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Abstract—Browser fingerprinting has emerged as a technique
to track users without their consent. Unlike cookies, fingerprint-
ing is a stateless technique that does not store any information
on devices, but instead exploits unique combinations of attributes
handed over freely by browsers. The uniqueness of fingerprints
allows them to be used for identification. However, browser
fingerprints change over time and the effectiveness of tracking
users over longer durations has not been properly addressed.

In this paper, we show that browser fingerprints tend to
change frequently—from every few hours to days—due to, for
example, software updates or configuration changes. Yet, despite
these frequent changes, we show that browser fingerprints can
still be linked, thus enabling long-term tracking.

FP-STALKER is an approach to link browser fingerprint
evolutions. It compares fingerprints to determine if they originate
from the same browser. We created two variants of FP-STALKER,
a rule-based variant that is faster, and a hybrid variant that
exploits machine learning to boost accuracy. To evaluate FP-
STALKER, we conduct an empirical study using 98, 598 finger-
prints we collected from 1, 905 distinct browser instances. We
compare our algorithm with the state of the art and show that,
on average, we can track browsers for 54.48 days, and 26% of
browsers can be tracked for more than 100 days.

I. INTRODUCTION

Websites track their users for different reasons, including
targeted advertising, content personalization, and security [2].
Traditionally, tracking consists in assigning unique identifiers
to cookies. However, recent discussions and legislation have
brought to light the privacy concerns these cookies imply;
more people are sensitive to these issues. A study conducted
by Microsoft in 2012 observed that they were unable to keep
track of 32% of their users using only cookies, as they were
regularly deleted [26]. Cookie erasure is now common as many
browser extensions and private modes automatically delete
cookies at the end of browsing sessions.

In 2010, Eckersley introduced a tracking technique called
browser fingerprinting that leverages the user’s browser and
system characteristics to generate a fingerprint associated to
the browser [8]. He showed that 83.6% of visitors to the
PANOPTICLICK website1 could be uniquely identified from
a fingerprint composed of only 8 attributes. Further studies
have focused on studying new attributes that increase browser
fingerprint uniqueness [7], [10], [14], [18], [19], [20], while
others have shown that websites use browser fingerprinting as
a way to regenerate deleted cookies [1].

1https://panopticlick.eff.org

However, fingerprint uniqueness, by itself, is insufficient
for tracking because fingerprints change. One needs to keep
track of these evolutions to link them to previous fingerprints.
Recent approaches exploit fingerprint uniqueness as a defense
mechanism by adding randomness to break uniqueness [12],
[13], [21], but they did not address linkability.

The goal of this paper is to link browser fingerprint evo-
lutions and discover how long browsers can be tracked. More
precisely, FP-STALKER detects if two fingerprints originate
from the same browser instance, which refers to an installation
of a browser on a device. Browser instances change over
time, e.g. they are updated or configured differently, causing
their fingerprints to evolve. We introduce two variants of FP-
STALKER: a rule-based and an hybrid variant, which leverage
rules and a random forest.

We evaluate our approach using 98, 598 browser finger-
prints originating from 1, 905 browser instances, which we
collected over two years. The fingerprints were collected using
two browser extensions advertised on the AmIUnique website2,
one for Firefox3 and the other for Chrome4. We compare
both variants of FP-STALKER and an implementation of the
algorithm proposed by Eckersley [8]. In our experiments, we
evaluate FP-STALKER’s ability to correctly link browser fin-
gerprints originating from the same browser instance, as well
as its ability to detect fingerprints that originate from unknown
browser instances. Finally, we show that FP-STALKER can
link, on average, fingerprints from a given browser instance
for more than 51 days, which represents an improvement of
36 days compared to the closest algorithm from the literature.

In summary, this paper reports on four contributions:

1) We highlight the limits of browser fingerprint uniqueness
for tracking purposes by showing that fingerprints change
frequently (50% of browser instances changed their
fingerprints in less than 5 days, 80% in less than 10 days);

2) We propose two variant algorithms to link fingerprints
from the same browser instance, and to detect when a
fingerprint comes from an unknown browser instance;

3) We compare the accuracy of our algorithms with the
state of the art, and we study how browser fingerprinting
frequency impacts tracking duration;

4) Finally, we evaluate the execution times of our algorithms,
and we discuss the impact of our findings.

2https://amiunique.org
3https://addons.mozilla.org/firefox/addon/amiunique/
4https://chrome.google.com/webstore/detail/amiunique/
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TABLE I: An example of a browser fingerprint

Attribute Source Value Examples

Accept HTTP header
text/html,application/xhtml+xml,application
/xml;q=0.9,image/webp,*/*;q=0.8

Connection HTTP header close
Encoding HTTP header gzip, deflate, sdch, br

Headers HTTP header
Connection Accept X-Real-IP DNT Cookie
Accept-Language Accept-Encoding User-Agent Host

Languages HTTP header en-US,en;q=0.8,es;q=0.6

User-agent HTTP header
Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/54.0.2840.99 Safari/537.36

Canvas JavaScript
Cookies JavaScript yes
Do not track JavaScript yes
Local storage JavaScript no
Platform JavaScript MacIntel

Plugins JavaScript

Plugin 0: Chrome PDF Viewer; ; mhiehjai.
Plugin 1: Chrome PDF Viewer; Portable
Document Format; internal-pdf-viewer.
Plugin 2: Native Client; ; internal-nacl-plugin.

Resolution JavaScript 2560x1440x24
Timezone JavaScript -180

WebGL Javascript NVIDIA GeForce GTX 750 Series; Microsoft .
Fonts Flash List of fonts installed on the device

The remainder of this paper is organized as follows.
Section II gives an overview of the state of the art. Section III
analyzes how browser fingerprints evolve over time. Section IV
introduces Eckersley’s algorithm as well as both variants of
FP-STALKER. Section V reports on an empirical evaluation,
a comparison to the state of the art, and a benchmark of our
approach. Finally, we conclude in Section VI.

II. BACKGROUND & MOTIVATIONS

a) Browser fingerprinting: aims to identify web
browsers without using stateful identifiers, like cookies [8]. A
browser fingerprint is composed of a set of browser and system
attributes. By executing a script in the browser, sensitive meta-
data can be revealed, including the browser’s parameters, but
also operating system and hardware details. As this technique
is completely stateless, it remains hard to detect and block,
as no information is stored on the client side. Individually,
these attributes may not give away much information but,
when combined, they often form a unique signature, hence
the analogy with a fingerprint. Most of the attributes in a
fingerprint are collected through JavaScript APIs and HTTP
headers, but extra information can also be retrieved through
plugins like Flash. Table I illustrates a browser fingerprint
collected from a Chrome browser running on Windows 10.

