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Abstract—Automated verification has become an essential part
in the security evaluation of cryptographic protocols. Recently,
there has been a considerable effort to lift the theory and
tool support that existed for reachability properties to the
more complex case of equivalence properties. In this paper
we contribute both to the theory and practice of this ver-
ification problem. We establish new complexity results for
static equivalence, trace equivalence and labelled bisimilarity
and provide a decision procedure for these equivalences in
the case of a bounded number of sessions. Our procedure is
the first to decide trace equivalence and labelled bisimilarity
exactly for a large variety of cryptographic primitives—those
that can be represented by a subterm convergent destructor
rewrite system. We implemented the procedure in a new tool,
DEEPSEC. We showed through extensive experiments that it
is significantly more efficient than other similar tools, while at
the same time raises the scope of the protocols that can be
analysed.

1. Introduction

The use of automated, formal methods has become
indispensable for analysing complex security protocols, such
as those for authentication, key exchange and secure channel
establishment. Nowadays there exist mature, fully automated
such analysers; among others AVISPA [11], ProVerif [17],
Scyther [33], Tamarin [45] or Maude-NPA [44]. These tools
operate in so-called symbolic models, rooted in the seminal
work by Dolev and Yao [35]: the attacker has full control
of the communication network, unbounded computational
power, but cryptography is idealised. This model is well
suited for finding attacks in the protocol logic, and tools have
indeed been extremely effective in discovering this kind of
flaw or proving their absence.

While most works investigate reachability properties, a
recent trend consists in adapting the tools—and the un-
derlying theory—for the more complex indistinguishability
properties. Such properties are generally modelled as a
behavioural equivalence (bisimulation or trace equivalence)
in a dedicated process calculus such as the Spi [6] or applied
pi calculus [5]. A typical example is real-or-random secrecy:
after interacting with a protocol, an adversary is unable
to distinguish the real secret used in the protocol from a
random value. Privacy-type properties can also be expressed
as such: anonymity may be modeled as the adversary’s

inability to distinguish two instances of a protocol executed
by different agents; vote privacy [34] has been expressed as
indistinguishability of the situations where the votes of two
agents have been swapped or not; unlinkability [8] is seen
as indistinguishability of two sessions, either both executed
by the same agent A, or by two different agents A and B.

Related work. The problem of analysing security protocols
is undecidable in general but several decidable subclasses
have been identified. While many complexity results are
known for trace properties [36], [42], the case of behavioural
equivalences remains mostly open. When the attacker is
an eavesdropper and cannot interact with the protocol, the
indistinguishability problem—static equivalence—has been
shown PTIME for large classes of cryptographic primi-
tives [3], [27], [29]. For active attackers, bounding the
number of protocol sessions is often sufficient to obtain
decidability [42] and is of practical interest: most real-life
attacks indeed only require a small number of sessions.
In this context Baudet [14], and later Chevalier and Rusi-
nowtich [24], showed that real-or-random secrecy was coNP
for cryptographic primitives that can be modelled as sub-
term convergent rewrite systems, by checking whether two
constraint systems admit the same set of solutions. These
procedures do however not allow for else branches, nor
do they verify trace equivalence in full generality. In [23],
Cheval et al. have used Baudet’s procedure as a black box to
verify trace equivalence of determinate processes. This class
of processes is however insufficient for most anonymity
properties. Finally, decidability results for an unbounded
number of sessions were proposed in [26], [25], but with
severe restrictions on processes and equational theories.

