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Abstract—The insider threat is one of the most serious security
problems faced by modern organizations. High profile cases
demonstrate the serious consequences of successful attacks. The
problem has been studied for many years, leading to a number
of technologies and products that have been deployed widely in
government and commercial enterprises. A fundamental question
is: how well do these systems work? How may they be tested?
How expensive are widely deployed monitoring infrastructures
in terms of computational cost?

Measurement of real systems, which are dynamic in nature,
encounter unknown configuration bugs and have sensitivities to
the vagaries of human nature and adversarial behavior, requires
a formal means to continuously test and evaluate deployed
detection systems. We present a framework to deploy in situ
simulated user bots (SUBs) that can emulate the actions of
real users. By creating a user account and by running a host
in the enterprise network, a SUB can be introduced into an
enterprise system that runs at a realistic pace and does not
interfere with normal operations. Infusing malicious behavior
into the SUB should be detected by the insider threat monitoring
infrastructure. The SUB framework can be controlled to explore
the limits of deployed systems and to test the effectiveness of
insider evasion tactics, especially low and slow behaviors.

We demonstrate our framework in a synthetic ecosystem as
well as in a live enterprise deployment. We created a synthetic
environment of users based on data collected in a West Point
cadet study. Various machine learning based intrusion detection
algorithms are used to validate the ability of the SUB framework
to generate both normal and malicious users. In a live University
network, we launched a number of attacks on its intrusion
detection system and showcased the ability to devise malicious
users. In addition, we further deployed low and slow attacks
that perform malicious actions over an extended period of time
and demonstrate how even a large enterprise is ill equipped to
combat such attacks.

I. INTRODUCTION

The insider threat is among the most severe security threats

in modern organizations. A number of technologies and prod-

ucts are being deployed broadly [1]–[3]. The User Behavior

Analytics (UBA) market is predicted to approach $1 billion

by 2021 [4]. The current generation of available commercial

products is based upon network monitoring sensors and large

scale data analytics that compute user models to detect abnor-

mal behaviors indicative of malicious acts (eg., [5], [6]). A

fundamental question is how well do they actually work and

at what computational cost?

In this paper, we introduce simulated user bots (SUBs), a

novel system designed to create realistic user behaviors in an

enterprise computing environment that can be programmati-

cally designed to simulate normal or malicious users. Similar

to BotSwindler [7], we employ an endpoint agent to run

host applications to mimic a real user without interfering

with the normal operations on the enterprise system. The

SUBs generate network and host data in the same manner

as ordinary users generate those data, but can be controlled

to inject any behavior we wish. There are no traces that

would clearly indicate that the SUBs are not real users in

the system logs. To generate simulations, SUBs are dependent

on a database, a corresponding translator and advanced user

generation modeling, which culminates in actions files. The

SUBs are identical to users in almost every facet from having

to login to the speed at which a user modifies a document.

For the purposes of training our models, we used a detailed

dataset consisting of 63 West Point cadets, containing up

to two months of real usage data. Despite being from a

homogeneous organization, users in the dataset were unique

in their behaviors. Statistics were gathered on the users in

terms of the average frequency of visits to particular types of

websites, the types of activities on files, etc.

The SUB behaviors introduced in this paper are designed to

generate trace data typically used as indicators and detectors

in identifying malicious users by insider threat systems. We

enumerate a sample of typical indicators used in deployed

systems in Section 2c. These indicators are temporal statistics

derived from an analysis of monitored network logs. These

statistics derive group norms from which abnormal users are

identified. A clever insider adversary can avoid detection and

it is thus of paramount importance to consider more robust

indicators and detectors.

Controlling the pace and the frequency of these trace

indicators generated by a SUB provides the means of testing

the detection system at its margins, and hence can provide

a detailed analysis of the ease or the difficulty of evading

detection. Errors in the deployed monitoring infrastructure,

either due to bugs in configurations or noise introduced by

faulty sensors, may also be revealed if a SUB is undetected

although it is directed to purposely exhibit the indicator. Of

particular interest is whether SUBs may be used to measure

the computational costs of maintaining long term temporal

statistics. Low and slow behaviors would cause an insider

threat monitoring system to keep long term state information
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for many users, which would cause an increasing cost in

terms of storage and computation. Hence, the SUB testing

framework may also provide a means of evaluating not only

the accuracy of a system, but its computational costs.

