further in section III-E.

E. Gas Semantics

Each execution step and memory expansion in EVM costs

some state-dependent amount of gas, which ensures that all

computations are terminating. KEVM mimics the Yellow Pa-

per’s gas calculation by providing several gas helper functions

defined in Appendix G in [9].

For example, the function Csstore calculates the gas

needed to store a value to an account’s storage:
syntax Int
::= Csstore (Schedule, Int, Int) [function]

//---------------------------------------------
rule Csstore(SCHED, V, OLD)
=> #ifInt V =/=Int 0 andBool OLD ==Int 0

#then Gsstoreset < SCHED >
#else Gsstorereset < SCHED >

#fi

Note that the cost of storing to an account’s memory

depends on whether you are setting it for the first time (before

it was zero, now it’s not) or not. Beyond that, each gas-cost

is parametric over a fee schedule. As Ethereum has evolved

the fees for each opcode have been tweaked to disincentivize

behavior expensive to the network and incentivize alternatives.

This means that the same computation may consume different

amounts of gas depending on when (in which block of the

blockchain) it is executed. Since the blockchain requires that

all past transactions be replayable, all EVM implementations

must be aware of all previous schedules and not just the one

currently in use. We abstract this information into schedules.

Above, Gsstoreset and Gsstorereset are parametric over

a Schedule; the function < > allows making a schedule

constant parametric over a schedule.
syntax Int
::= ScheduleConst "<" Schedule ">" [function]

//---------------------------------------------

Here we show some example fee schedules and schedule

constants:
syntax ScheduleConst
::= "Gzero" | "Gbase" | ...
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| "Gbalance" | "Gsload" | ...
// ---------------------------------

syntax Schedule ::= "DEFAULT"
// -----------------------------

rule Gzero < DEFAULT > => 0
rule Gbase < DEFAULT > => 2

syntax Schedule ::= "EIP150"
// ----------------------------

rule Gbalance < EIP150 > => 400
rule Gsload < EIP150 > => 200

The fee schedule to use is set through the command line flag

-cSCHEDULE=<FEE SCHEDULE>. This allows us to execute

and verify programs against any appropriate fee schedule.

IV. QUANTITATIVE SEMANTICS EVALUATION

A. Correctness and Performance

As consensus-critical software, implementations of EVM

are held to a high standard; past disagreements have caused

accidental forks of the blockchain which leads to disparate

world-views [35]. We based our semantics on the Yellow Pa-

per [9], but found inconsistencies confirmed by its developers.

Test Set (no. tests) Lem EVM KEVM cpp-ethereum
Lem (40665) 288:39 34:23 3:06
VMStress (18) - 72:31 2:25
VMNormal (40665) - 27:10 2:17
VMAll (40683) - 99:41 4:42
GSNormal(22705) - 35:00 1:30
GSQuad (250) - 855:24 0:21
GSAll (22955) - 889:00 1:51

TABLE II: Lem EVM vs KEVM vs cpp-ethereum

Table II shows a performance comparison between KEVM,

the Lem semantics [36], and the C++ reference implemen-

tation distributed by the Ethereum foundation7. The Lem

semantics (discussed more in section VII) is the only other

executable formal specification of the EVM we are aware of.

All execution times are given as the full sequential CPU

time (in MM:SS format) on an Intel i5-3330 processor (3GHz

on 4 hardware threads) and 24 GB of RAM. By comparing

to the C++ reference implementation, we show the feasibility

of using the KEVM formal semantics for prototyping, devel-

opment, and test-suite evaluation.

The row Lem indicates a run of all the tests that the

Lem semantics can run (a subset of the VMTests). The row

VMStress indicates a run of all 18 stress tests in the test-

suite, to compare the performance of KEVM with the C++

implementation. The row VMNormal is a run of all the non-

stress tests in the test-suite (not the same set of tests as Lem).

VMAll is the addition of the second and third rows and is

included for completeness. The last three rows indicate a runs

of the GeneralStateTests; GSNormal are the non-stress tests,

GSQuad are the stress tests, and GSAll is the addition of

the two. Under the GeneralStateTests, our tools performs well

except in the case of QuadraticStateTests (250 out of 22955).

7https://github.com/ethereum/cpp-ethereum

As shown in the comparison, the automatically extracted

interpreter for KEVM outperforms the currently available for-

mal executable EVM semantics. KEVM compares favorably

to the C++ implementation, performing under 30 times slower

on the stress tests, roughly 20 times slower on all tests, and

only 11 times slower on the Lem and VMNormal tests.