b) Browser fingerprinting studies: have focused on
uniquely identifying browsers. Mayer [17] was the first to point
out, in 2009, that a browser’s “quirkiness” that stems from its
configuration and underlying operating system could be used
for “individual identification”. In 2010, the PANOPTICLICK

study was the first large-scale demonstration of browser fin-
gerprinting as an identification technique [8]. From about
half a million fingerprints, Eckersley succeeded in uniquely
identifying 83.6% of browsers. Since then, many studies have
been conducted on many different aspects of this tracking
technique. As new features are included within web browsers
to draw images, render 3D scenes or process sounds, new
attributes have been discovered to strengthen the fingerprinting
process [5], [7], [9], [10], [18], [19], [20]. Additionally, re-
searchers have performed large crawls of the web that confirm

a steady growth of browser fingerprinting [1], [2], [9], [22].
While most of these studies focused on desktops, others
demonstrated they could successfully fingerprint mobile device
browsers [11], [14]. Finally, a study we conducted in 2016
confirmed Eckersley’s findings, but observed a notable shift in
some attributes [14]. While the lists of plugins and fonts were
the most revealing features in 2010, this has rapidly changed
as the Netscape Plugin Application Programming Interface
(NPAPI) has been deprecated in Chrome (September 2015) and
Firefox (March 2017). Browser fingerprinting is continuously
adapting to evolutions in browser technologies since highly
discriminating attributes can change quickly.

c) Browser fingerprinting defenses: have been designed
to counter fingerprint tracking. The largest part of a browser
fingerprint is obtained from the JavaScript engine. However,
the values of these attributes can be altered to mislead fin-
gerprinting algorithms. Browser extensions, called spoofers,
change browser-populated values, like the User-agent or
the Platform, with pre-defined ones. The goal here is to
expose values that are different from the real ones. However,
Nikiforakis et al. showed that they may be harmful as they
found that these extensions “did not account for all possible
ways of discovering the true identity of the browsers on which
they are installed” and they actually make a user “more
visible and more distinguishable from the rest of the users,
who are using their browsers without modifications” [22].
Torres et al. went a step further by providing the concept of
separation of web identities with FP-BLOCK, where a browser
fingerprint is generated for each encountered domain [24].
Every time a browser connects to the same domain, it will
return the same fingerprint. However, it keeps presenting the
same limitation as naive spoofers since the modified values are
incomplete and can be incoherent. Laperdrix et al. explored the
randomization of media elements, such as canvas and audio
used in fingerprinting, to break fingerprint linkability [12].
They add a slight random noise to canvas and audio, that is
not perceived by users, to defeat fingerprinting algorithms.

Finally, the TOR browser is arguably the best overall de-
fense against fingerprinting. Their strategy is to have all users
converge towards a normalized fingerprint. The TOR browser
is a modified Firefox that integrates custom defenses [23].
In particular, they removed plugins, canvas image extraction
is blocked by default, and well-known attributes have been
modified to return the same information on all operating
systems. They also defend against JavaScript font enumeration
by bundling a set of default fonts with the browser. However,
using TOR can degrade the user’s experience (e.g., due to
latency) and can break some websites (e.g., due to disabled
features, websites that block the TOR network). Furthermore,
the unique browser fingerprint remains limited, as changes to
the browser’s configuration, or even resizing the window, can
make the browser fingerprint unique.

d) Browser fingerprint linkability: is only partially ad-
dressed by existing studies. Eckersley tried to identify re-
turning users on the PANOPTICLICK website with a very
simple heuristic based on string comparisons that made correct
guesses 65% of the time [8]. Although not related to browsers,
the overall approach taken by Wu et al. to fingerprint Android
smartphones from permissionless applications [25] is similar
in nature to our work. They collected a 38-attribute fingerprint,
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including the list of system packages, the storage capacity
of the device and the current ringtone. Using a naive Bayes
classifier, they were able to successfully link fingerprints from
the same mobile device over time. However, the nature of
the data in [25] strongly differs from the focus of this work.
In particular, the attributes in a browser fingerprint are not
composed of strong identifiers, like the current wallpaper, and
the browser does not share personal information from other
parts of the system as do applications on Android. For these
reasons, the results are not comparable.

To the best of our knowledge, beyond the initial contribu-
tion by Eckersley, no other studies have looked into the use of
advanced techniques to link browser fingerprints over time.

III. BROWSER FINGERPRINT EVOLUTIONS

This paper focuses on the linkability of browser fingerprint
evolutions over time. Using fingerprinting as a long-term
tracking technique requires not only obtaining unique browser
fingerprints, but also linking fingerprints that originate from
the same browser instance. Most of the literature has focused
on studying or increasing fingerprint uniqueness [7], [8], [14].
While uniqueness is a critical property of fingerprints, it is
also critical to understand fingerprint evolution to build an
effective tracking technique. Our study provides more insights
into browser fingerprint evolution in order to demonstrate the
effectiveness of such a tracking technique.

a) Input dataset: The raw input dataset we collected
contains 172, 285 fingerprints obtained from 7, 965 different
browser instances. All browser fingerprints were obtained from
AmIUnique extensions for Chrome and Firefox installed from
July 2015 to early August 2017 by participants in this study.
The extensions load a page in the background that fingerprints
the browser. Compared to a fingerprinting website, the only
additional information we collect is a unique identifier we
generate per browser instance when the extension is installed.
This serves to establish the ground truth. Moreover, we pre-
process the raw dataset by applying the following rules:

1) We remove browser instances with less than 7 browser
fingerprints. This is because to study the ability to track
browsers, we need browser instances that have been
fingerprinted multiple times.

2) We discard browser instances with inconsistent finger-
prints due to the use of countermeasures that artificially
alter the fingerprints. To know if a user installed such a
countermeasure, we check if the browser or OS changes
and we check that the attributes are consistent among
themselves. Although countermeasures exist in the wild,
they are used by a minority of users and, we argue,
should be treated by a separate specialized anti-spoofing
algorithm. We leave this task for future work.

After applying these rules, we obtain a final dataset of
98, 598 fingerprints from 1, 905 browser instances. All fol-
lowing graphs and statistics are based on this final dataset.
Figure 1 presents the number of fingerprints and distinct
browser instances per month over the two year period.

Most users heard of our extensions through posts published
on popular tech websites, such as Reddit, Hackernews or
Slashdot. Users install the extension to visualize the evolution

Fig. 1: Number of fingerprints and distinct browser instances
per month

Fig. 2: Browser fingerprint anonymity set sizes

of their browser fingerprints over a long period of time, and
also to help researchers understand browser fingerprinting in
order to design better countermeasures. We explicitly state
the purpose of the extension and the fact it collects their
browser fingerprints. Moreover, we received an approval from
the Institutional Review Board (IRB) of our research center
for the collection as well as the storage of these browser fin-
gerprints. As a ground truth, the extension generates a unique
identifier per browser instance. The identifier is attached to all
fingerprints, which are automatically sent every 4 hours. In
this study, the browser fingerprints we consider are composed
of the standard attributes described in Table I.

Figure 2 illustrates the anonymity set sizes against the
number of participants involved in this study. The long tail
reflects that 99% of the browser fingerprints are unique among
all the participants and belong to a single browser instance,
while only 10 browser fingerprints are shared by more than 5
browser instances.

b) Evolution triggers: Browser fingerprints naturally
evolve for several reasons. We identified the following cat-
egories of changes:

Automatic evolutions happen automatically and without di-
rect user intervention. This is mostly due to automatic
software upgrades, such as the upgrade of a browser or a
plugin that may impact the user agent or the list of
plugins;

Context-dependent evolutions being caused by changes in
the user’s context. Some attributes, such as resolution
or timezone, are indirectly impacted by a contextual
change , such as connecting a computer to an external
screen or traveling to a different timezone; and
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TABLE II: Durations the attributes remained constant for the
median, the 90th and the 95th percentiles.