Tool support also exists for verifying equivalence prop-
erties. We start discussing tools that are limited to a bounded
number of sessions. The SPEC tool [46], [47] verifies a
sound symbolic bisimulation, but is restricted to particular
cryptographic primitives (pairing, encryption, signatures and
hash functions) and does not allow for else branches. The
APTE tool [20] covers the same primitives but allows else
branches and decides trace equivalence exactly. On the
contrary, the AKISS tool [19] allows for user-defined cryp-
tographic primitives. Partial correctness of AKISS is shown
for primitives modelled by an arbitrary convergent rewrite
system that has the finite variant property [28]. Termination
is additionally shown for subterm convergent rewrite sys-
tems. However, AKISS does only decide trace equivalence
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for a class of determinate processes; for other processes
trace equivalence can be both over- and under-approximated
which proved to be sufficient on many examples. The recent
SAT-EQUIV tool [30] uses a different approach: it relies on
Graph Planning and SAT solving to verify trace equivalence,
rather than a dedicated procedure. The tool is extremely
efficient and several orders of magnitude faster than other
tools. It does however not guarantee termination and is
currently restricted to pairing and symmetric encryption
and only considers a class of simple processes (a subclass
of determinate processes) that satisfy a type-compliance
condition. These restrictions severely limit its scope.

Other tools support verification of equivalence prop-
erties, even for an unbounded number of sessions. This
is the case of ProVerif [15], Tamarin [13] and Maude
NPA [44] which all allow for user-defined cryptographic
primitives. However, given that the underlying problem is
undecidable, these tools may not terminate. Moreover, they
only approximate trace equivalence by verifying the more
fine-grained diff-equivalence. This equivalence is too fine-
grained on many examples. While some recent improve-
ments on ProVerif [21], [16] helps covering more protocols,
general verification of trace equivalence is still out of scope.
For instance, the verification by Arapinis et al. [10] of
unlinkability in the 3G mobile phone protocols required
some “tricks” and approximations of the protocol to avoid
false attacks. In [31], Cortier et al. develop a type system and
automated type checker for verifying equivalences. While
extremely efficient, this tool only covers a fixed set of
cryptographic primitives (the same as SPEC and APTE) and
verifies an approximated equivalence, similar to the diff-
equivalence. A different approach has been taken by Hirschi
et al. [38], identifying sufficient conditions provable by
ProVerif for verifying unlinkability properties, implemented
in the tool Ukano, a front-end to the ProVerif tool. Ukano
does however not verify equivalence properties in general.

Contributions. We significantly improve the theoretical
understanding and the practical verification of equivalence
when the number of protocol sessions is bounded. We
emphasise that even in this setting, the system under study
has an infinite state space due to the term algebra modelling
cryptographic primitives. Our work targets the wide class of
cryptographic primitives that can be represented by a sub-
term convergent rewriting system. Concretely, we provide

1) new tight complexity results for static equivalence (∼),
trace equivalence (≈t) and labelled bisimilarity (≈�);

2) a novel procedure for deciding trace equivalence and
labelled bisimilarity for the class of cryptographic
primitives modelled by a destructor subterm convergent
rewrite system;

3) an implementation of our procedure for trace equiva-
lence in a new tool called DEEPSEC (DEciding Equiv-
alence Properties for SECurity protocols).

We detail the three contributions below.

Complexity. We provide the first complexity results for
deciding trace equivalence and labelled bisimilarity in the

applied pi calculus, without any restriction on the class of
protocols (other than bounding the number of sessions).
In particular, our results are not restricted to determinate
processes, allow for else branches and do not approximate
equivalence. Let us also highlight one small, yet substantial
difference with existing work: we do not consider cryp-
tographic primitives (rewrite systems) as constants of the
problem. As most modern verification tools allow for user-
specified primitives [17], [45], [44], [19], our approach
seems to better fit this reality. Typically, all existing pro-
cedures for static equivalence can only be claimed PTIME

because of this difference and are actually exponential in
the sizes of signature or equational theory. Our complexity
results are summarised in fig. 1. All our lower bounds hold
for subterm convergent rewrite systems (destructor or not)
and even for the positive fragment (without else branches).
En passant, we present results for the pi calculus1: although
investigated in [18], complexity was unknown when re-
stricted to a bounded number of sessions. Still, our main
result is the coNEXP completeness (and in particular, the
decidability) of trace equivalence and labelled bisimilarity
for destructor subterm convergent rewrite systems.