B. Implementation Effort

The time to develop the first release-quality KEVM was

roughly 2 months of light activity by 2 developers followed

by 3 months of heavy activity by 4 developers.

The overall definition is broken into three major modules:

• File data.md provides module EVM-DATA, which defines

defines EVM data-structures (742 lolc8).

• File evm.md provides module EVM, which defines the

EVM state, opcodes, and execution cycle (2645 lolc).

• File driver.md provides the extra module

ETHEREUM-SIMULATION, which is largely used for

running the test suites (744 lolc).

The total count of non-blank and non-literate lines of

code for KEVM comes in at 2644. For comparison, the

reference C++ implementation weighs in at 4588 lines of

code. This measurement was taken on commit-hash ee0c6776c

of https://github.com/ethereum/cpp-ethereum by counting non-

blank lines of all *.h and *.cpp files in subdirectory libevm.

We argue that these numbers are not atypical for imple-

menting an interpreter for a small real-world programming

language, not to mention the extra tools that K provides for

analysis and security along the way.

V. VERIFICATION OF SMART CONTRACTS

A primary motivation for this work has been to mitigate

security failures as listed in section I-A. Many such issues

can be addressed via verification, i.e. proving a program con-

forms to a formal property. As mentioned in section II-D, K

generates a deductive verifier. We briefly describe the verifier,

and demonstrate verification of real-world contracts. For a

complete list of the proofs we have to date, see [37].

A. K’s Deductive Verifier

As a prelude to explaining smart contract verification using

our semantics, we need briefly cover the deductive verifier’s

theoretical foundations. At its core, K’s deductive verifier per-

forms automated Reachability Logic (RL) reasoning [28]. RL

is a sound and relatively complete logic tailored for reasoning

about reachability. Program correctness specifications in RL

are expressed as reachability claims. A reachability claim is

a sentence of the form φ ⇒ ψ (read φ reaches ψ), where φ
are ψ are formulae in Matching Logic (ML) [38]. We briefly

describe ML, and ML’s formulae (known as patterns) using an

example. Let’s consider the rule for chop, from section III-A
rule chop ( I:Int ) => I
requires I >=Int 0 andBool I <Int pow256

This rule can be written as α ∧ β ⇒ α′, where α, β, α′

are patterns chop(I:Int), I <Int 0 andBool I >=Int

8lolc = lines of literate code
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pow256 and I respectively. The requires construct in K

introduces the pattern β as a side condition, resulting in the

pattern α ∧ β. This pattern can be viewed as the set of

configurations that match α structurally and satisfy β logically.

The reachability claim φ⇒ ψ specifies that the set of states

represented by pattern φ will either reach a state in ψ or not

terminate when executed with the given language semantics.

K’s deductive verifier treats both operational semantics rules

and program correctness specifications as reachability rules.

It then uses RL’s proof system (figure 3) to derive the proof

claims using the semantic rules as axioms. Thus, when instan-

tiated with the semantics in section III, K’s verifier provides

a sound procedure for reasoning about EVM programs. We

direct the reader to [28] for details on Reachability Logic, and

the proof search algorithm used by the K verifier.

a) Expressive Power: A Hoare triple {Pre}Code{Post}
can be represented as the reachability claim Ĉode ∧ ̂Pre ⇒
ε∧ ̂Post, where ε is a pattern representing the empty program.

Ĉode is a minimal state pattern containing the Code but with

program variables replaced with logical variables. Similarly for
̂Pre and ̂Post variables are replaced with logical counterparts.

Using this, we can directly encode functional correctness

and safety properties as reachability claims for the prover

to discharge. Often times individual correctness properties

are not enough though; developers have high-level security

goals regarding contract logic, perhaps even across multiple

transactions. K can still be of use for these goals; many

security faults are due to collections of correctness bugs (as

opposed to poor design) which can be specified as multiple

claims to be discharged simultaneously. Additionally, many

trace properties can be captured by breaking a claim φ ⇒ ψ
into several claims φ ⇒ φ1, φ1 ⇒ φ2, ..., φn ⇒ ψ, allow-

ing proofs over intermediate states as well. Finally, though

transaction execution is completely deterministic on the EVM,

transaction ordering is a source of non-determinism which can

be exploited by miners on the network. K reasons with all-
path reachibility [28], meaning that reachability claims over

multiple transactions can be proven with respect any ordering

of the transactions.