Percentile (days)

Attribute Trigger 50th 90th 95th
Resolution Context Never 3.1 1.8
User agent Automatic 39.7 13.0 8.4
Plugins Automatic/User 44.1 12.2 8.7
Fonts Automatic Never 11.8 5.4
Headers Automatic 308.0 34.1 14.9
Canvas Automatic 290.0 35.3 17.2
Major
browser version

Automatic 52.2 33.3 23.5

Timezone Context 206.3 53.8 26.8
Renderer Automatic Never 81.2 30.3
Vendor Automatic Never 107.9 48.6
Language User Never 215.1 56.7
Dnt User Never 171.4 57.0
Encoding Automatic Never 106.1 60.5
Accept Automatic Never 163.8 109.5
Local storage User Never Never 320.2
Platform Automatic Never Never Never
Cookies User Never Never Never

User-triggered evolutions that require an action from the
user. They concern configuration-specific attributes, such
as cookies, do not track or local storage.

To know how long attributes remain constant and if their
stability depends on the browser instance, we compute the
average time, per browser instance, that each attribute does
not change. Table II presents the median, the 90th and 95th

percentiles of the duration each attribute remains constant, on
average, in browser instances. In particular, we observe that the
User agent is rather unstable in most browser instances as
its value is systematically impacted by software updates. In
comparison, attributes such as cookies, local storage
and do not track rarely change if ever. Moreover, we
observe that attributes evolve at different rates depending on
the browser instance. For example, canvas remains stable for
290 days in 50% of the browser instances, whereas it changes
every 17.2 days for 10% of them. The same phenomena can
be observed for the screen resolution where more than
50% of the browser instances never see a change, while 10%
change every 3.1 days on average. More generally this points
to some browser instances being quite stable, and thus, more
trackable, while others aren’t.

c) Evolution frequency: Another key indicator to ob-
serve is the elapsed time (Et) before a change occurs in
a browser fingerprint. Figure 3 depicts the cumulative dis-
tribution function of Et for all fingerprints (blue), or aver-
aged per browser instance (orange). After one day, at least
one transition occurs in 45.2% of the observed fingerprints.
The 90th percentile is observed after 13 days and the 95th

percentile after 17.3 days. This means the probability that
at least one transition occurs in 13 days is 0.9 (blue). It
is important to point out that changes occur more or less
frequently depending on the browser instance (orange). While
some browser instances change often (20% change in less
than two days) others, on the contrary, are much more stable
(23% have no changes after 10 days). In this context, keeping
pace with the frequency of change is likely a challenge for
browser fingerprint linking algorithms and, to the best of our
knowledge, has not been explored in the state of the art.

d) Evolution rules: While it is difficult to anticipate
browser fingerprint evolutions, we can observe how individual

Fig. 3: CDF of the elapsed time before a fingerprint evolution
for all the fingerprints, and averaged per browser instance.

attributes evolve. In particular, evolutions of the User agent
attribute are often tied to browser upgrades, while evolutions
of the Plugins attribute refers to the addition, deletion or
upgrade of a plugin (upgrades change its version). Neverthe-
less, not all attribute changes can be explained in this manner,
some values are difficult to anticipate. For example, the value
of the canvas attribute is the result of an image rendered by
the browser instance and depends on many different software
and hardware layers. The same applies, although to a lesser
extent, to screen resolution, which can take unexpected
values depending on the connected screen. Based on these
observations, the accuracy of linking browser fingerprint evo-
lutions depends on the inference of such evolution rules. The
following section introduces the evolution rules we first iden-
tified empirically, and then learned automatically, to achieve
an efficient algorithm to track browser fingerprints over time.

IV. LINKING BROWSER FINGERPRINTS

FP-STALKER’s goal is to determine if a browser fin-
gerprint comes from a known browser instance—i.e., it is
an evolution—or if it should be considered as from a new
browser instance. Because fingerprints change frequently, and
for different reasons (see section III), a simple direct equality
comparison is not enough to track browsers over long periods
of time.

In FP-STALKER, we have implemented two variant al-
gorithms with the purpose of linking browser fingerprints,
as depicted in Figure 4. The first variant is a rule-based
algorithm that uses a static ruleset, and the second variant is
an hybrid algorithm that combines both rules and machine
learning. We explain the details and the tradeoffs of both
algorithms in this section. Our results show that the rule-based
algorithm is faster but the hybrid algorithm is more precise
while still maintaining acceptable execution times. We have
also implemented a fully random forest-based algorithm, but
the small increase in precision did not outweigh the large
execution penalty, so we do not present it further in this paper.

A. Browser fingerprint linking

When collecting browser fingerprints, it is possible that
a fingerprint comes from a previous visitor—i.e., a known
browser instance—or from a new visitor—i.e., an unknown
browser instance. The objective of fingerprint linking is to
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match fingerprints to their browser instance and follow the
browser instance as long as possible by linking all of its
fingerprint evolutions. In the case of a match, linked browser
fingerprints are given the same identifier, which means the
linking algorithm considers they originate from the same
browser instance. If the browser fingerprint cannot be linked,
the algorithm assigns a new identifier to the fingerprint.

More formally, given a set of known browser fingerprints
F , each f ∈ F has an identifier f.id that links to the browser
instance it belongs to. Given an unknown fingerprint fu /∈ F
for whom we ignore the real id, a linking algorithm returns
the browser instance identifier fk.id of the fingerprint fk that
maximizes the probability that fk and fu belong to the same
browser instance. This computation can be done either by
applying rules, or by training an algorithm to predict this
probability. If no known fingerprint can be found, it assigns
a new id to fu. For optimization purposes, we only hold and
compare the last ν fingerprints of each browser instance bi in
F . The reason is because if we linked, for example, 3 browser
fingerprints fA, fB and fC to a browser instance bi then,
when trying to link an unknown fingerprint fu, it is rarely
useful to compare fu to the oldest browser fingerprints of bi.
That is, newer fingerprints are more likely to produce a match,
hence we avoid comparing old fingerprints in order to improve
execution times. In our case we set the value of ν to 2.

B. Rule-based Linking Algorithm

The first variant of FP-STALKER is a rule-based algorithm
that uses static rules obtained from statistical analyses per-
formed in section III. The algorithm relies on rules designed
from attribute stability presented in Table II to determine if an
unknown fingerprint fu belongs to the same browser instance
as a known fingerprint fk. We also define rules based on
constraints that we would not expect to be violated, such as,
a browser’s family should be constant (e.g., the same browser
instance cannot be Firefox one moment and Chrome at a
later time), the Operating System is constant, and the browser
version is either constant or increases over time. The full list
of rules are as follow:

1) The OS, platform and browser family must be
identical for any given browser instance. Even if this
may not always be true (e.g. when a user updates from
Windows 8 to 10), we consider it reasonable for our
algorithm to lose track of a browser when such a large
change occurs since it is not frequent.

2) The browser version remains constant or increases
over time. This would not be true in the case of a
downgrade, but this is also, not a common event.

3) Due to the results from our statistical analyses, we have
defined a set of attributes that must not differ between two
fingerprints from the same browser instance. We consider
that local storage, Dnt, cookies and canvas
should be constant for any given browser instance. As
observed in Table II, these attributes do not change often,
if at all, for a given browser instance. In the case of
canvas, even if it seldomly changes for most users (see
Table II , the changes are unpredictable making them
hard to model. Since canvas are quite unique among
browser instances [14], and don’t change too frequently, it

(a) Rule-based variant of FP-STALKER. Uses a set of
static rules to determine if fingerprints should be linked
to the same browser instance or not.