We have implemented our SUB framework using QEMU

[8], running a Linux host. The SUB user actions are learned

from a database of real user behavior previously acquired in

prior work, which are modeled extensively and translated to

Python action files, which make use of our augmented version

of VNCDoTool [9]. The SUB framework can be applied to

any host operating system, but our work presently focuses

on Linux. We present tests on various SUB configurations on

many commonly used algorithms for insider threat detection

such as Gaussian Mixture Models, Support Vector Machines

and Bayesian Networks. The results from our experiments

validate our ability to modify the behavior of our SUBs and to

create innocuous ones as well. The ability to programmatically

create dynamic users demonstrates the ease of deployment of

SUBs in real systems at little to no cost other than creating

SUB user accounts within an enterprise system. We conduct

live enterprise based experiments on a university wide network

with its own intrusion detection system. Again, we are able to

create users that go unnoticed and others that trigger the alerts

of the system.

The remainder of the paper will be organized as follows. In

Section II, we describe the design of the simulated user bot

development framework. We present both our experiments and

results in Section III. In Section IV, we detail related work.

The final two parts, Sections V and VI, are dedicated to future

work and the conclusions of our work.

II. DESIGN AND ARCHITECTURE OF SUB FRAMEWORK

SUBs are created to replicate a real user with no hint of

artificiality from the view of the system and its anomaly

detection system. To create users in this manner builds on

both tools previously used for other purposes, but modified

and enhanced, and those specially built for SUBs. The data

generated from the SUB process is approximately identical

to a real user in a system and can be fine-tuned to have

either normal or abnormal tendencies. The user behaviors

are derived from an existing database of users that has been

extensively modeled and allows for greater control over the

types of behaviors for a given synthetic user. The framework

is easily modifiable and the results are not random as each user

is reproducible given a specified set of actions and controls.

The framework of our SUB setup consists of three main steps,

which can further be generalized into the following layers:

data, simulation and deployment. An overview of the process

is shown in Figure 1 and explained in the following sections.

A. Data Layer

The data layer is composed of the first step in the diagram.

Strong data is pivotal in our experiments as we impose precise

actions for our simulated users to perform once in a simulated

environment. To that end, we employed a SUB database

translator, written in Python. The translator takes a database

Fig. 1. Simulated User Bot System Overview

stored in SQL with at least the following fields: user ID,

event and timestamp. It then converts those fields into Python

action files for users. Python action files can be thought of

as providing directions for the SUB to follow and they have

the logical sequences of actions for the SUB considered. We

have defined various rules for our translator such that the

translated actions can be performed on a SUB that does not

have necessarily have access to existing files on a real user’s

local machine. We have created rules for all the various types

of interactions a normal user may have on his or her local

machine. The following is an example of our rules for a user’s

web browsing:

1) Derive the browser used by a particular user by search-

ing through the information provided in a given browser

tab if the information is not provided otherwise.

2) Perform the search with the same service as a given

user by searching through the information contained in

the browser tab unless the information is provided in

another field.

3) Search through the browser tab for information regard-

ing the email service used unless provided explicitly by

the dataset.

4) Search social media site specified in the browser tab

unless provided in the dataset.

5) Browse to the website referred to if the browser tab

contains a full HTTP URL.

After the database has been translated, we have action files

for each of the users. However, we continue to refine our

data and model it using long short term memory models

[10], a variant of a recurrent neural network architecture. The

high level schematic for our approach is shown in Figure 2.

We verify that our users generated using this technique are

effectively indistinguishable from the original population by

dividing our original group of users into three groups based

on their term frequency inverse document frequency (TF-

IDF). The clusters were created using a Gaussian Mixture

Model that minimized the Bayesian Information Criterion.

After the clusters were formed, the models were trained on

each individual cluster to generate synthetic data. Training data

were assembled by sampling three users from each group and

then training models for 30 epochs with a learning rate of

1.5 and decay rate of 0.1. We reasoned that if a synthetic user

from a given group was reclassified into its original group that

our model represents the original population reasonably well.
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Fig. 2. High Level Overview of LSTM Framework

Once the users have been modeled, we can generate a host

of diverse users with the parameters we wish to alter such as

the frequency of time spent on social media websites. User

modeling was used primarily to create new users who could

not be found directly in the existing dataset yet shared char-

acteristics of the original data. We also note the timestamps

to be aware of the gap between activities. It is unrealistic to

assume that a user proceeds directly from one task to the next

without a pause. The delta in time between activities in the

database allows us to train our users to have pauses between

actions and helps improve our overall level of realism. For all

our work, we translate all of our raw data into the translated

action files even if the user is not altered. This step is taken to

guarantee that users are not different from one another solely

on the basis of whether or not our translator was employed.