B. ERC20 Token Standard

The ERC20 standard [23] is one of the most important

standards for the implementation of tokens within Ethereum

smart contracts. ERC20 provides basic functionality to transfer

tokens and to be approved so they can be spent by another on-

chain third party. ERC20-compliant tokens were responsible

for raising and holding over one billion USD in the six months

before the writing of this report. In the so-called “ICO rush”,

a series of ERC20-compliant token/coin launches were used

to raise funding on the Ethereum platform [39].

ERC20 compliant tokens are therefore an attractive target

for software verification. In order to evaluate the viability and

usefulness of our semantics based verification approach, we

decided to target implementations of the ERC20 token stan-

dard. Compliance with the ERC20 standard is also important

if a contract wishes to be recognized by external software

including wallets, exchanges, and other contracts expecting to

interact with tokens. We focused on verifying the functional

correctness of the following five functions from [23]:

• balanceOf(address): uint

Retrieve the balance of the specified account.

• transfer(address, uint): bool

Transfer tokens to the specified account.

• transferFrom(address, address, uint): bool

Request a payment between two accounts.

• approve(address, uint): bool

Approve payment requests up to the specified amount.

• allowance(address, address): uint

Retrieve remaining allowed payment requests.

The implementation details of these methods are left to

the user, with minimal semantic behavior provided in the

specification, leaving room for a wide range of complex tokens

(and the associated security vulnerabilities). Complete details

of the ERC-20’s interface is documented at [23].

Ideally, we would like to create a specification describing

generally desirable properties of ERC20, usable in verifying a

wide range of implementations at the EVM level. While these

contracts are usually implemented in high-level languages,

performing this verification at the EVM level removes the need

for compiler trust. Note that compiler problems are real; one

compiler bug required the re-issuance of a token holding and

processing 190 million USD9.

1) Challenges in Verifying EVM Programs: EVM lacks

high level constructs including functions and explicit data

types. Any invocation of an EVM program always begins with

the VMs program counter set to 0. Higher level languages

such as Solidity and Viper, however, have functions and types,

allowing users to directly call functions in contracts without

dealing with low-level EVM code. This lack of high level

constructs makes writing specifications for programs at the

EVM level tedious and error prone. For instance, writing a

specification to reason about any of the ERC20 methods at

the EVM level requires specifying the actual program counter

values corresponding to the start and the end of the function.

We address this issue by using a DSL modeled on the

Ethereum ABI. The Ethereum ABI [40] is a mechanism for

simulating a function call at the EVM level. Contracts are

written in higher level languages and call functions in other

contracts. The ABI facilitates this by specifying the encoding

and decoding rules for a transaction’s calldata: an input field

available to each transaction (realized in KEVM with the cell

<callData>). To be ABI complaint, EVM bytecode must

include logic at the beginning for handling control transfer

(via JUMPs) to the program counter of the called function.

It is worth noting that the ABI is not a part of the protocol

itself, and hence does not appear in the Yellow Paper [9].

However, compilers for common higher level languages like

Solidity and Viper produce ABI compliant code.

9The vulnerability of the Serpent compiler and the associated reis-
suance of the Augur is described in https://medium.com/@AugurProject/
serpent-compiler-vulnerability-rep-solidity-migration-5d91e4ae90dd.
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Reflexivity :

A � ϕ⇒ ϕ

Transitivity :

A �C ϕ1 ⇒+ ϕ2 A ∪ C � ϕ2 ⇒ ϕ3

A �C ϕ1 ⇒ ϕ3

Axiom :

ϕ⇒ ϕ′ ∈ A
A �C ϕ⇒ ϕ′

Case Analysis :
A �C ϕ1 ⇒ ϕ A �C ϕ2 ⇒ ϕ

A �C ϕ1 ∨ ϕ2 ⇒ ϕ

Abstraction :

A �C ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A �C ∃X ϕ⇒ ϕ′

Circularity :

A �C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A �C ϕ⇒ ϕ′

Logic Framing :

A �C ϕ⇒ ϕ′ ψ is a (patternless) FOL formula

A �C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ

Consequence :

|= ϕ1 → ϕ′
1 A �C ϕ′

1 ⇒ ϕ′
2 |= ϕ′

2 → ϕ2

A �C ϕ1 ⇒ ϕ2

Fig. 3: Sound and relatively complete proof system of Reachability Logic. A is the initial (trusted) execution semantics of

the programming language (axioms). The C on �C indicates that the circularities C are reachability claims conjectured but

not yet proved. The Circularity proof rule allows us to conjecture any to-be-proven reachability claim as a circularity, while

Transitivity allows us to use the circularities as axioms (only after we have made progress on proving them).