Pure pi calculus
Applied pi calculus

(destr.) subterm convergent
∼ LOGSPACE coNP complete
≈t Π2 complete coNEXP complete
≈� PSPACE complete coNEXP complete

Figure 1: Summary of complexity results.

Decision procedure. We present a novel procedure based
on a symbolic semantics and constraint solving. Unlike most
other work, our procedure decides equivalences exactly, i.e.
without approximations. Moreover, it does not restrict the
class of processes (except for replication), nor the use of
else branches, and is correct for any cryptographic primitives
that can be modelled by a subterm convergent destructor
rewrite system (see section 2). The design of the procedure
did greatly benefit from our complexity study, and was
developed in order to obtain tight complexity upper bounds.

Tool implementation. We implemented our procedure for
trace equivalence in a new tool, DEEPSEC. While still a pro-
totype, DEEPSEC was carefully engineered. The tool output
is available in pretty printed html format and allows to step
through an attack, if any is found. DEEPSEC can also dis-
tribute the computation, thus exploiting multicore architec-
tures or clusters of computers to their fullest. Finally, we in-
tegrated several classical optimisations for trace-equivalence
analysis, e.g. partial order reductions (POR) [12]. This has
appeared to reduce the search space dramatically, making
the tool scale well in practice despite the high theoretical
complexity (coNEXP).

Through extensive benchmarks, we compare DEEPSEC

to other tools limited to a bounded number of protocol ses-
sions: APTE, SPEC, AKISS and SAT-EQUIV. Our tool is sig-

1. These results are detailed in the full version [1].
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nificantly more efficient—by several orders of magnitude—
than APTE, SPEC and AKISS, even though DEEPSEC covers
a strictly larger class of protocols than APTE and SPEC. Be-
sides, its performance are comparable to SAT-EQUIV, which
still outperforms DEEPSEC when the number of parallel pro-
cesses significantly increase. This gap in performance seems
unavoidable as DEEPSEC operates on a much larger class of
protocols (more primitives, else branches, no limitation to
simple processes, termination guaranteed).

Part of the benchmarks consists of classical authentica-
tion protocols and focuses on demonstrating scalability of
the tool when augmenting the number of parallel protocol
sessions. The other examples include more complex proto-
cols, such as Abadi and Fournet’s anonymous authentication
protocol [5], the protocols implemented in the European
passport [37], the AKA protocol used in 3G mobile tele-
phony, as well as the Prêt-à-Voter [43] and the Helios [7]
e-voting protocols.

Additional details and proofs are given in the companion
technical report [2]. Implementation-related files are freely
available at [1].

2. Model

First, we present our model of cryptographic protocols
which is mostly inspired from the applied pi calculus [4].

2.1. Messages and cryptographic primitives

Data as terms. Cryptographic operations are modelled by
symbols of fixed arity F = {f/n, g/m, . . .} forming a finite
signature. We partition F in two sets:

• constructors Fc: model cryptographic constructions
(encryption, signature, hash, . . . );

• destructors Fd: model inversions or operations that
may fail depending on the structure of their argument
(decryption, signature verification, . . . ).

Example 1. The signature F = Fc∪Fd defined below mod-
els standard cryptographic primitives: symmetric encryption
(senc and sdec), asymmetric encryption (pk, aenc and adec),
concatenation (〈 〉, proj1 and proj2) and hash (h).

Fc = {senc/2, aenc/2, pk/1, 〈·, ·〉/2, h/1}
Fd = {sdec/2, adec/2, proj1/1, proj2/1}

Function symbols are naturally intended to be applied
to some arguments. Atomic data—typically communicating
channels, randomness, keys—are modelled by an infinite
set of so-called names N = {a, b, c, . . .}. This provides an
abstraction of low-level data whose structure is not relevant
at the protocol level. To separate public from secret data,
we partition names into two sets N = Npub � Nprv. As
usual we define terms as the smallest set containing N
and closed under application of symbols to other terms.
E.g. if k ∈ Nprv models a decryption key, aenc(m, pk(k))
models the ciphertext obtained after encrypting m with the
corresponding public key. The set of terms built from atoms
in N by applying functions of F is denoted by T (F,N).

