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Abstract—Neural networks are known to be vulnerable to
adversarial examples, inputs that have been intentionally per-
turbed to remain visually similar to the source input, but cause a
misclassification. It was recently shown that given a dataset and
classifier, there exists so called universal adversarial perturbations,
a single perturbation that causes a misclassification when applied
to any input. In this work, we introduce universal adversarial
networks, a generative network that is capable of fooling a target
classifier when it’s generated output is added to a clean sample
from a dataset. We show that this technique improves on known
universal adversarial attacks.

I . I N T R O D U C T I O N

Machine Learning models are increasingly relied upon for

safety and business critical tasks such as in medicine [23], [29],

[39], robotics and automotive [27], [31], [38], security [2],

[17], [36] and financial [13], [18], [34] applications. Recent

research shows that machine learning models trained on

entirely uncorrupted data, are still vulnerable to adversarial
examples [7], [12], [24], [25], [33], [35]: samples that have

been maliciously altered so as to be misclassified by a target
model while appearing unaltered to the human eye.

Most work has focused on generating perturbations that

cause a specific input to be misclassified, however, it has been

shown that adversarial perturbations generalize across many

inputs [7], [33]. Moosavi-Dezfooli et al. [20] showed, in the

most extreme case, that given a target model and a dataset, it is

possible to construct a single perturbation that when applied to

any input, will cause a misclassification with high likelihood.

These are referred to as universal adversarial perturbations
(UAPs).

In this work, we study the capacity for generative models

to learn to craft UAPs on image datasets, we refer to these

networks as universal adversarial networks (UANs). This is

similar to work by Baluja and Fischer [1], who studied the

capacity for models to learn to craft adversarial examples.

We show that a UAN is able to sample from noise and

generate a perturbation such that when applied to any input

from the dataset, it will result in a misclassification in the

target model. Furthermore, we show perturbations produced

by UANs: improve on state-of-the-art methods for crafting

UAPs (Section IV-A), have robust transferable properties

(Section IV-D), and reduce the success of recently proposed

defenses [19] (Section V).

I I . B A C K G R O U N D

We define adversarial examples and UAPs along with some

terminology and notation. We then introduce the threat model

considered, and the datasets we use to evaluate the attack.

A. Adversarial Examples

Szegedy et al. [33] casts the construction of adversarial

examples as an optimization problem. Given a target model,
f , and a source input x, which is classified correctly by f as

c, the attacker aims to find a perturbation, δ, such that x+ δ
is perceptually identical to x but f(x+ δ) �= c. The attacker

tries to minimize the distance between the source image and

adversarial image under an appropriate measure. The problem

space can be framed to find a specific misclassification in

a targeted attack, or any misclassification, referred to as a

non-targeted attack.

In the absence of a distance measure that accurately captures

the perceptual differences between a source and adversarial

image, the �p metric is usually minimized [33]. Related work

commonly uses the �2 and �∞ metrics [3], [4], [6], [10], [14],

[16], [20], [21], [40]. The �2 metric measures the Euclidean

distance between two images, while the �∞ metric measures the

largest pixel-wise difference between two images (Chebyshev

distance). We follow this practice here and construct attacks

optimizing under both metrics.

A UAP is an adversarial perturbation that is independent of

the source image. Given a target model, f , and a dataset, X ,

a UAP is a perturbation, δ, such that ∀x ∈ X , x+ δ is a valid

input and Pr(f(x+ δ) �= f(x)) = 1− τ , where 0 < τ << 1.

B. Threat Model

We consider an attacker whose goal is to craft UAPs against

a target model, f . The adversarial image constructed by the

attacker should be visually indistinguishable to a source image,

evaluated through either the �2 or �∞ metric.