The ABI specifies that the first four bytes of call data must

be the Keccak hash (referred to as the function selector) of

a canonical representation of the invoked function’s signature.

The canonical representation is a string consisting of function

name and comma-separated list of types. From the fifth byte

onward, the parameters are encoded based on their type. We

briefly describe our DSL for the encoding.
syntax TypedArg ::= #uint160 ( Int )

| #uint256 ( Int )
// Others omitted for readability
syntax WordStack
::= #abiCallData( String , TypedArgs )

[function]

The DSL’s #abiCallData construct takes as input a func-

tion name, and a comma separated list of typed arguments.

The function then generates the function selector bytes from

the signature, and uses the type information from arguments

to encode the argument data. For ABI-compliant EVM byte-

code, we can use the ABI based DSL to bypass the process

of specifying concrete program counter values and calldata

corresponding to the function boundaries in our claims, which

removes a major limitation of performing proofs at the EVM

level. In section V-B2 and V-C, we demonstrate the usage of

the ABI-DSL.
2) Procedure: The procedure to verify contracts using

KEVM is largely the same each time:

i Write down the high-level logic of a contract as abstract

state-updates on the configuration.

ii Compile the code to EVM for use with KEVM.

iii Fill in the configuration from step 1 with the code and

corresponding calls.

iv Inspect the queries being made to the SMT solver to

understand why the claims are not provable.

v Fix bugs discovered in the original code or in the claims

to make the proof go further.

vi Goto step (iv) if the proof is not discharged yet.

3) Solidity Implementation: The HKG Token (an imple-

mentation of ERC20) was initially a topic of discussion

when a vulnerability based in a typographical error lead to

a re-issuance of the entire token [22], disrupting a nontrivial

economy based on it. Previously, the token was audited by

humans and deemed secure10, further reinforcing the error-

prone nature of the human review process and the need for

tools.

Specifically, the typographical error in the HKG Token

came in the form of an =+ statement being used in place of

the desired += when updating a receiver’s balance during a

transfer. While typographically similar, these statements are

semantically very different, with the former being equivalent

to a simple = (the plus saying that the expression following

should be treated as positive) and the latter desugaring to

add the right hand quantity to the existing value in the

variable on the left hand side of the expression. In testing,

this error was missed, as the first balance updated would

always work (with balance =+ value being semantically

equivalent to balance += value when balance is 0, in

both cases assigning value to balance). Even with full

decision or branch coverage in testing, multiple transfers on

the same account can be entirely omitted in a way that is

difficult to notice through human review.

Even after fixing the bug described above though, we

were unable to prove the functional correctness of the HKG

contract. It turns out that only after specifying bounds on the

inputs and gas supplied in the pre-condition that there would

not be any arithmetic overflow or out-of-gas exceptions were

we able to verify the contract. In addition, the HKG Token

threw an exception if the transfer function was called with

a 0 amount, which amounted to another pre-condition added

to the specification. Note that this last issue is non-compliance
with the ERC20 standard; the process of verifying functional

correctness of the contract caught this error and the mentioned

potential bugs.

The original proofs we performed were directly over the

EVM, which was quite cumbersome and made it difficult to

10https://zeppelin.solutions/security-audits
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find the exact start and end program-counter values to use.

However, since these tokens were ABI-compliant, we were

able to use our ABI DSL to later simplify the proof claims.

4) Viper Implementation: To test whether our ABI-level

specification of the ERC20 was modular across implemen-

tations from different high-level languages, we also verified a

Viper implementation of the ERC20 released by the Ethereum

Foundation. The token we verified is available at [37].

Three changes to the specifications were necessary for the

proofs to go through:

• The gas needed to be changed. This is expected because

the Viper and Solidity compilers generate different EVM.

• The Viper implementation correctly handles the 0 case for

transfer, so we had to remove the added pre-condition.