B. Simulation Layer

The simulation layer is handled by our SUB client. Once the

data has been translated into action files using the aforemen-

tioned method, we feed the actions for our predefined users

into the automation framework built upon Quick Emulation

(QEMU) and connected through virtual network computing

(VNC), using VNCDoTool. VNCDoTool is a well written

tool, but still suffers from dropped actions that can result in a

serious error for a SUB. For example, if the user is instructed

to open a web browser, but fails to do so then the subsequent

actions will be compromised. Therefore, each feature must

have a state checking mechanism that allows it to continue

executing even if one of its calls to VNCDoTool does not

work properly. While this may sound like a daunting task,

one solution is to take a screenshot of an indicative portion

of the screen both before and after the action is supposed to

be performed, and if that portion changes, it is indicative that

the action succeeded. Certain actions such as typing specific

strings require more sophisticated state checking mechanisms,

but this is underlying logic used to create our Python extension

of VNCDoTool.

Since we record the logs at the end of a run by our SUBs,

it is paramount that there is no extraneous activity conducted

locally, which is guaranteed by using a virtual connection. It

is further important that there is no external activity noted by

an intrusion detection system that could detect a client or any

other local software being run. To boost the performance of

our SUBs, we make use of Kernel Virtual Machine (KVM),

which allows for hardware virtualization and increases the

performance of the SUB client by over 40 percent. Our

automation framework allows for a simulated user to perform

any task a regular user would be able to do: login to an

account, send an email, open a website, create and modify

documents, etc. An example script and action is displayed in

Figure 3.

In some cases, we used an open source equivalent of a

commercial software to avoid any potential limitations with

licensing. For example, we used Apache OpenOffice instead

of the corresponding Microsoft Office suite. The open source

software works almost identically and handles all of the

features that we observed in the database. Thus, a negligible

amount of realism was compromised by using the open source

alternative. We have the ability to capture both the system

and web history logs after a completed run. The logs allow

us to understand the subtle underpinnings of the system when

performing the various actions that a normal user would in

his or her day to day activities. We originally experimented

with several nonnative solutions, including the implementation

of a feature to capture all actions on a machine and the

corresponding logs. However, external solutions leave traces

of sensors in the logs themselves and we therefore opted to use

the logs produced by the host operating system and capture

them after the completion of a run.

C. Deployment Layer

The deployment layer varies based on whether we are

testing in a live ecosystem or in our simulated environment,

where we can control the intrusion detection algorithms.

Live testing is conducted on the Columbia University

Network, which is a large research university network with

over 55,000 MAC addresses active on average, approximately

80,000 active email addresses and over 100,000 network

nodes. There is no sniffing traffic and scanning machines

are not allowed. There are additionally no firewalls. We

created users on the network and then allowed our SUBs to

autonomously run their actions.

From work declassified and made available during the

IARPA’s Scientific advances to Continuous Insider Threat

Evaluation (SCITE) program, we learned about the types of

relationships between the threat type, behaviors, indicators

and detectors from their redacted challenge problems as can

be seen in Table 1. The insight into how real anomaly

detection systems are constructed helped us define our own

system for experiments using our SUBs. For the purposes of

illustrating the effectiveness of our SUB framework, we then

consider three commonly used algorithms to detect anomalous

behavior: Gaussian Mixture Models, Support Vector Machines

and Bayesian Networks.

1) Gaussian Mixture Model: A Gaussian Mixture Model is

a probabilistic model that has gained popularity in intrusion

detection systems. Promising results have been found using

Gaussian Mixture Models in well known datasets such as the

230

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 18,2024 at 09:00:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Example of Simulated Email Login

TABLE I
EXAMPLE OF THREAT TYPES, BEHAVIORS, INDICATORS AND DETECTORS
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Fig. 4. Bayesian Network Representing IARPA SCITE Challenge Problem

KDD99 data set from Lincoln Labs of MIT [11]. The model

itself can be represented as shown in Equation 1.

p(�x|λ) =
M∑

i=1

wig(�x|�μi, �Σi), (1)

where �x is a D-dimensional continuous value data vector, wi

are mixture weights and g(�x|�μi, �Σi) are component Gaussian

densities. A key differentiating factor between Gaussian Mix-

ture Models and k-means clustering is the inclusion of the

covariance structure of the data. The EM algorithm is run to

estimate the parameters of the model. The process is done in a

way such that there is a guaranteed monotonic increase in the

model’s likelihood value. Further details on Gaussian Mixture

Models and the EM algorithm can be found in the reference

by Douglas Reynolds [12].