(b) Hybrid variant of FP-STALKER. The training phase is used to learn the
probability that two fingerprints belong to the same browser instance, and the
testing phase uses the random forest-based algorithm to link fingerprints.

Fig. 4: FP-STALKER: Overview of both algorithm variants.
The rule-based algorithm is simpler and faster but the hybrid
algorithm leads to better fingerprint linking.

is still interesting to consider that it must remain identical
between two fingerprints of the same browser instance.

4) We impose a constraint on fonts: if both fingerprints have
Flash activated—i.e. we have a list of fonts available—
then the fonts of fu must either be a subset or a superset
of the fonts of fk, but not a disjoint set. That means that
between two fingerprints of a browser instance, it will
allow deletions or additions of fonts, but not both.

5) We define a set of attributes that are allowed to
change, but only within a certain similarity. That
means that their values must have a similarity ra-
tio > 0.75, as defined in the Python library func-
tion difflib.SequenceMatcher().ratio. These
attributes are user agent, vendor, renderer,
plugins, language, accept, headers. We allow
at most two changes of this kind.

6) We also define a set of attributes that are allowed to
change, no matter their value. This set is composed of
resolution, timezone and encoding. However,
we only allow one change at the same time among these
three attributes.

7) Finally, the total number of changes from rules 5 and 6
must be less than 2.
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Algorithm 1 Rule-based matching algorithm

function FINGERPRINTMATCHING(F, fu)
rules = {rule1, ..., rule6}
candidates← ∅
exact← ∅
for fk ∈ F do

if VERIFYRULES(fk, fu, rules) then
if nbDiff = 0 then

exact← exact ∪ 〈fk〉
else

candidates← candidates ∪ 〈fk〉
end if

end if
end for
if |exact| > 0 and SAMEIDS(exact) then

return exact[0].id
else if |candidates| > 0 and SAMEIDS(candidates) then

return candidates[0].id
else

return GENERATENEWID()
end if

end function
SAMEIDS is a function that, given a list of candidates, returns true
if all of them share the same id, else false.

The order in which rules are applied is important for
performance purposes: we ordered them from the most to
least discriminating. The first rules discard many candidates,
reducing the total number of comparisons. In order to link
fu to a fingerprint fk, we apply the rules to each known
fingerprint taken from F . As soon as a rule is not matched,
the known fingerprint is discarded and we move onto the next.
If a fingerprint matches all the rules, then it is added to a
list of potential candidates, candidates. Moreover, in case
fingerprints fk and fu are identical, we add it to the list of
exact matching candidates, exact. Once the rule verification
process is completed, we look at the two lists of candidates. If
exact is not empty, we check if there is only one candidate or if
all the candidates come from the same browser instance. If it is
the case, then we link fu with this browser instance, otherwise
we assign a new id to fu. In case no exact candidate is found,
we look at candidates and apply the same technique as for
exact. We summarize the rule-based approach in Algorithm 1.

On a side-note, we established the rules using a simple
univariate statistical analysis to study attribute stability (see
Table II), as well as some objective (e.g., rule 1) and other sub-
jective (e.g., rule 4) decisions. Due to the difficulty in making
complex yet effective rules, the next subsection presents the
use of machine learning to craft a more effective algorithm.

C. Hybrid Linking Algorithm

The second variant of FP-STALKER mixes the rule-based
algorithm with machine learning to produce a hybrid algo-
rithm. It reuses the first three rules of the previous algorithm,
since we consider them as constraints that should not be
violated between two fingerprints of a same browser instance.
However, for the last four rules, the situation is more fuzzy.
Indeed, it is not as clear when to allow attributes to be
different, how many of them can be different, and with what
dissimilarity. Instead of manually crafting rules for each of
these attributes, we propose to use machine learning to dis-
cover them. The interest of combining both rules and machine

learning approaches is that rules are faster than machine
learning, but machine learning tends to be more precise. Thus,
by applying the rules first, it helps keep only a subset of
fingerprints on which to apply the machine learning algorithm.

1) Approach Description: The first step of this algorithm
is to apply rules 1, 2 and 3 on fu and all fk ∈ F . We keep
the subset of browser fingerprints fksub that verify these rules.
If, during this process, we found any browser fingerprints that
exactly match fu, then we add them to exact. In case exact is
not empty and all of its candidates are from the same browser
instance, we stop here and link fu with the browser instance
in exact. Otherwise, if there are multiple exact candidates but
from different browser instances, then we assign a new browser
id to fu. In the case where the set of exact candidates is
empty, we continue with a second step that leverages machine
learning. In this step, for each fingerprint fk ∈ fksub, we
compute the probability that fk and fu come from the same
browser instance using a random forest model. We keep a set
of fingerprint candidates whose probability is greater than a
λ threshold parameter. If the set of candidates is empty, we
assign a new id to fu. Otherwise, we keep the set of candidates
with the highest and second highest probabilities, ch1 and ch2.
Then, we check if ch1 contains only one candidate or if all
of the candidates come from the same browser instance. If
it is not the case, we check that either the probability ph1
associated with candidates of ch1 is greater than the probability
ph2 associated with candidates of ch2 + diff , or that ch2 and
ch1 contains only candidates from the same browser instance.
Algorithm 2 summarizes the hybrid approach.

2) Machine Learning: Computing the probability that two
fingerprints fu and fk originate from the same browser in-
stance can be modeled as a binary classification problem where
the two classes to predict are same browser instance
and different browser instance. We use the ran-
dom forest algorithm [6] to solve this binary classification
problem. A random forest is an ensemble learning method
for classification that operates by constructing a multitude
of decision trees at training time and outputting the class
of the individual trees. In the case of FP-STALKER, each
decision tree makes a prediction and votes if the two browser
fingerprints come from the same browser instance. The result
of the majority vote is chosen. Our main motivation to adopt a
random forest instead of other classifiers is because it provides
a good tradeoff between precision and the interpretation of
the model. In particular, the notion of feature importance in
random forests allows FP-STALKER to interpret the importance
of each attribute in the decision process.

In summary, given two fingerprints, fu /∈ F and fk ∈ F ,
whose representation is reduced to a single feature vector of
M features X = 〈x1, x2, ..., xM 〉, where the feature xn is
the comparison of the attribute n for both fingerprints (the
process of transforming two fingerprints into a feature vector
is presented after). Our random forest model computes the
probability P (fu.id = fk.id | (x1, x2, ..., xM )) that fu and fk
belong to the same browser instance.

a) Input Feature Vector: To solve the binary classifica-
tion problem, we provide an input vector X = 〈x1, x2, ..., xM 〉
of M features to the random forest classifier. The features
are mostly pairwise comparisons between the values of the
attributes of both fingerprints (e.g., Canvas, User agent).
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Algorithm 2 Hybrid matching algorithm

function FINGERPRINTMATCHING(F, fu, λ)
rules = {rule1, rule2, rule3}
exact← ∅
Fksub ← ∅
for fk ∈ F do

if VERIFYRULES(fk, fu, rules) then
if nbDiff = 0 then

exact← exact ∪ 〈fk〉
else

Fksub ← Fksub ∪ 〈fk〉
end if

end if
end for
if |exact| > 0 then

if SAMEIDS(exact) then
return exact[0].id

else
return GENERATENEWID()

end if
end if
candidates← ∅
for fk ∈ Fksub do
〈x1, x2, ..., xM 〉 = FEATUREVECTOR(fu, fk)
p← P (fu.id = fk.id | 〈x1, x2, ..., xM 〉)
if p ≥ λ then

candidates← candidates ∪ 〈fk, p〉
end if

end for
if |candidates| > 0 then

ch1, ph1 ← GETCANDIDATESRANK(candidates, 1)
ch2, ph2 ← GETCANDIDATESRANK(candidates, 2)
if SAMEIDS(ch1) and ph1 > ph2 + diff then

return candidates[0].id
end if
if SAMEIDS(ch1 ∪ ch2) then

return candidates[0].id
end if

end if
return GENERATENEWID()

end function
GETCANDIDATESRANK is a function that given a list of candidates
and an rank i, returns a list of candidates with the ith greatest
probability, and this probability.