• The HKG and Viper implementations have different be-

havior for transfer and transferFrom. If not enough

funds are present, the HKG token returns false while

the Viper token throws an exception. Both behaviors are

allowable according to the ERC20 specification.

With these minor changes, the same ABI-level verification

went through on the Viper token, demonstrating the modularity

of our ABI-level verification approach.

C. Example Proof Claims

Due to space, we cannot include the full reachability claims

here. The K prover accepts reachability claims in the same

format as semantic rules. Instead of interpreting the supplied

module as axioms (like the modules in the semantics itself),

the module is interpreted as a set of reachability claims.

Here we summarize one of the claims, including interesting

parts of the state (but omitting uninteresting bits with ...).

In the following claim, any symbol starting with a % indicates

a constant which has been replaced by a symbol for clarity.

In particular, %HKG Program is the EVM bytecode for the

HKG token program, VALUE represents the symbolic amount

to transfer, B1 and B2 are the starting balances of accounts 1

and 2, respectively, and A1 is the allowance of account 111.

Here, we also make use of the ABI DSL to populate

the <callData> cell with the intended contents. Without

this DSL, we would have needed to find the starting and

ending program counters for function transfer manually.

In addition, we would have needed to manually encode the

correct function to call and its arguments.

rule
<k> #execute => (RETURN _ _ ˜> _) </k>
...
<program> %HKG_Program </program>
<pc> 0 => _ </pc>
...
<callData>
#abiCallData ( "transfer"

, #address(%CALLER_ID)
, #uint256(VALUE)
)

</callData>
...

11pow256 is defined in section III-A.

<accounts>
<account>
<acctID> %ACCT_ID </acctID>
<balance> BAL </balance>
<code> %HKG_Program </code>
<acctMap> "nonce" |-> 0 </acctMap>
<storage>
...
(%ACCT_1_BALANCE |-> (B1 => B1 -Int VALUE))
(%ACCT_1_ALLOWED |-> A1)
(%ACCT_2_BALANCE |-> (B2 => B2 +Int VALUE))
(%ACCT_2_ALLOWED |-> _)
...
</storage>

</account>
</accounts>

requires VALUE >Int 0
andBool B1 >=Int 0 andBool B1 <Int pow256
andBool B2 >=Int 0 andBool B2 <Int pow256
andBool B2 +Int VALUE <Int pow256
andBool B1 -Int VALUE >=Int 0
andBool VALUE <Int pow256

The claim above specifies that in all valid executions starting

in the left-hand-side of the rule, either execution will never

terminate or it will reach an instance of the right-hand-side.

Specifically, this means that any transfer of amount VALUE

from account 1 to account 2 (with VALUE sufficiently low and

various overflow conditions met) will happen as intended in

the execution of the transfer code provided. While one can

rely on the EVM to throw exceptions on stack overflow or

out-of-gas, arithmetic overflow will usually go undetected as

the VM does not throw an exception on arithmetic overflow.

VI. OTHER APPLICATIONS

As alluded to in Section II-D, besides the verification

engine, K’s semantics-first approach allows deriving several

other tools. We now describe two such artifacts.

A. Jello Paper

While developing these semantics, a common problem we

faced was interpreting the Yellow Paper, the English language

specification of the EVM [9]. Often times, the Yellow Paper is

unclear or underspecified, and in some exceptional cases even

unfaithful to what actual implementations do.

For example, as mentioned in section I-B, Section 9.4.2

of [9] describes exceptions as if they are all detectable prior

to opcode execution. While it may be possible to implement

EVM in this way, it is not clear that this is the simplest or

best way (as it would lead to duplicating computation). No

implementations seem to work this way, casting further doubt

on this description; instead exceptions are thrown when they

happen. Our original implementation tried to do it in this way,

eventually necessitating a redesign.

In other cases, the expected behavior is underspecified. For

example, it is not always explicit about what should happen

when an opcode attempts to access a non-existent account’s

data (as EXTCODESIZE and EXTCODECOPY may do). Another

example is the appearance of “junk bytes” in a program’s

bytecode (which do not correspond to any opcodes); these
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can be used for loading long immutable strings of data into

the VM. Though not originally addressed in the Yellow Paper,

the community has reached agreement on these issues.