Our attacks assume white-box access to f , as we backprop-

agate the error of the target model back to the UAN. In line

with related work on UAPs [20], we consider a worst-case
scenario with respect to data access, assuming that the attacker

has knowledge of, and shares access to, any training data

samples. We will not discuss the real-world limitations of that

assumption here, but will follow that practice.
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Fig. 1: Overview of the attack. A random sample from a normal distribution is fed into a UAN. This outputs a perturbation,

which is then scaled and added to an image. The new image is then clipped and fed into the target model. Importantly, we

make no assumptions about the distribution of the training set - the generated perturbations are agnostic to the image to which

it is applied.

C. Datasets

We evaluate attacks using two popular datasets in adversarial

examples research, CIFAR-10 [15] and ImageNet [28].

The CIFAR-10 dataset consists of 60,000, 32×32 RGB

images of different objects in ten classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, truck. This is split

into 50,000 training images and 10,000 validation images.

Our pre-trained models: VGG-19 [30], ResNet-101 [9], and

DenseNet [11], used as the target models, score 91.19%,

93.75%, and 95.00% test accuracy, respectively. State-of-the-art

models on CIFAR-10 are approximately 95% accurate.

We use the validation dataset of ImageNet, which consists of

50,000 RGB images, scaled to 224×224. The images contain

1,000 classes. The 50,000 images are split into 40,000 training

set images and 10,000 validation set images. We ensure classes

are balanced, such that any class contains 40 images in the

training set and 10 images in the validation set. Our pre-trained

models: VGG-19 [30], ResNet-152 [9], and Inception-V3 [32],

used as the target models, score 71.03%, 78.40%, and 77.22%

top-1 test accuracy, respectively.

I I I . U N I V E R S A L A D V E R S A R I A L N E T W O R K S

A. Attack Description

An overview of the attack is given in Figure 1. Let a

UAN model be denoted by U , and a target model by f . U
takes as input a vector, z, sampled from a normal distribution

N (0, 1)100, and outputs a perturbation, δ. This is then scaled

by a factor ω ∈ (0, ε
‖δ‖p

], where ε is the maximum permitted

perturbation and p = 2 or ∞. In practice, we start with a small

ω (e.g. ω = ε
10·‖δ‖p

) and increment this value whenever the

training loss plateaus. The scaled perturbation δ′ = ω · δ, is

added to an image x from a dataset X , to produce an adversarial

image. This is then clipped into the target model’s input range

before being fed into the target model, f , which outputs a

probability vector, ρ 1. If argmaxi f(x) �= argmaxi f(δ
′+x), a

successful adversarial example has been found. Since U(z) is

1If f outputs logits instead of a probability vector, we take the softmax of
the logits.

not conditioned on any image in the dataset, U learns how to

construct image independent adversarial perturbations, namely

universal adversarial perturbations.

Given an input x ∈ X , let the class label predicted by f
be c0. For non-targeted attacks, any misclassification in the

target model suffices, thus, the non-targeted attack aims to

maximize the most probable predicted class other than c0. Our

non-targeted loss function is adapted from works by Carlini

and Wagner [4] and Chen et al. [5], and is given by:

Lnt = log[f(δ′ + x)]c0 −max
i �=c0

log[f(δ′ + x)]i
︸ ︷︷ ︸

Lfs

+α · ∥∥δ′∥∥
p︸ ︷︷ ︸

Ldist

(1)

The first term in (1), Lfs, is minimized when the adversarial

predicted class is not c0. This is adapted from the Carlini and

Wagner loss function [4] that introduces a confidence threshold,

κ. If we want universal adversarial perturbations that cause

misclassifications with high confidence, we stop minimizing

only when:

κ > max
i �=c0

log[f(δ′ + x)]i − log[f(δ′ + x)]c0

In specifying a confidence threshold for adversarial examples,

(1) becomes:

Lnt = max{log[f(δ′ + x)]c0 −max
i�=c0

log[f(δ′ + x)]i,−κ}+ α · ∥∥δ′∥∥
p

(2)

In all experiments we set κ = 0, and so stop optimizing once

an adversarial example is found. To minimize the perturbation

applied to an image, Lfs is summed with a distance loss,

Ldist = α · ‖δ′‖p, where α ∈ R
+; this minimizes the norm

of the universal adversarial perturbation. The logarithmic term

in Lfs is necessary since most target models have a skewed

probability distribution, with one class prediction dominating

all others, thus the logarithmic term reduces the effect of this

dominance.