Behaviours as rewriting. The behaviour of symbols is
modelled by rewriting. For that, we assume an infinite set of
variables X = {x, y, z, . . .} whose elements may be used as
atoms in terms. A substitution σ is a mapping from variables
to terms, homomorphically extended to a mapping from
terms to terms. Postfix convention tσ instead of σ(t) and
set notation σ = {x1 	→ σ(x1); . . . ;xn 	→ σ(xn)} are the
norm; in particular we use set operators ∪ and ⊆ for domain
extension and the extension ordering, respectively.

A rewriting system R is then a finite binary relation
on terms. A pair (�, r) ∈ R is called a rewriting rule,
written � → r and assumed to verify � ∈ T (F ,X ) and
r ∈ T (Fc, vars(�)). By extension, we also use notation
t → s (“ t rewrites to s ”) when t and s are related by
the closure of R under substitution and term context. The
reflexive transitive closure of this relation is written →�.

Example 2. This rewriting system defines the behaviors of
the previously-introduced primitives:

sdec(senc(x, y), y)→ x proj1(〈x, y〉)→ x

adec(aenc(x, pk(y)), y)→ x proj2(〈x, y〉)→ y

The absence of rules for hash h models one-wayness.

Rewriting is however Turing-complete and restrictions
are needed to get decidability results. The first natural
limitation is to consider only convergent systems—ensuring
existence and uniqueness of an irreducible term reachable
from t, called its normal form and written t↓. Most of the
time, we will also work under the assumptions that R is

• subterm, meaning that for all � → r ∈ R, r is either
a strict subterm of � or a ground term—that is a term
without variables—in normal form;

• destructor, meaning that for all � → r ∈ R, � is
of the form g(u1, . . . , un) where g ∈ Fd and ui
is a constructor term—that is a term whose function
symbols are all constructors.

Subterm convergent rewriting systems has been intro-
duced in [3] and is classical in protocol analysis. It indeed
includes a lot of standard primitives (see previous examples).

Sizes. The size of term t—its number of symbols—is written
|t|. Some of our complexity results are also stated w.r.t.
a succinct representation of terms as DAGs with maximal
sharing—which may be exponentially more concise. If st(t)
is the set of subterms of t, |t|dag = |st(t)| is thus the size
of its DAG representation. This definition is easily lifted to
sets and sequences of terms (with common sharing).

2.2. Processes

We model protocols as parallel processes that may ex-
change messages, modelled as terms. Plain processes are
defined by the following grammar

P,Q := 0 null
P | Q parallel
if u = v thenP elseQ conditional
u〈v〉.P output
u(x).P input
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where u, v are terms and x ∈ X . Sending message v on
channel u is performed by u〈v〉, and receiving on channel
u—and binding the input to variable x—is performed by
u(x). The main difference with the calculus of [4] is the ab-
sence of replication. This restriction does not make protocol
analysis trivially decidable. Indeed, although processes are
finite, we study them in presence of an active, unbounded
attacker. This will become clear in section 2.3 with the
semantics of the calculus.

Example 3. Consider the protocol for private authentica-
tion [5], described informally using Alice-and-Bob notation:

X → B : aenc(〈NX , pk(skX)〉, pk(skB))
B → X : aenc(〈NX , 〈NB , pk(skB)〉〉, pk(skA)) if X=A

aenc(NB , pk(skB)) otherwise

B accepts authentication requests from A but not from other
parties. However, the protocol should hide to any outsider
that B is willing to engage with A—which explains the
decoy message sent when B is contacted by a different party.
The role of B can be specified in the applied pi calculus,
writing t = adec(x, skB), t1 = proj1(t) and t2 = proj2(t):

B = c(x).
if t2 = pk(skA) then

c〈aenc(〈t1, 〈NB , pk(skB)〉〉, pk(skA))〉
else c〈aenc(NB , pk(skB))〉

where skA, skB , NA, NB ∈ Nprv, c ∈ Npub. Anonymity can
be stated as equivalence of B and B′ = B{skA 	→ skA′},
assuming that the attacker has access to all public keys in-
volved. Indeed, this means that an attacker sees no difference
between B willing to engage with A or A′.