Most of these features are binary values (0 or 1) corresponding
to the equality or inequality of an attribute, or similarity
ratios between these attributes. We also include a number
of changes feature that corresponds to the total number of
different attributes between fu and fk, as well as the time
difference between the two fingerprints.

In order to choose which attributes constitute the feature
vector we made a feature selection. Indeed, having too many
features does not necessarily ensure better results. It may lead
to overfitting—i.e., our algorithm correctly fits our training
data, but does not correctly predict on the test set. Moreover,
having too many features also has a negative impact on
performance. For the feature selection, we started with a model
using all of the attributes in a fingerprint. Then, we looked at
feature importance, as defined by [15], to determine the most
discriminating features. In our case, feature importance is a
combination of uniqueness, stability, and predictability (the
possibility to anticipate how an attribute might evolve over
time). We removed all the components of our feature vector

TABLE III: Feature importances of the random forest model
calculated from the fingerprint train set.

Rank Feature Importance

1 Number of changes 0.350

2 Languages HTTP 0.270

3 User agent HTTP 0.180

4 Canvas 0.090

5 Time difference 0.083

6 Plugins 0.010

7 Fonts 0.008

8 Renderer 0.004

9 Resolution 0.003

that had a negligible impact (feature importance < 0.002).
Finally, we obtained a feature vector composed of the attributes
presented in Table III. We see that the most important feature
is the number of differences between two fingerprints, and the
second most discriminating attribute is the list of languages.
Although this may seem surprising since the list of languages
does not have high entropy, it does remain stable over time,
as shown in Table II, which means that if two fingerprints
have different languages, this often means that they do not
belong to the same browser instance. In comparison, screen
resolution also has low entropy but it changes more often than
the list of languages, leading to low feature importance. This is
mostly caused by the fact that since screen resolution changes
frequently, having two fingerprints with a different resolution
doesn’t add a lot of information to determine whether or not
they are from the same browser instance. Finally, we see a
high drop in feature importance after rank 5 (from 0.083 to
0.010), which means that most of the information required for
the classification is contained in the first five features.

b) Training Random Forests: This phase trains the
random forest classifier to estimate the probability that two
fingerprints belong to the same browser instance. To do so, we
split the input dataset introduced in Section III chronologically
into two sets: a training set and a test set. The training set is
composed of the first 40% of fingerprints in our input dataset,
and the test set of the last 60%. The random forest detects
fingerprint evolutions by computing the evolutions between
fingerprints as feature vectors. During the training phase, it
needs to learn about correct evolutions by computing relevant
feature vectors from the training set. Algorithm 3 describes
this training phase, which is split into two steps.

Algorithm 3 Compute input feature vectors for training

function BUILDTRAININGVECTORS(ID,F ,δ,ν)
T ← ∅
for id ∈ ID do � Step 1

Fid ← BROWSERFINGERPRINTS(id, F )
for ft ∈ Fid do

T ← T ∪ FEATUREVECTOR(ft, ft−1)
end for

end for
for f ∈ F do � Step 2

fr ← RANDOM(F )
if f.id 	= fr.id then

T ← T ∪ FEATUREVECTOR(f, fr)
end if

end for
return T

end function
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In Step 1, for every browser instance (id) of the
training set, we compare each of its fingerprints (ft ∈
BROWSERFINGERPRINTS(id, F )) present in the training set
(F ) with the previous one (ft−1). By doing so, FP-STALKER

captures the atomic evolutions that occur between two consec-
utive fingerprints from the same browser instance. We apply
BUILDTRAININGVECTORS() for different collect frequencies
(time difference between t and t−1) to teach our model to link
fingerprints even when they are not equally spaced in time.

While Step 1 teaches the random forest to identify
fingerprints that belong to the same browser instance, it is also
necessary to identify when they do not. Step 2 compares
fingerprints from different browser instances. Since the num-
ber of fingerprints from different browser instances is much
larger than the number of fingerprints from the same browser
instance, we limit the number of comparisons to one for
each fingerprint. This technique is called undersampling [16]
and it reduces overfitting by adjusting the ratio of input data
labeled as true—i.e., 2 fingerprints belong to the same browser
instance—against the number of data labeled as false—i.e., 2
fingerprints are from different browser instances. Otherwise,
the algorithm would tend to simply predict false.

c) Random forest hyperparameters.: Concerning the
number of trees of the random forest, there is a tradeoff
between precision and execution time. Adding trees does
obtain better results but follows the law of diminishing returns
and increases training and prediction times. Our goal is to
balance precision and execution time. The number of features
plays a role during the tree induction process. At each split, Nf

features are randomly selected, among which the best split is
chosen [4]. Usually, its default value is set to the square root of
the length of the feature vector. The diff parameter enables the
classifier to avoid selecting browser instances with very similar
probabilities as the origin of the fingerprint; we would rather
create a new browser instance than choose the wrong one. It
is not directly related to random forest hyperparameters but
rather to the specificities of our approach. In order to optimize
the hyperparameters number of trees and number of features,
as well as the diff parameter, we define several possible values
for each and run a grid search to optimize the accuracy. This
results in setting the hyperparameters to 10 trees and 3 features,
and the diff value to 0.10.

After training our random forest classifier, we obtain a
forest of decision trees that predict the probability that two
fingerprints belong to the same browser instance. Figure 5 il-
lustrates the first three levels of one of the decision trees. These
levels rely on the languages, the number of changes
and the user agent to take a decision. If an attribute has a
value below its threshold, the decision path goes to the left
child node, otherwise it goes to the right child node. The
process is repeated until we reach a leaf of the tree. The
prediction corresponds to the class (same/different browser
instance) that has the most instances over all the leaf nodes.

d) Lambda threshold parameter: For each browser
fingerprint in the test set, we compare it with its previ-
ous browser fingerprint and with another random fingerprint
from a different browser, and compute the probability that
it belongs to the same browser instance using our random
forest classifier with the parameters determined previously.
Using these probabilities and the true labels, we choose the λ

languages HTTP <= 0.978

number of changes <= 4.5

True

number of changes <= 5.5

False

languages HTTP <= 0.759 number of changes <= 5.5

(...) (...) (...) (...)

user agent HTTP <= 0.869 user agent HTTP <= 0.974

(...) (...) (...) (...)