2) Support Vector Machine: Support vector machines are

normally supervised classifiers that attempt to map input

vectors into a high dimensional feature space using optimal

hyperplanes, those with the maximal margin between the vec-

tors of the two classes, for separable classes. The details of the

algorithm are described in detail by Cortes and Vapnik [13].

However, researchers a few years later pushed the concept

further to tackle unlabeled data, better known as unsupervised

learning. The method attempts to find a function that is positive

on a subset of the input space and negative on the complement

by mapping the input data into a higher dimensional space and

using the origin as a negative training point. The objective

function is given by

min
w∈F,ξ∈Rl,ρ∈R

1

2
||w||2 + 1

vl

∑

i

ξi − ρ

s.t. (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

(2)

where ν is a parameter between 0 and 1 that controls how

tightly the support vector machine fits the data. Complete

details on the algorithm can be found in their seminal work

[14].

3) Bayesian Network: Bayesian Networks make use of

probabilistic relationships among variables of interest in an

acyclic graphical model. Figure 4 shows an example of how

such a network can be used to model a threat type, behavior,

indicators and detectors. The flow of the diagram was adapted

from challenge problems released by an external third party

operating and analyzing a deployed insider threat solution and

is designed to be representative of a real system. Formulaically,

a Bayesian network can be represented as follows:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|πi) (3)

where X1, X2, . . . , Xn represents random variables and πi is

the set of parents of Xi. In many regards, it is more difficult

to learn the structure of a Bayesian network than it is to learn

the parameters. The EM algorithm can again be used to learn

the parameters when the structure of the network is known.

It often takes expert knowledge to suggest a structure for a

given problem. Further details on the algorithm are contained

in [15].

III. EXPERIMENTS AND RESULTS

A. Data and Preparation

1) Data: We used a dataset collected from a group of

63 West Point cadets 1. The number of cadets was a result

of the number of cadets that volunteered for the study and

had data was successfully extracted from their machines. Two

additional cadets were in the study, but the quality of data

extraction was too low to be considered. Each cadet had

software installed on his or her machine to track usage. The

earliest installations were January 15, 2015, and the latest

installation was on February 13, 2015. Each user had a

participant/device Windows System ID and unique ID number.

The cadets had up to three extraction dates for the data from

their machines, ranging from February 10, 2015, for the first

pull to March 12, 2015, for the last data collection. Despite

crashes from the installed sensors, several gigabytes of data

were collected for each of the users on average.

The participants were assigned different labs to simulate

masquerader data within the dataset. Participants were given

different labs to prevent adjacent sitting cadets from influ-

encing each other’s work. Time stamps were taken from the

desktop of the device as soon as the masquerader turned the

platform on or off. There were two masquerader labs in total.

For the purposes of our work, we opt to not use the imposter

data explicitly and remove the data points from the dataset

since our primary objective is to replicate how a normal user

acts on a machine without being directed to perform a certain

set of actions.

Information contained within the dataset includes, but is

not limited to, a unique ID for each user, a time stamp for a

given action, an action column to describe the event that takes

place and a details field that provides more information on

a given action. The details field contains specific information

such as the exact terms searched for in a search, the title of

a page visited, etc. The West Point dataset is composed of

cadets, which is a nearly homogeneous population in terms of

activity. However, as can be seen in Figure 5, the number of

visits to social media websites vary widely from one cadet to

1Data from the West Point cadets was gathered under an IRB approved
protocol
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Fig. 5. Social Media Website Visits from West Point Cadets

the next. The same observation can be made for any variable

behavior and such diversity of behavior is useful for machine

learning algorithms.