For a targeted attack, we compute a universal adversarial

perturbation that transforms any image to a chosen class, c.
Under this setting, we optimize using the follow loss function:
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TABLE I: UAN model architecture. IS refers to the image

size: 32 for CIFAR-10 experiments and 224 for ImageNet

experiments.

Layer Shape

Input 100
Deconv + Batch Norm + ReLU 256× 3× 3
Deconv + Batch Norm + ReLU 128× 5× 5
Deconv + Batch Norm + ReLU 64× 9× 9
Deconv + Batch Norm + ReLU 32× 17× 17
Deconv + Batch Norm + ReLU 3× 33× 33
FC + Batch Norm + ReLU 512
FC + Batch Norm + ReLU 1024
FC 3× IS × IS

TABLE II: UAN hyperparameters.

Parameter Dataset

CIFAR-10 ImageNet

Learning Rate 2 · 10−4 2 · 10−4

Beta 1 0.5 0.5
Beta 2 0.999 0.999
Batch Size 128 64
Epochs 500 150
�p loss weight (α) 4.0 4.0

Lt = max{max
i �=c

log[f(δ′ + x)]i − log[f(δ′ + x)]c,−κ}+ α · ∥∥δ′∥∥
p
,

(3)

The full description of the UAN model is given in Table I

and hyperparameters used in experiments are given in Table II.

We define the relative perturbation, ζp =
‖δ′‖

p

‖x‖p
; the value

of the norm of δ′ over the norm of the original image, x.

We set ζp = 0.04 in all experiments 2 3. For all experiments

in Section IV, we report the error rate of the target model

on adversarial images; a perfect attack would achieve an error

rate of 1.00, while a perfect classifier achieves an error rate of

0.00.

I V. E VA L U AT I O N

A. Comparison with previous work

We now compare our method for crafting UAPs with two

state-of-the-art methods:

• Moosavi-Dezfooli et al. [20] constructs a UAP iteratively;

at each step an input is combined with the current

constructed UAP, if the combination does not fool the

target model, a new perturbation with minimal norm

is found that does fool the target model. The attack

terminates when a threshold error rate is met.

• Mopuri et al. [22] develop a method for finding a UAP

for a target model that is independent of the dataset. They

construct a UAP by first starting with random noise and

iteratively update it to over-saturate features learned at

successive layers in the target model, causing neurons

2Code available at https://github.com/jhayes14/UAN
3Note, this is equivalent to the experimental settings in Moosavi-Dezfooli

et al. [20] of ε = 10 for p = ∞, and ε = 2000 for p = 2.

at each layer to output useless information to cause

the desired misclassification. They optimize the UAP by

adjusting it with respect to the loss term:

L = − log(

K∏
i=1

l̄i(δ)), such that ||δ||∞ < γ,

where, l̄i(δ) is the average of the output at layer i
for perturbation δ, and γ is the maximum permitted

perturbation.

Table III compares our UAN method of generating UAPs

against the two attacks described above for both CIFAR-10

and ImageNet, in a non-targeted attack setting. We consistently

outperform Mopuri et al.’s [22] attack and outperform the

Moosavi-Dezfooli et al. [20] attack in ten of the twelve

experiments.

B. Transferability

An adversarial image is transferable if it successfully fools

a model that was not its original target. Transferability is a

yardstick for the robustness of adversarial examples, and is the

main property used by Papernot et al. [24], [25] to construct

black-box adversarial examples. They construct a white-box

attack on a local target model that has been trained to replicate

the intended target models decision boundaries, and show that

the adversarial examples can successfully transfer to fool the

black-box target model.