Fig. 5: First 3 levels of a single tree classifier from our forest.

value that minimizes the false positive rate, while maximizing
the true positive rate. However, this configuration parameter
depends on the targeted application of browser fingerprinting.
For instance, if browser fingerprinting is used as a second-
tier security mechanism (e.g., to verify the user is connecting
from a known browser instance), we set λ to a high value.
This makes the algorithm more conservative, reducing the risk
of linking a fingerprint to an incorrect browser instance, but
it also increases false negatives and results in a reduction of
the duration the algorithm can effectively track a browser. On
the opposite end, a low λ value will increase the false positive
rate, in this case meaning it tends to link browser fingerprints
together even though they present differences. Such a use
case might be acceptable for constructing ad profiles, because
larger profiles are arguably more useful even if sometimes
contaminated with someone else’s information. By applying
this approach, we obtained a λ threshold equal to 0.994.

V. EMPIRICAL EVALUATION OF FP-STALKER

This section assesses FP-STALKER’s capacity to i) cor-
rectly link fingerprints from the same browser instance, and
to ii) correctly predict when a fingerprint belongs to a browser
instance that has never been seen before. We show that both
variants of FP-STALKER are effective in linking fingerprints
and in distinguishing fingerprints from new browser instances.
However, the rule-based variant is faster while the hybrid
variant is more precise. Finally, we discuss the impact of
the collect frequency on fingerprinting effectiveness, and we
evaluate the execution times of both variants of FP-STALKER.

Figure 6 illustrates the linking and evaluation process. Our
database contains perfect tracking chains because of the unique
identifiers our extensions use to identify browser instances.
From there, we sample the database using different collection
frequencies and generate a test set that removes the identifiers,
resulting in a mix of fingerprints from different browsers.
The resulting test set is then run through FP-STALKER to
reconstruct the best browser instance chains as possible.

A. Key Performance Metrics

To evaluate the performance of our algorithms and measure
how vulnerable users are to browser fingerprint tracking, we
consider several metrics that represent the capacity to keep
track of browser instances over time and to detect new browser
instances. This section presents these evaluation metrics, as
well as the related vocabulary. Figure 6 illustrates the different
metrics with a scenario.

A tracking chain is a list of fingerprints that have been
linked—i.e., fingerprints for which the linking algorithm as-
signed the same identifier. A chain may be composed of one or
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more fingerprints. In case of a perfect linking algorithm, each
browser instance would have a unique tracking chain—i.e.,
all of its fingerprints are grouped together and are not mixed
with fingerprints from any other browser instances. However,
in reality, fingerprinting is a statistical attack and mistakes may
occur during the linking process, which means that:

1) Fingerprints from different browser instances may be
included in the same tracking chain.

2) Fingerprints from a given browser instance may be split
into different tracking chains.

The lower part of Figure 6 shows examples of these mistakes.
Chain 1 has an incorrect fingerprint fpB1 from Browser
B, and chain 3 and chain 4 contain fingerprints from
browser C that have not correctly been linked—i.e., fpC3
and fpC4 were not linked leading to a split).

We present the tracking duration metric to evaluate the
capacity of an algorithm to track browser instances over time.
We define tracking duration as the period of time a link-
ing algorithm matches the fingerprints of a browser instance
within a single tracking chain. More specifically, the tracking
duration for a browser bi in a chain chaink is defined as
CollectFrequency × (#bi ∈ chaink − 1). We subtract one
because we consider a browser instance to have been tracked,
by definition, from the second linked fingerprint onwards.

The average tracking duration for a browser instance bi
is the arithmetic mean of its tracking duration across all the
tracking chains the instance is present in. For example, in
Figure 6, the tracking duration of browser B in chain 1
is 0×CollectFrequency, and the tracking duration in chain
2 is 1×CollectFrequency, thus the average tracking duration
is 0.5×CollectFrequency. In the same manner, the average
tracking duration of browser C is 1.5× CollectFrequency.

The maximum tracking duration for a browser instance bi
is defined as the maximum tracking duration across all of the
tracking chains the browser instance is present in. In the case
of browser C, the maximum tracking duration occurred in
chain 3 and is equal to 2× CollectFrequency.

The Number of assigned ids represents the number of
different identifiers that have been assigned to a browser
instance by the linking algorithm. It can be seen as the number
of tracking chains in which a browser instance is present. For
each browser instance, a perfect linking algorithm would group
all of the browser’s fingerprints into a single chain. Hence,
each browser instance would have a number of assigned ids
of 1. Figure 6 shows an imperfect case where browser C
has been assigned 2 different ids (chain 3 and chain 4).

The ownership ratio reflects the capacity of an algorithm
to not link fingerprints from different browser instances. The
owner of a tracking chain chaink is defined as the browser
instance bi that has the most fingerprints in the chain. Thus,
we define ownership ratio as the number of fingerprints that
belong to the owner of the chain divided by the length of
the chain. For example, in chain 1, browser A owns the
chain with an ownership ratio of 4

5 because it has 4 out
of 5 of the fingerprints. In practice, an ownership ratio close to
1 means that a tracking profile is not polluted with information
from different browser instances.

Fig. 6: Overview of our evaluation process that allows testing
the algorithms using different simulated collection frequencies.

Algorithm 4 Eckersley fingerprint matching algorithm [8]

ALLOWED = {cookies, resolution, timezone, local}
function FINGERPRINTMATCHING(F, fu)

candidates← ∅
for fk ∈ F do

changes← DIFF(fu, fk)
if |changes| = 1 then

candidates← candidates ∪ 〈fk, changes〉
end if

end for
if |candidates| = 1 then
〈fk, a〉 ← candidates[0]
if a ∈ ALLOWED then

return fk
else if MATCHRATIO(fu(a), fk(a)) > 0.85 then

return fk
else

return NULL
end if

end if
end function
MATCHRATIO refers to the Python standard library function
difflib.SequenceMatcher().ratio() for estimating the
similarity of strings.

B. Comparison with Panopticlick’s linking algorithm

We compare FP-STALKER to the algorithm proposed
by Eckersley [8] in the context of the PANOPTICLICK

project. To the best of our knowledge, there are no other
algorithms to compare to. Although Eckersley’s algorithm
has been characterized as “naive” by its author, we use
it as a baseline to compare our approach. The PANOP-
TICLICK algorithm is summarized in Algorithm 4. It uses
the following 8 attributes: User agent, accept, cookies
enabled, screen resolution, timezone, plugins,
fonts and local storage. Given an unknown fingerprint
fu, PANOPTICLICK tries to match it to a previous fingerprint of
the same browser instance if a sufficiently similar one exists—

736

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2024 at 15:27:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Example of the process to generate a simulated test
set. The dataset contains fingerprints collected from browser’s
A and B, which we sample at a collect frequency of 2
days to obtain a dataset that allows us to test the impact of
collect frequency on fingerprint tracking.

i.e., no more than one attribute changed. Otherwise, if it found
no similar fingerprints, or too many similar fingerprints that
belong to different browser instances, it assigns a new id.
Moreover, although at most one change is allowed, this change
can only occur among the following attributes: cookies,
resolution, timezone and local storage.

C. Dataset generation using fingerprint collect frequency

To evaluate the effectiveness of FP-STALKER we start
from our test set of 59, 159 fingerprints collected from
1, 395 browser instances (60% of our input dataset, see Sec-
tion IV-C2b). However, we do not directly use this set. Instead,
by sampling the test set, we generate new datasets using a
configurable collect frequency. Because our input dataset is
fine-grained, it allows us to simulate the impact fingerprinting
frequency has on tracking. The intuition being that if a browser
is fingerprinted less often, it becomes harder to track.