2) Hardware: We used an Ubuntu based server with 128

gigabytes of RAM (DDR3, 1066MHz) and six physical cores

(Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz). The server

is also equipped with two Tesla K40c video cards, which are

helpful for more rapid training of the LSTMs. However, we

ran all of our local environment experiments on a MacPro

with sixteen gigabytes of RAM (DDR3, 1066MHz) and four

physical cores (Intel(R) Xeon (R) CPU E5520, 2.27 GHz).

The operating system on the host machine has been changed

from the default OS X to Ubuntu 16.04 Desktop. QEMU

has been developed for both OS X and Linux distros, but

performance is much better on Linux. Our simulations are run

on an image running Ubuntu 16.04 Desktop as well. However,

our framework can be adapted to work on Windows-based

SUBs as well.

3) Threat, Behavior, Indicators and Detectors: We will use

the challenge problems from IARPA SCITE as a guide to set

our threat, behavior, indicators and detectors. We define our

threat to be individuals who use their machines with abnormal

work habits. The behavior associated with this threat is a user

who uses their machine outside normal work hours (between

5:00:01 PM and 6:59:59 AM EST).

We will consider three indicators of this behavior:

1) In the top 5 percent of the daily frequency average

distribution of Google or Bing searches between 5:00:01

PM and 6:59:59 AM EST

2) In the top 5 percent of the daily frequency average dis-

tribution of social media website visits between 5:00:01

PM and 6:59:59 AM EST

3) In the top 5 percent of the daily frequency average

distribution of actions on files and documents between

5:00:01 PM and 6:59:59 AM EST

This corresponds to the following three detectors:

1) At least 13 log entries for a Google or Bing search

between 5:00:01 PM and 6:59:59 AM EST.

Fig. 6. GMM, SVM and BN Run on Injected, Anomalous SUBs

2) At least 61 log entries for a social media website visit

between 5:00:01 PM and 6:59:59 AM EST.

3) At least 90 log entries for actions on files and documents

between 5:00:01 PM and 6:59:59 AM EST.

B. Experimental Setup, Results and Discussion

1) Synthetic Environment: For our experiments, we used a

shuffling algorithm to split the 63 West Point cadets into the

training group of 50 users and the remainder were placed in

the testing group. We selected Gaussian Mixture Models as the

first method to run on the data. After running the algorithm,

we determined anomalous users in the test data composed of

13 users. We then randomly selected three users in the test data

who were not originally marked by the algorithm and added

behaviors to their actions to make them appear anomalous

to test our ability to create anomalous SUBs. We then ran

the previously described Gaussian Mixture Models, Support

Vector Machines and Bayesian Network algorithms to detect

malicious users.

2) Gaussian Mixture Models: In our experiments, we used

the detectors listed above as the three features of our users

and set the number of components in our Gaussian Mixture

Models correspondingly. We also set the false positive rate to

be 5 percent since we assume that all of our users are normal.

Gaussian Mixture Models were able to detect all three of the

injected malicious users.

3) Support Vector Machines: Similarly, using Support Vec-

tor Machines, we were able to detect all three of our injected

malicious users. We used a grid search for hyperparameter

tuning for the algorithm since poor parameters resulted in poor

performance. After searching, we found the optimal values for

the parameters with ν = 0.264 and γ = 1.0. We additionally

used the Gaussian kernel, which performed better than sigmoid

kernel.

4) Bayesian Networks: Given the importance of expert

knowledge, we were not surprised to find that the thresholds

had to be adjusted to detect any of the users as malicious.

This is given the simple network we considered. We adjusted
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the thresholds for the detectors as follows: Detector 1 to 8,

Detector 2 to 40, and Detector 3 to 50. We then assumed that

the probability of an intruder given any single detector is 1
3

and that two detectors being set off meant that the probability

of an intruder increased to 2
3 . Using the probabilities listed, we

were able to detect all three of our injected malicious users.

The difficulty to define conditional probabilities a priori is a

major challenge with Bayesian networks and explains the use

of either expert knowledge or significant data analysis from

an enterprise environment. Without access to either, one can

only make basic assumptions that are unlikely to be reflective

of reality. It is unrealistic to assume that all detectors are

equally as predictive of an insider threat. For problems posed

by an external third party operating and analyzing a deployed

insider threat solution this is a major challenge that evaluators

face as well and is often approximated from existing datasets

albeit with different users since direct access to enterprise

data is not always available. Thus, it validates the use of

SUBs in such a network to create different users of differing

levels of maliciousness to generate enough data to determine

those probabilities for the development of meaningful intrusion

detection systems.