To measure the transferability properties of perturbations

crafted by a UAN, we create 10,000 adversarial images

(constructed via the �∞ metric) - one for each image in the

CIFAR-10 validation set - and apply them to a target model that

was not used to train the UAN. Table IV presents results for

transferability of a non-targeted attack on three target models

- VGG-19, ResNet-101, and DenseNet. We find that UAPs

crafted using a UAN do transfer to other models. For example,

a UAN trained on VGG-19, and evaluated on ResNet-101, the

error rate is 61.2%, a drop of just 5.4% from evaluating on

the original target model (VGG-19).

We also measure the capacity for a UAN to learn to fool an

ensemble of target models. We trained a UAN against VGG-

19, ResNet-101, and DenseNet, simultaneously, on CIFAR-10,

where the UAN loss function is a linear combination of the

losses of each target model. From Table IV, we see that a

UAN trained against an ensemble of target models is able to

fool at comparable rates to single target models.

C. Generalizability

Moosavi-Dezfooli et al. [20] have shown that UAPs are not

unique; there exists many candidates that perform equally

well against a target model. If a UAN is truly modeling

the distribution of UAPs the output should not be unique.

In Figure 3, we measure the MSE (mean square error) and

SSIM (structural similarity index) [37] of U(z1),U(z2) for

z1, z2 ← N (0, 1)100, z1 �= z2, at successive training steps,

for the ImageNet dataset. Since we expect a high degree of

structure in a UAP, SSIM is measured in addition to MSE, as

it has been argued that MSE does not map well to a human’s

perception of image structure [26], [37].
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TABLE III: Comparison of error rates for UAN against Moosavi-Dezfooli et al. [20] and Mopuri et al. [22]. Note that the

Mopuri et al. [22] method for crafting UAPs is only optimized under the �∞ metric. We set ζp = 0.04, this is equivalent to

ε = 2000 for an �2 attack and ε = 10 for an �∞ attack.

Metric Attack CIFAR-10 ImageNet
V G G - 1 9 R E S N E T- 1 0 1 D E N S E N E T V G G - 1 9 R E S N E T- 1 5 2 I N C E P T I O N - V 3

UAN
Train 0.689 0.861 0.753 0.889 0.918 0.781

�2

Val 0.695 0.842 0.759 0.860 0.914 0.765

Moosavi-Dezfooli et al. [20]
Train 0.672 0.854 0.771 0.894 0.900 0.779
Val 0.670 0.849 0.767 0.886 0.901 0.771

UAN
Train 0.649 0.832 0.753 0.849 0.889 0.773

�∞

Val 0.666 0.851 0.750 0.846 0.881 0.771

Moosavi-Dezfooli et al. [20]
Train 0.599 0.763 0.684 0.836 0.888 0.750
Val 0.572 0.760 0.679 0.823 0.879 0.738

Mopuri et al. [22]
Train 0.219 0.374 0.356 0.407 0.370 0.336
Val 0.201 0.365 0.341 0.411 0.369 0.337

(a) plane (b) car (c) bird (d) cat (e) deer

(f) dog (g) frog (h) horse (i) ship (j) truck

Fig. 2: CIFAR-10 �2 targeted attack. Each figure shows the error rate as the size of the adversarial perturbation is increased.

This can be interpreted as the success rate of fooling the target model into classifying any image in CIFAR-10 as the chosen

class.

TABLE IV: Error rates for non-targeted CIFAR-10 attack, under

the �∞ metric. UAPs are constructed using row models and

tested against pre-trained column models.

V G G - 1 9 D E N S E N E T R E S N E T- 1 0 1

V G G - 1 9 0.666 0.550 0.612
D E N S E N E T 0.543 0.750 0.648
R E S N E T- 1 0 1 0.514 0.681 0.851

E N S E M B L E 0.499 0.742 0.849

At the beginning of training, there is litle structural similarity

between U(z1) and U(z2). Throughout training the SSIM

score never increases beyond 0.8, while the MSE continually

increases. While the structural similary of UAPs learned by a

UAN is high, it does learn to generalize to multiple UAPs that

are unique from one another. Similar effects, albeit scaled down

due to the smaller image size, were found for the CIFAR-10

dataset.