To generate a dataset for a given collect frequency, we start
from the test set of 59, 159 fingerprints, and, for each browser
instance, we look at the collection date of its first fingerprint.
Then, we iterate in time with a step of collect frequency
days and recover the browser instance’s fingerprint at time
t+ collect frequency. It may be the same fingerprint as the
previous collect or a new one. We do this until we reach the
last fingerprint collected for that browser id. This allows us
to record a sequence of fingerprints that correspond to the
sequence a fingerprinter would obtain if the browser instance
was fingerprinted at a frequency of collect frequency days.
The interest of sampling is that it is more realistic than using
all of the fingerprints from our database since they are very
fine-grained. Indeed, the extension is capable of catching even
short-lived changes in the fingerprint (e.g., connecting an exter-
nal monitor), which is not always possible in the wild. Finally,
it allows us to investigate how fingerprint collection frequency
impacts browser tracking. Figure 7 provides an example of the
process to generate a dataset with a collect frequency of two
days. Table IV presents, for each simulated collect frequency,
the number of fingerprints in the generated test sets.

The browser fingerprints in a generated test set are ordered
chronologically. At the beginning of our experiment, the set
of known fingerprints (F ) is empty. At each iteration, FP-
STALKER tries to link an unknown fingerprint fu with one
of the fingerprints in F . If it can be linked to a fingerprint

TABLE IV: Number of fingerprints per generated test set after
simulating different collect frequencies

Collect frequency (days) Number of fingerprints
1 171, 735
2 86, 225
3 57, 695
4 43, 441
5 34, 916
6 29, 195
7 25, 155
8 22, 065

10 17, 814
15 12, 100
20 9, 259

Fig. 8: Average tracking duration against simulated collect
frequency for the three algorithms

fk, then FP-STALKER assigns the id fk.id to fu, otherwise
it assigns a new id. In both cases, fu is added to F . The
chronological order of the fingerprints implies that at time
t, a browser fingerprint can only be linked with a former
fingerprint collected at a time t′ < t. This approach ensures
a more realistic scenario, similar to online fingerprint tracking
approaches, than if we allowed fingerprints from the past to
be linked with fingerprints collected in the future.

D. Tracking duration

Figure 8 plots the average tracking duration against the
collect frequency for the three algorithms. On average, browser
instances from the test set were present for 109 days, which
corresponds to the maximum value our linking algorithm could
potentially achieve. We see that the hybrid variant of FP-
STALKER is able to keep track of browser instances for a
longer period of time than the two other algorithms. In the
case where a browser gets fingerprinted every three days,
FP-STALKER can track it for 51, 8 days, on average. More
generally, the hybrid variant of FP-STALKER has an average
tracking duration of about 9 days more than the rule-based
variant and 15 days more than the Panopticlick algorithm.

Figure 9 presents the average maximum tracking duration
against the collect frequency for the three algorithms. We
see that the hybrid algorithm still outperforms the two other
algorithms because the it constructs longer tracking chains
with less mistakes. On average, the maximum average tracking
duration for FP-STALKER’s hybrid version is in the order of
74 days, meaning that at most users were generally tracked for
this duration.
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Fig. 9: Average maximum tracking duration against simulated
collect frequency for the three algorithms. This shows averages
of the longest tracking durations that were constructed.

Fig. 10: Average number of assigned ids per browser instance
against simulated collect frequency for the three algorithms
(lower is better).

Figure 10 shows the number of ids they assigned, on aver-
age, for each browser instance. We see that PANOPTICLICK’s
algorithm often assigns new browser ids, which is caused by
its conservative nature. Indeed, as soon as there is more than
one change, or multiple candidates for linking, Panopticlick’s
algorithm assigns a new id to the unknown browser instance.
However, we can observe that both FP-STALKER’s hybrid and
rule-based variants perform similarly.

Finally, Figure 11 presents the average ownership of track-
ing chains against the collect frequency for the three algo-
rithms. We see that, despite its conservative nature, PANOP-
TICLICK’s ownership is 0.94, which means that, on average,
6% of a tracking chain is constituted of fingerprints that do
not belong to the browser instance that owns the chain—i.e.,
it is contaminated with other fingerprints. The hybrid variant
of FP-STALKER has an average ownership of 0.985, against
0.977 for the rule-based.

When it comes to linking browser fingerprints, FP-
STALKER’s hybrid variant is better, or as good as, the rule-
based variant. The next paragraphs focus on a few more results
we obtain with the hybrid algorithm. Figure 12 presents the
cumulative distribution of the average and maximum tracking
duration when collect frequency equals 7 days for the hybrid
variant. We observe that, on average, 15, 5% of the browser
instances are tracked more than 100 days. When it comes to the
the longest tracking chains, we observe that more than 26% of
the browser instances have been tracked at least once for more

Fig. 11: Average ownership of tracking chains against simu-
lated collect frequency for the three algorithms. A value of 1
means the tracking chain is constructed perfectly.

Fig. 12: CDF of average and maximum tracking duration for a
collect frequency of 7 days (FP-STALKER hybrid variant only).

than 100 days during the experiment. These numbers show
how tracking may depend on the browser and its configuration.
Indeed, while some browsers are never tracked for a long
period of time, others may be tracked for multiple months. This
is also due to the duration of presence of browser instances in
our experiments. Few browser instances were present for the
whole experiment, most for a few weeks, and at best we can
track a browser instance only as long as it was present. The
graph also shows the results of the perfect linking algorithm,
which can also be interpreted as the distribution of duration of
presence of browser instances in our test set.

The boxplot in Figure 13 depicts the number of ids gener-
ated by the hybrid algorithm for a collect frequency of 7 days.
It shows that half of the browser instances have been assigned
2 identifiers, which means they have one mistake, and more
than 90% have less than 9 identifiers.

Finally, we also look at the distribution of the chains to
see how often fingerprints from different browser instances are
mixed together. For the FP-STALKER hybrid variant, more than
95% of the chains have an ownership superior to 0.8, and more
than 90% have perfect ownership—i.e., 1. This shows that a
small percentage of browser instances become highly mixed in
the chains, while the majority of browser instances are properly
linked into clean and relatively long tracking chains.
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Fig. 13: Distribution of number of ids per browser for a
collect frequency of 7 days (FP-STALKER hybrid variant only).

E. Benchmark/Overhead

This section presents a benchmark that evaluates the perfor-
mance of FP-STALKER’s hybrid and rule-based variants. We
start by providing more details about our implementation, then
we explain the protocol used for this benchmark, demonstrate
that our approach can scale, and we show how our two variants
behave when the number of browser instances increases.

a) The implementations: of FP-STALKER used for this
benchmark are developed in Python, and the implementation of
the random forest comes from the Scikit-Learn library. In order
to study the scalability of our approach, we parallelized the
linking algorithm to run on multiple nodes. A master node is
responsible for receiving linkability requests, then it sends the
unknown fingerprint to match fu to slave nodes that compare
fu with all of the fk present on their process. Then, each
slave node sends its set of candidates associated either with a
probability in case of the hybrid algorithm, or the number of
changes in case of the rule-based version. Finally, the master
node takes the final decision according to the policy defined
either by the rule-based or hybrid algorithm. After the decision
is made, it sends a message to each node to announce whether
or not they should keep fu in their local memory. In the case
of the benchmark, we do not implement an optimization for
exact matching. Indeed, normally the master nodes should hold
a list of the exact matches associated with their ids.

b) The experimental protocol: aims to study scalability.
We evaluate our approach on a standard Azure cloud instance.
We generate fake browser fingerprints to increase the test set
size. Thus, this part does not evaluate the previous metrics,
such as tracking duration, but only the execution times
required to link synthetic browser fingerprints, as well as how
well the approach scales across multiple processes.