In some places the Yellow Paper is even inaccurate. The

DELEGATECALL instruction, with semantics given in Appendix

H of [9], describes the gas provided to the caller as equal to

μs[0] (the top of the <wordStack>). This is clearly incorrect,

since μs[0] is a user-provided value, and the user could set

it equal to 2256 − 1, leading to the user having near infinite

gas. The test suites and other implementations indicate that

the intended behavior is to use Ccallgas (as CALLCODE and

CALL do), but with the value-transferred argument set to 0.

For the same opcode, it describes the exceptional condition of

not enough balance in terms of Iv , but in fact no value transfer

occurs so this condition should never occur.

In the process of building an executable specification, all

of these issues naturally arose when testing against the test-

suite, as they did for other implementations. These problems

make implementing tools and infrastructure for the Ethereum

ecosystem needlessly error-prone and inefficient. Instead, we

propose using our “developer” documentation, which is auto-

matically generated from the KEVM semantics12. This ver-

sion of the semantics, called the Jello Paper, is available

at https://jellopaper.org. We hope to continue improving the

Jello Paper readability, and have been in communication with

members of the Ethereum Foundation regarding establishing

it as a reference specification for the EVM platform and an

executable successor to [9].

B. Gas analysis tool

EVM programs are forced to always terminate to prevent

malicious actors from mounting a DoS attack on the network.

This is done by allotting gas for execution ahead of time and

charging each VM operation some gas. If gas is exhausted

before execution finishes, an exception is thrown and the

state is reverted. For many contracts, functional correctness is

dependent upon enough gas being supplied up front. To help

users decide how much gas they should supply, we extended

the semantics with a gas analysis tool.

The semantics was already designed with extensibility in

mind; execution is parametric over an extra <mode> cell which

controls how to interpret EVM programs13. For example, in

VMTESTS mode, execution of CALL and CREATE opcodes is

not performed (as specified by the Ethereum Test Suite [1]).

configuration ...
<mode> $MODE:Mode </mode>
...

syntax Mode ::= "NORMAL" | "VMTESTS" | ...

The file analysis.md adds the execution mode

GASANALYZE, along with some modifications to the definition

of the #next operator. In GASANALYZE mode, the #next

operator executes normally until it hits a control-flow operator

12The tool Sphinx (http://sphinx-doc.org) is used to generate the Jello Paper.
13The execution mode is set on the command line with

-cMODE=<EXECMODE>.

Tool Spec. Exec. Tests Prover Bugs Gas
Yellow Paper � � � � � �
cpp-ethereum � � � � � �

Lem spec � � � � � �
Oyente � � � � � �
hevm � � � � � �

Manticore � � � � � �
REMIX � � � � � �
Dr. Y’s � � � � � �

F� � � � � � �
KEVM � � � � � �

TABLE III: Feature comparison of EVM semantics and other

software quality tool efforts.

(eg. JUMP, JUMPI, or JUMPDEST), collecting the overall gas

consumed to do so. At the control-flow operator, the overall

gas consumed is recorded in the <analysis> cell (along

with the starting and ending program counter for that basic

block). Finally, the program counter is forcibly incremented

past the control-flow operator, and the analysis is restarted.

In this way, each basic block is executed in isolation and the

amount of gas used is collected and reported back to the user

in the <analysis> cell. Note that the current implementation

only calculates an approximation, but some engineering effort

would result in a more accurate calculation.

This extension is a 1.8% increase in the size of the semantics

(87 lines of literate code, roughly a day of work), demonstrat-

ing the flexibility of having a directly extendable executable

specification of the EVM.

VII. COMPARISON WITH RELATED WORK

There has been substantial practical interest in formally

verifying properties of smart contracts for the reasons we

enumerate in Section II. For example, the Solidity IDE in-

corporates Why3 [41] (a semi-automated theorem prover) to

help verify smart contracts written in the higher-level Solidity

language. In this section, we compare the practical artifacts

derived from and generated by our work to existing efforts. A

list compiled by Dr. Yoichi Hirai14 informs our comparison.

We do not include or compare with any tools which operate

over other languages (e.g., Solidity source analysis tools)

exclusively, serve as implementations of an Ethereum network

client, or are closed (eg. Securify 15).

a) Feature Comparison Overview: The tools produced

in the Ethereum community are meant to fill a variety of

purposes, many of which are also able to be accomplished

directly from our executable semantics. We choose the fol-

lowing metrics of comparison for the tools we list:

• Spec.: Suitable as a formal specification?