Does a UAN that learns to generalize to multiple UAPs

do so to the detriment of attack accuracy? We verify this is

not the case by training a UAN on a fixed noise vector and

comparing to a UAN trained with non-fixed noise vectors. We

found similar error rates for the two settings (see Table V);

there is no loss in accuracy by extending a UAN to output

multiple adversarial perturbations.

D. Targeted Attacks

We follow the same experimental set-up as in Section IV-A,

however now the attacker chooses a class, c, they would like

the target model to classify an adversarial example as, and

success is calculated as the probability that an adversarial

example is classified as c. Figure 2 shows, for each class in

CIFAR-10, the error rate of the target model as we allow larger
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Fig. 3: MSE and SSIM scores of UAPs throughout training a

UAN against VGG-19 for the ImageNet dataset.

TABLE V: Error rates for �∞ attacks on CIFAR-10. We

compare between a UAN trained on fixed noise vectors and a

UAN trained on non-fixed noise vectors.

Fixed z Non-fixed z

V G G - 1 9 0.661 0.666
R E S N E T- 1 0 1 0.859 0.851
D E N S E N E T 0.760 0.750

perturbations. For nearly every class, attacks on ResNet-101 are

most successful, while attacks on VGG-19 are least successful.

This is in agreement with our findings in a non-targeted attack

setting (cf. Table III). Despite VGG-19 being the most difficult

target model to attack, it is the most well calibrated; the error

rate on the training set is nearly identical to the error rate on the

validation set for all classes, while there are small deviations

between these two scores for ResNet-101 and DenseNet.

By looking only at results on VGG-19, one may infer that

the choice of target class heavily influences the error rate (e.g.

crafting UAP’s for the dog and ship classes is more difficult

than others). However, this is not replicated with ResNet-101

or DenseNet. We do not observe any dependencies between

attack success and the target class; the attack success at different

perturbation rates is similar for all classes. Figure 4 shows this

attack applied to a DenseNet target model for the CIFAR-10

dataset for all source/target class pairs. Nearly all attacks are

indistinguishable from the source image.

Interestingly, all targeted attacks follow a sigmoidal curve

shape. Empirically, we found that for all three target models,

there existed images that were weakly classified correctly

(there was almost no difference between the largest probability

score and probability score at the target class) and strongly
classified correctly (there was three to four orders of magnitude

difference between the probability score at the largest class

and the probability score at the target class). At the beginning

of training, the UAN discovers a perturbation that causes

misclassifications when applied to the weakly classified images,

but takes longer to find adversarial perturbations for the majority

of images, resulting in a long tail at the beginning of training.

With a similar effect taking place at the end of training to find

Fig. 4: Our �∞ attack against a DenseNet target model on

the CIFAR-10 dataset, for every source/target pair. Displayed

images were selected at random.

adversarial perturbations for strongly classified images.

For the ImageNet dataset, we selected three classes at

random and performed a targeted attack. Error rates and

selected samples are given in Figure 5. We observed that the

generated UAPs resembled the structure of the target class. For

example, a golf ball pattern can be clearly seen in perturbations

in Figure 5b.

E. Importance of training set size

So far, we have assumed the attacker shares full access to

any images that were used to train the target model. However

in practice, this may not be the case - an attacker may only

have access to the type or a subsample of the training data. We

therefore evaluate our non-targeted �∞ attack under stronger

assumptions of attacker access to training data.

Figure 6 shows the error rate caused by a UAN trained on

subsets of the CIFAR-10 training set. As expected, training

on more data samples improves the success of the attack;

perturbations from a UAN trained on only 50 images (5 from

each class) fools 17.1% of validation set images in ResNet-

101. The attack is successful when applied to nearly a fifth of

images while only learning from 0.1% of the training set. The

attack succeeds in 80.2% of cases when trained on 20% of the

training set - in other words, there is virtually no difference

in test accuracy when training on between 80-100% of the

training set.