The first step of the benchmark is to generate fake finger-
prints from real ones. The generation process consists in taking
a real fingerprint from our database and applying random
changes to the canvas and the timezone attributes. We apply
only two random changes so that generated fingerprints are
unique, but they do not have too many differences which would
reduce the number of comparisons. This point is important
because our algorithms include heuristics related to the number
of differences. Thus, by applying a small number of random
changes, we do not discard all fk fingerprints, making it the
worst case scenario for testing execution times. Regarding
the browser ids, we assign two generated fingerprints to each
browser instance. It would not have been useful to generate

Fig. 14: Speedup of average execution time against number of
processes for FP-STALKER’s hybrid variant

more fingerprints per browser instance since we compare
an unknown fingerprint only with the last 2 fingerprints of
each browser instance. Then, the master node creates n slave
processes and sends the generated fingerprints to them. The
fingerprints are spread evenly over the processes.

Once the fingerprints are stored in the slave processes
memory, we start our benchmark. We get 100 real fingerprints
and try to link them with our generated fingerprints. For each
fingerprint, we measure the execution time of the linking
process. In this measurement, we measure:

1) The number of fingerprints and browser instances.
2) The number of processes spawned.

We execute our benchmark on a Standard D16 v3
Azure instance with 16 virtual processors and 64 Gb of
RAM, which has an associated cost of $576 USD per month.
Figure 14 shows the execution time speedup in percentage
against the number of processes for the hybrid approach. We
see that that as the number of processes increases, we obtain
a speedup in execution time. Going from 1 to 8 processes
enables a speed up of more than 80%. Figure 15 shows the
execution time to link a fingerprint against the number of
browser fingerprints for FP-STALKER’s hybrid and rule-based
variants, using 16 processes. Better tracking duration
from the hybrid variant (see V-D) is obtained at the cost of
execution speed. Indeed, for any given number of processes
and browser instances, the rule-based variant links fingerprints
about 5 times faster. That said, the results show that the hybrid
variant links fingerprints relatively quickly.

However, the raw execution times should not be used
directly. The algorithm was implemented in Python, whose pri-
mary focus is not performance. Moreover, although we scaled
by adding processes, it is possible to scale further by splitting
the linking process (e.g., depending on the combination of OS
and browser, send the fingerprint to more specialized nodes).
In our current implementation, if an unknown fingerprint from
a Chrome browser on Linux is trying to be matched, it will be
compared to fingerprints from Firefox on Windows, causing
us to wait even though they have no chance of being linked.
By adopting a hierarchical structure where nodes or processes
are split depending on their OS and browser, it is possible to
increase the throughput of our approach.

Furthermore, the importance of the raw execution speeds
depend highly on the use case. In the case where fingerprinting
is used as a way to regenerate cookies (e.g., for advertising), a
fingerprint only needs to be linked when the cookie is missing
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Fig. 15: Execution times for FP-STALKER hybrid and rule-
based to link a fingerprint using 16 processes. Time is depen-
dent on the size of the test set. The increased effectiveness of
the hybrid variant comes at the cost slower of execution times.

or has been erased, a much less frequent event. Another use
case is using browser fingerprinting as a way to enhance
authentication [3]. In this case, one only needs to match
the fingerprint of the browser attempting to sign-in with the
previous fingerprints from the same user, drastically reducing
the number of comparisons.

F. Threats to Validity

First, the results we report in this work depend on the rep-
resentativity of our browser fingerprint dataset. We developed
extensions for Chrome and Firefox, the two most popular web
browsers, and distributed them through standard channels. This
does provide long term data, and mitigates a possible bias if
we had chosen a user population ourselves, but it is possible
that the people interested in our extension are not a good
representation of the average Web surfer.

Second, there is a reliability threat due to the difficulty in
replicating the experiments. Unfortunately, this is inherent to
scientific endeavors in the area of privacy: these works must
analyze personal data (browser fingerprints in our case) and the
data cannot be publicly shared. Yet, the code to split the data,
generate input data, train the algorithm, as well as evaluate it,
is publicly available online on GitHub5.

Finally, a possible internal threat lies in our experimental
framework. We did extensive testing of our machine learning
algorithms, and checked classification results as thoroughly as
possible. We paid attention to split the data and generate a
scenario close to what would happen in a web application.
However, as for any large scale experimental infrastructure,
there are surely bugs in this software. We hope that they only
change marginal quantitative things, and not the qualitative
essence of our findings.

G. Discussion

This paper studies browser fingerprint linking in isolation,
which is its worst-case scenario. In practice, browser finger-
printing is often combined with stateful tracking techniques

5https://github.com/Spirals-Team/FPStalker

(e.g., cookies, Etags) to respawn stateful identifiers [1]. In such
cases, fingerprint linking is performed much less frequently
since most of the time a cookie is sufficient and inexpensive
to track users. Our work shows that browser fingerprinting can
provide an efficient solution to extend the lifespan of cookies,
which are increasingly being deleted by privacy-aware users.

Browser vendors and users would do well to minimize the
differences that are so easily exploited by fingerprinters. Our
results show that some browser instances have highly trackable
fingerprints, to the point that very infrequent fingerprinting is
quite effective. In contrast, other browser instances appear to
be untrackable using the attributes we collect. Vendors should
work to minimize the attack surfaces exploited by fingerprint-
ers, and users should avoid customizing their browsers in ways
that make them expose unique and linkable fingerprints.

Depending on the objectives, browser fingerprint linking
can be tuned to be more conservative and avoid false positives
(e.g., for second-tier security purposes), or more permissive
(e.g., ad tracking). Tuning could also be influenced by how
effective other tracking techniques are. For example, it could
be tuned very conservatively and simply serve to extend cookie
tracking in cases where privacy-aware users, which are in
our opinion more likely to have customized (i.e., unique and
linkable) browser configurations, delete their cookies.

VI. CONCLUSION

In this paper, we investigated browser fingerprint evolution
and proposed FP-STALKER as an approach to link fingerprint
changes over time. We address the problem with two variants
of FP-STALKER. The first one builds on a ruleset identified
from an analysis of grounded programmer knowledge. The
second variant combines the most discriminating rules by
leveraging machine learning to sort out the more subtle ones.

We trained the FP-STALKER hybrid variant with a training
set of fingerprints that we collected for 2 years through browser
extensions installed by 1, 905 volunteers. By analyzing the
feature importance of our random forest, we identified the
number of changes, the languages, as well as the
user agent, as the three most important features.

We ran FP-STALKER on our test set to assess its capacity
to link fingerprints, as well as to detect new browser instances.
Our experiments demonstrate that the hybrid variant can cor-
rectly link fingerprint evolutions from a given browser instance
for 54.48 consecutive days on average, against 42, 3 days
for the rule-based variant. When it comes to the maximum
tracking duration, with the hybrid variant, more than 26% of
the browsers can be tracked for more than 100 days.

Regarding the usability of FP-STALKER, we measure the
average execution time to link an unknown fingerprint when
the number of known fingerprints is growing. We show that
both our rule-based and hybrid variants scale horizontally.
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