5) University, Live Environment: For the live experiments,

we started our exploration with a basic SUB that logged into

a machine and performed various sequences of actions as

defined by users from the West Point dataset. This did not

cause any of the alerts to be triggered and the SUB performed

all of its actions without trouble. This was a base case to make

sure that the university network did not detect any artifacts

from our simulated user and trigger an alert.

We subsequently increased the complexity of the actions of

the simulated user bot and deliberately attempted to cause the

IDS to cause an alert with a SSH attack, where we tried to

login to a remote host a large number of times. Other similar

attacks on particular ports were implemented as well and the

University network was able to detect these malicious SUBs.

The university network is best designed to handle network

based, signature attacks as opposed to anomalous behavior

on a particular machine since students and faculty normally

use their own machines instead of the university’s computing

resources.

However, we were able to deceive the University system

with low and slow attacks where a SUB performed the same

number of malicious actions, but over a longer period of time.

For example, in the case of the SSH attack, we spaced the

same number of login attempts over a period of three days. The

university network has a threshold it considers to be possibility

malicious and does not retain suspected malicious users over

longer periods of time. This is a vulnerability that allowed us

to rerun all of our previous attacks over time without triggering

any alerts from the system.

IV. RELATED WORK

Testing intrusion detection systems has been a long standing

problem and one that has been identified almost since the

inception of the systems themselves. Research at Columbia

in 1998 garnered attention for its use of data mining and

machine learning based approach to intrusion detection [16].

Lincoln Laboratory of MIT performed comparative evaluation

of various systems developed under DARPA funding in both

1998 and 1999 [17], [18]. However, the methods used by

Lincoln Laboratory came under scrutiny for various reasons

such as a failure to explain the validation of their test data

[19]. Despite the identification of this issue regarding a lack of

testing tools as early as the late 1990s and continued attention

to the challenges of cybersecurity threats in 2008 [20],

the 2015 report on Cybersecurity Experimentation identifies

the lack of common tools for testing systems as one of

the major challenges in current cybersecurity research [21].

Related work in this area can be categorized into synthetic

data generation approaches, network based approaches, and

integrated test bed approaches.

A. Synthetic Data Generation

At a high level, many have embarked on the task of

generating realistic data sets, which is a direct by product

of our work with SUBs. Data generation has been done at

all levels for various purposes such as the work done by

Boggs et. al. for the purposes of defense in depth measurement

of web applications [22]. Generation of synthetic data was

used successfully during the DARPA ADAMS project to

test Insider Threat Detection models offline. The synthetic

data generation system developed for ADAMS used a set

of interconnected models individually trained on real world

data sets to model a large organization and directly generate

the data that would be collected by an Insider Threat Detec-

tion System [23]. However, while synthetic data generation

systems are evidently effective at conducting offline tests,

they cannot be used to test live systems in situ unlike our

SUBs. Given the recent advent of deep neural network based

techniques, researchers have started using deep learning based

architectures for generating synthetic data sets. Alzantot et.

al. use a dataset of accelerometer traces to illustrate that

their synthetic generator, a combination of Long Short Term

Memory networks and Mixture Density Network, can create

believable data [24]. However, even their work acknowledges

that discriminator models can distinguish between real and

synthetic data with an accuracy of roughly 50 percent.

B. Network Based Approaches

Development of Network Traffic Modeling and Generation

systems is a mature field with many open source tools available

such as Ostinato, Iperf3, and Netperf [25]–[27]. These tools

allow the user to configure a large number of parameters that

may be measured by an Intrusion Detection System, such

as flow volume distribution, burstiness, and packet rates. In

addition, extensive work has been done developing systems

that both model and generate network traffic, such as Swing

[28]. More recently, Spatio-Temporal Cluster Models have

been used to model and generate traffic across a cluster [29].

All of these systems have the potential to be used in testing

network based IDS in action. However, none of them can also
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drive simultaneous tests for host based IDS or Insider Threat

Detection Systems.

C. Integrated Test Beds

Cyber test bed systems are the most similar to SUBs in

that they frequently involve tests that drive both the host

and network level events. The Lincoln Labs of MIT testbed

LARIAT has a complete framework for specifying network

configuration, driving user inputs, and modeling user behavior

[30]. LARIAT is one of the core pieces of their greater work

in cyber ranges, which are realistic, surrogate networks [31].