We find no significant difference in error rates between a

UAN that has been trained on many data samples and few

data samples. The amount of data samples provided to the

UAN does not significantly impact its ability to learn to craft

adversarial perturbations, all that must be known is the structure

of the dataset on which the target model was trained. We note

that this is in agreement with Papernot et al.’s [25] findings

on the number of source images required to launch attacks on

black-box models.

In addition to measuring attacker success for different
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(a) Inception-V3: Lionfish (89.7%), δ′, Stone wall
(54.0%). Overall target model error rate: 0.533

(b) ResNet-152: Binoculars (99.9%), δ′, Golf ball
(62.9%). Overall target model error rate: 0.734

(c) VGG-19: Marmot (95.4%), δ′, Broccoli (48.4%).
Overall target model error rate: 0.480

Fig. 5: Selection of successful adversarial examples (with target

model confidence) for targeted �∞ attacks on ImageNet. The

target class was randomly chosen to be (a) Stone wall, (b)

Golf ball, (c) Broccoli. From left to right: Source image, UAP,

adversarial image.

Fig. 6: Non-targeted �∞ attack against ResNet-101 on the

CIFAR-10 dataset. We vary the number of samples the UAN

is trained on, and report results on the validation set.

training set sizes, we experimented with different batch sizes,

ranging from 16 to 128, for the CIFAR-10 dataset. However,

we did not observe any significant deviations in the error rate.

V. AT TA C K I N G A D V E R S A R I A L T R A I N I N G

Adversarial training [7], [16] modifies the training of a

model in order to make it more robust to adversarial examples.

During training, the loss function L(θ, x, y) is replaced by

α · L(θ, x, y) + (1 − α) · L(θ, x + δ′, y). By augmenting the

Fig. 7: A cat-and-mouse game of non-targeted �∞ attacks and

adversarial training for a VGG-19 target model on CIFAR-

10. The upper green points are the target model accuracies

on adversarial images after adversarial training, the lower red

crosses are the target model accuracies on adversarial images

after the attack. The dotted line is target model accuracy on

source images.

original data to include adversarial counterparts, the model

learns to classify adversarial examples correctly. Non-generative

attacks have shown to be successful against adversarially

trained models, however, recent work [19] suggested that this

may not be the case for UAPs. In [19], adversarial training

is successfully applied to a CIFAR-10 classifier, effectively

eliminating the adversarial effect of UAPs.

In our work, we verified that this is case; adversarial training

eliminates UAP success. However, we find that adversarially

trained models are still vulnerable to a UAN trained against

the defended model.

Similarly to Hamm [8], we play a cat-and-mouse game

where (1) a UAN is trained against a target model, and (2) the

target model is retrained with adversial examples crafted from

(1) (denoted ADV TM). This generates a sequence: UAN1

→ ADV TM1 → UAN2 → ADV TM2 → UAN3 → .... We

let this game play out for many rounds, and claim that if

adversarial training is a defense against UAPs, over many

rounds the classification error on adversarial examples should

tend to zero.

Figure 7 shows such a cat-and-mouse game over 20 rounds

of (1) and 20 rounds of (2). An adversarially trained target

model is able to classify nearly all adversarial examples

correctly, at any given round. However, attacks against adver-

sarially retrained models are only somewhat mitigated; there

is a 25% reduction is attack success between the first and

final round. After this, the cycle reaches an equilibrium, with

no improvement in successive attacks or defended models.

We note, however, that the experimental set-up in [19] is

slightly different to ours. They perform adversarial training with

a strong adversary that generates data-specific perturbations

and found that this makes the model robust against universal

perturbations.

V I . C O N C L U S I O N

We presented a first-of-its-kind universal adversarial example

attack that uses machine learning at the heart of its construction.

We comprehensively evaluated the attack under many different

settings, showing that it produces quality adversarial examples

capable of fooling a target model in both targeted and

non-targeted attacks. The attack transfers to many different
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target models, and improves on other state-of-the-art universal

adversarial perturbation construction methods.
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