• Exec.: Executable on concrete tests?

• Tests: Passes the Ethereum test-suites?

• Prover: Serves as theorem prover for EVM?

• Bugs: Heuristic-based tools for finding bugs?

• Gas: Analyzes gas complexity of EVM programs?

Table III shows an overview of the results of our com-

parison. We briefly describe each effort and compare it to

14https://github.com/pirapira/awesome-ethereum-virtual-machine
15http://securify.ch
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the relevant KEVM artifact. The projects fit two categories:

semantic specifications and smart contract analysis tools.

A. Semantic Specifications

a) Yellow Paper: [9] The official document describing

the execution of the EVM, as well as other data, algorithms,

and parameters required to build consensus-compatible EVM

clients and Ethereum implementations. It cannot be tested

against the conformance test-suite; instead it serves as a

guide for implementations to follow. Much of the machine

definition is supplied as several mutually recursive functions

from machine-state to machine-state. The Yellow Paper is

occasionally unclear or incomplete about the exact operational

behavior of the EVM; in these cases it is often easier to simply

consult one of the executable implementations.

b) cpp-ethereum: 16 A C++ implementation that also

serves as a de-facto semantics of the EVM. The Yellow Paper

and the C++ implementation were developed by the same

group early in the project, so the Yellow Paper conforms

mostly to the C++ implementation. In addition, the confor-

mance test-suite is generated from the C++ implementation.

This means that if the Yellow Paper and the C++ implemen-

tation disagree, the C++ implementation is favored.

c) Lem semantics: [36] A Lem ([42]) implementation

of EVM provides an executable semantics of EVM for doing

formal verification of smart contracts. Lem compiles to various

interactive theorem provers, including Coq, Isabelle/HOL,

and HOL4. The Lem semantics does not capture intercon-

tract execution precisely as it models function calls as non-

deterministic events with an external (speculated) relation

dictating the “allowed non-determinism”. This semantics is

executable and passes all of the VMTests test-suite except for

those dealing with more complicated intercontract execution,

providing high levels of confidence in its correctness.

d) GMS small-step specification: [43] A small-step spec-

ification of the EVM inspired by the EtherLite semantics

of [18]. The specification is non-executable, but provides a

precise guide for implementers of the EVM.

B. Smart Contract Analysis Tools

a) Oyente: 17 An EVM symbolic execution engine writ-

ten in Python supporting most of the EVM. Many heuristics-

based drivers of the engine are provided for bugfinding.

b) hevm: 18 A Haskell implementation of EVM includ-

ing on an interactive debugger mode, which allows stepping

through contract execution one opcode at a time.

c) Manticore: [44] A symbolic execution engine for

virtual machines, including models for x86, x86 64, ARMv7,

and EVM. This tool exports a Python API for specifying pro-

grams, driving symbolic execution, and checking assertions.

16https://github.com/ethereum/cpp-ethereum
17https://github.com/melonproject/oyente
18https://github.com/dapphub/hevm

d) REMIX: 19 A JavaScript implementation of the EVM

with a browser-based IDE for building and debugging smart

contracts. Some static analysis is built into the tool, allowing

it to catch pre-specified classes of bugs in smart contracts.

e) Dr.Y’s Ethereum Contract Analyzer: 20 A symbolic

execution engine for EVM to summarize the semantics of

smart contracts. A debug mode allows step-by-step execution.

f) F�formalization of EVM: [45] An implementation of

the EVM in the F�language21 which passes roughly half of

the VMTests at the time of writing. The same paper discusses

an on-paper small-step specification of the EVM as well [43].

VIII. FUTURE WORK

We believe this rich ecosystem of tools, all generated pro-

grammatically from a single independent reference semantics,

has the opportunity to be transformative in the development

and deployment of secure smart contracts while avoiding a

large class of potential losses and failures. With our existing

semantics and EVM interpreter, we plan on finishing the work

required to encourage the widespread adoption of our work as

the reference semantics and interpreter for the EVM system.

a) Future EVM Hardforks: As demonstrated in section

III-E, the current semantics is parametric over the selected fee

schedule. The EVM will continue to evolve as new opcodes

are added and gas prices are changed, and the specification

will need to evolve with it. KEVM provides a solid tool

for prototyping and testing updates to the EVM specification,

allowing for a smoother protocol update process.

b) Analysis Tools: Another key direction is the formal-

ization of classically known contract antipatterns, specifically

those that have lead to exploits in the past. These antipatterns

can be used to generate dynamic checkers for EVM programs,

similar to the dynamic checker for C in [46], [47].