Inputs bind variables and define their scope: a process
is said to be closed if it does not have free variables, i.e. all
variables are bound. We require that all variables are bound
at most once. A plain process P is positive when each of its
conditionals is of the form if u = v then Q else 0 (written
if u = v then Q for short). We denote by |P |dag the size
of the process—syntax tree plus the dag size of the terms.

2.3. Concrete semantics

Attacker knowledge. Semantics of processes defines their
behaviours in presence of an active attacker, capable of

• eavesdropping messages, i.e., the attacker can learn
outputs sent on public channels;

• performing deductions, i.e., computations on mes-
sages. For example, after observing an encryption
aenc(m, pk(k)) and, later on, the decryption key k, he
can deduce m;

• controlling public channels: the attacker can remove
messages, as well as insert messages deducible from
previous observations.

Attacker’s observations are seen as sequences of terms
that can be used by reference. For that, we refine variables
as X = X 1 � AX , variables of AX = {ax1, ax2, . . .}
(axioms) acting as pointers. A term ξ ∈ T (F ,Npub∪AX ) is

called a recipe: typically, an attacker observing sequentially
aenc(m, pk(k)) and k can use recipe ξ = adec(ax1, ax2) to
construct m. Variables of X 1 (first-order variables) stick to
the initial role of variables, namely being used as binders
for protocol inputs. A term t ∈ T (F ,N ∪ X 1) is therefore
called a protocol term.

All of this finally leads to the notion of extended pro-
cesses, representing a set of plain processes executed in
parallel, together with the knowledge aggregated by an
attacker interacting with the protocol:

Definition 1. An extended process is a pair A = (P,Φ) s.t.

• P is a multiset of closed plain processes (we use a
double-bracket notation {{·}} for multisets).

• Φ = {ax1 	→ u1, . . . , axn 	→ un}, called the frame and
written Φ(A), is a substitution from axioms to ground
constructor terms.

Φ embodies the attacker’s knowledge: typically ξΦ↓ is
the result obtained from the recipe ξ w.r.t. the attacker’s
observations recorded in Φ.

Operational semantics. We operate under the assumption
that protocols only exchange meaningful data. For example,
the decryption of a term that is not a ciphertext is supposed
to fail and shall not be input nor output. While this assump-
tion is realistic for authenticated encryption, it may not hold
for schemes with weaker security guarantees. We model this
using the following notion of message:

Definition 2. A protocol term t is a message when its
destructors operate smoothly, i.e. when u↓ is a constructor
term for all subterms u of t. We define the predicate Msg(·)
such that Msg(t) iff the term t is a message.

The semantics will ensure that the network only circu-
lates messages. In practice, the semantics takes the form of
a transition relation between extended processes labelled by
so-called actions:

1. input actions ξ(ζ), where ξ and ζ are recipes, model
an input from the attacker of a message (crafted from
recipe ζ) on some channel (known through recipe ξ);

2. output actions ξ〈axn〉, where ξ is a recipe, model an
output on a channel known by the attacker (using recipe
ξ), recorded into the frame (at pointer axn ∈ AX ).

We call A the alphabet of actions, transitions A
a−→c B

being labelled by a the empty word ε or a letter of A.

More generally, given a word w ∈ A∗, we write A
w
=⇒c B

when A
a1−→c . . .

an−−→c B with w = a1 . . . an. The transition
relation is defined by the rules given in fig. 2.

Observe that the finite, pure π-calculus [39] is retrieved
by imposing F = ∅ and R = ∅. This restriction makes
the transition relation finitely branching up to renaming—
which is not the case in general because the attacker can
input infinitely-many terms to protocols using rule (IN).