The Skaion Traffic Generation Tool is another tool used in

the National Cyber Range and has the ability to simulate user

actions within the test bed environment [32], [33].

Given its robust toolkit and commercial adoption, LAR-

IAT is a powerful environment to generate and access the

performance of various intrusion detection systems. However,

for its realistic user traffic generation, LARIAT depends on

programmatic hooks in common applications such as word

processing. However, this approach reduces the realism that

results from an image recognition based approach, which

LARIAT uses for unfamiliar software. Braje concedes that

using an image recognition based approach is more realistic.

A programatic hook will tend to perform actions more quickly

than a normal user would be able to do so. SUBs use image

recognition to perform all user actions as a real user must first

process the images on the screen before proceeding. Thus,

SUBs are more realistic in their behavior compared to a user

generated by LARIAT.

Another distinguishing characteristic of SUBs is the ability

to measure the non-obvious insider attacks, non-obvious to

IDS positioned to detect remote to local attacks. For example,

SUBs can be commanded to uploaded a sensitive corporate

document to a remote benign website, a clear security viola-

tion. This http post, for example, would not likely be tagged as

malicious, but an insider monitoring detection system looking

specifically for exfiltration of ”vital” documents might. Hence,

systems like Lariat are not prepared to test and measure this

class of attack. SUBs are designed to execute these kinds of

insider attacks to measure whether any security architecture

is prepared to detect and defend against these. SUBs also

perform in situ testing of the IDS as opposed to recreating

a network to test offline. The key advantage to this approach

is that the users are in a real environment, which is where an

attack would take place. The SUB performs its actions at a

realistic pace and looks indistinguishable from a real user in

nearly every facet.

V. FUTURE WORK

In future work, the immediate application of our work would

be to find another suitable enterprise to test our framework to

determine its true efficacy. We tested our SUB in a simulated

environment with different learning algorithms as well as a

University environment. However, to test its robustness, we

would like to deploy SUBs in a corporate environment with a

more sophisticated anomaly detection system.

In the absence of the ability to apply our work to a real

enterprise, we will test our framework with other datasets such

as the Are You You? (RUU) dataset [34]. This will allow us

to generalize our SUB database translator to handle a wider

variety of datasets. Through the use of Hidden Markov Models

with adequate memory, we could derive users and their paths,

building on the work applied to Clickstream [35]. Also, the

ability for one SUB to interact with another live user or SUB

would add to the realism. For example, an engine to perform

real time answering of emails based on content would greatly

enhance the realism of a SUB.

In this paper, we enumerated a sample of indicators used in

intrusion detection systems from a third party operating and

analyzing a deployed insider threat solution. We are actively

investigating other indicators to enhance SUB behaviors to

ensure those indicators are fully tested and vetted. The SUB

framework also provides a testing mechanism for newly cre-

ated indicators that may be proposed by security researchers.

Another area of development for the SUB framework is to

improve the performance albeit it is nearly native speed. We

can continue work on passing the onboard video card to the

instance instead of relying on the CPU, which is a performance

constraint when using QEMU. Another area of improvement

lies in our ability to increase the speed of running a simulation

by speeding up the system clock for non-work hours. This

would reduce the realism of the system, but vastly reduce

simulation time. The feature would be optional since users

in a real environment would need to emulate their real user

counterparts and be idle during non-work hours.

The SUB framework has potential for intrusion detection

algorithm development. One algorithm or method of signif-

icant interest is to detect slow insider threats that often go

unnoticed by traditional indicators and detectors such as the

ones specified in our experimental section. Slow insider attacks

are difficult to determine given the long time horizon over

which they may take place. As such, there is significant

memory overhead to keep track of the activities for each

individual user. With the SUB framework, we can experiment

with different algorithms or memory management techniques

to see if a slow insider threat can be successfully detected

consistently.

VI. CONCLUSION

We presented the framework to design and to create SUBs.

The simulated users have the ability to nearly identically

mimic the behaviors and actions of real users. All of this can

be done within an enterprise network with no need to interfere

with the normal operations of the system. We were able to

design an experiment to show that we could inject malicious

activities such that a normal user appears to act as a malicious

user. In the case of the malicious users added, we were able

to successfully detect them in our simulated environment as

well as be detected in an enterprise environment. The ability

to show that low and slow attacks are a true treat show that the

health of an intrusion detection system need to be carefully

monitored.
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