For example, to check for integer overflows in the execution

of a program, the semantics can be modified to halt every time

an integer number overflows by modifying the semantics of

just the chop function (section III-A). At execution time, if

the function chop is called, the user will be alerted that their

smart contract may have an overflow. Other classic antipatterns

(eg. stack over/underflow demonstrated in section V-B2) can

be caught with similar small modifications to the semantics.

c) ABI-Level DSL: Currently our ABI-level DSL only

supports statically-sized ABI types, but the ABI contains

several dynamically sized types as well22. We plan to extend

our DSL to support dynamic types too, allowing writing

specifications over any ABI-compliant contract. Once the

full ABI is supported, we will have produced an executable

specification of the EVM ABI abstraction.

d) Verified EVM Libraries: To further assist others in

building high-assurance contracts, we intend to provide fully

verified library contracts. Over time, we’ll collect a body of

high-assurance EVM code for the community.

19https://github.com/ethereum/remix
20https://blog.slock.it/an-ethereum-contract-analyzer-93e9da92fecb
21https://www.fstar-lang.org/
22The ERC20 contract uses only statically sized types.
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IX. CONCLUSION

In this paper, we presented a formalization of the EVM

using the K Framework. This provides a specification of the

EVM, a reference interpreter, and a suite of tools for program

analysis and verification. KEVM is the first executable speci-

fication of the EVM that completely passes official test-suites.

Not only is our semantics complete and faithful, but perfor-

mant. This is an important point if the semantics is intended to

be used in a CI (Continuous Integration) environment where

every change should be tested thoroughly. Changes to the

EVM can realistically be prototyped on KEVM, yielding both

an updated specification and implementation.

Beyond being a specification of the EVM, KEVM serves as

a platform for building a wide range of analysis tools and other

semantic extensions for EVM. We demonstrated this with

three extensions: a full web-based version of our semantics, a

gas analysis tool, and ABI-level DSL for verification of real

world contracts. Each of the extensions leveraged the existing

semantics, meaning each required minimal code changes.

Finally, we verified solidity and viper implementations of

the ERC 20 token standard against the official specification.

This gave us a chance to test the robustness of our ABI-level

DSL; indeed proving the Viper sources after the specification

was developed for Solidity was much simpler. The specifi-

cation provided can be used nearly as-is for verifying other

proper implementations of ERC20s, serving as the basis for

developing a library of verified EVM code.

Already, KEVM has proved to be a useful tool for software

developers working on smart contracts. Beyond that, KEVM

is a valuable resource to Ethereum developers experimenting

with evolving the EVM and protocol updates, as it stream-

lines the process of bringing an implementation in line with

the specification for experimentation purposes. We hope this

serves to signal the practicality of an executable specification
first approach to programming language design, as well as the

merits of separating the construction of programming language

semantics from analysis tools. We believe the application of

these tools can drastically increase the rigor and security of

both currently deployed and future smart contracts.
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[19] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic frame-
work,” Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp.
397–434, 2010, http://kframework.org/.

[20] Formal Systems Lab, UIUC, “The K framework,” 2006, http://
kframework.org.

[21] J. Solana, “$500K hack challenge backfires on blockchain lot-
tery SmartBillions,” 2017, https://calvinayre.com/2017/10/13/bitcoin/
500k-hack-challenge-backfires-blockchain-lottery-smartbillions/.

[22] J. Manning, “Ether.camps hkg token has a bug and
needs to be reissued,” 2017, https://www.ethnews.com/
ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued.

[23] The Ethereum Foundation, “ERC20 token standard,” https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md, 2017.

[24] C. Reitwiessner, “Dev update: Formal methods,” 2016, https://blog.
ethereum.org/2016/09/01/formal-methods-roadmap/.

[25] P. Rizzo, “In formal verification push, Ethereum seeks
smart contract certainty,” 2016, http://www.coindesk.com/
ethereum-formal-verification-smart-contracts/.

[26] Ethereum, “Ethereum solidity documentation,” 2017, https://solidity.
readthedocs.io/en/develop/.

[27] ——, “Viper - new experimental programming language,” 2017, https:
//github.com/ethereum/viper.
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