Example 4. We introduce a toy example which will serve
as a pedagogical running example. It was designed for its
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(P ∪ {{0}},Φ) ε−→c (P,Φ) (NULL)

(P ∪ {{if u = v thenP elseQ}},Φ) ε−→c (P ∪ {{P}},Φ)
if Msg(u), Msg(v) and u↓ = v↓ (THEN)

(P ∪ {{if u = v thenP elseQ}},Φ) ε−→c (P ∪ {{Q}},Φ)
if either ¬Msg(u), ¬Msg(v) or u↓ �= v↓ (ELSE)

(P ∪ {{u〈t〉.P, v(x).Q}},Φ) ε−→c (P ∪ {{P,Q{x 	→ t}}},Φ) (COMM)
if Msg(u), Msg(v), Msg(t) and u↓ = v↓

(P ∪ {{P | Q}},Φ) ε−→c (P ∪ {{P,Q}},Φ) (PAR)

(P ∪ {{u(x).P}},Φ) ξ(ζ)−−→c (P ∪ {{P{x 	→ ζΦ↓}}},Φ) (IN)
if ξ, ζ ∈ T (F ,Npub ∪ dom(Φ)), Msg(u), Msg(ξΦ), Msg(ζΦ) and ξΦ↓ = u↓

(P ∪ {{u〈t〉.P}},Φ) ξ〈axn〉−−−−→c (P ∪ {{P}},Φ ∪ {axn 	→ t↓}) (OUT)
if ξ ∈ T (F ,Npub ∪ dom(Φ)), Msg(u), Msg(ξΦ), Msg(t), ξΦ↓ = u↓, and n = |Φ|+ 1

Figure 2: Semantics of the calculus (w.r.t. an implicit rewrite system R)

simplicity and capacity to illustrate the different notions
defined in this paper. If b ∈ {0, 1} ⊆ Npub and c ∈ Npub:

P b � c(x). if proj2(x) = b then c〈0〉 else c〈proj2(x)〉
Q � c(x). c〈proj2(x)〉

Process Q forwards the second component of a term re-
ceived through a public channel c. P 0 and P 1 have a similar
behaviour as Q except that on input values 〈t, 1〉, P 1 outputs
0 rather than 1. We illustrate the semantics on P 1, e.g. by
forwarding a hash h(n), n ∈ Npub, sent by the attacker:

({{P 1}}, ∅)
c(〈0,h(n)〉)−−−−−−−→c

({{
if proj2(〈0, h(n)〉) = 1 then c〈0〉
else c〈proj2(〈0, h(n)〉)〉

}}
, ∅
)

c〈ax1〉
===⇒c (∅, {ax1 	→ h(n)})

2.4. Equivalences

Process equivalences express indistinguishability be-
tween two situations and can be used to formalise many
interesting security properties, as explained previously.

2.4.1. Static equivalence. Static equivalence expresses that
the knowledge obtained in two different situations does not
permit the attacker to distinguish them. This notion has been
extensively studied in the literature (see e.g. [3]).

Definition 3. Frames Φ and Φ′ are statically equivalent,
written Φ ∼ Φ′, when dom(Φ) = dom(Φ′) and for all
ground recipes ξ, ζ such that axioms(ξ, ζ) ⊆ dom(Φ):

1) Msg(ξΦ) if and only if Msg(ξΦ′)
2) if Msg(ξΦ) and Msg(ζΦ), then ξΦ↓R = ζΦ↓R if and

only if ξΦ′↓R = ζΦ′↓R.

This definition is easily lifted to extended processes by
writing A ∼ B instead of Φ(A) ∼ Φ(B).

Intuitively, this definition states that the observations
recorded in Φ and Φ′ cannot be distinguished by observing
destructor failures or equality tests.

Example 5. The aim of encryption schemes is to make
messages unintelligible to any agent not possessing the
decryption key. This is modelled by static equivalence of

Φ = {ax1 	→ senc(m, k)} and Φ′ = {ax1 	→ k′}
where m ∈ Npub and k, k′ ∈ Nprv. This means that the
attacker cannot distinguish between an encrypted message
(with unknown key) and an arbitrary, private nonce. Natu-
rally this does not hold anymore once the decryption key is
revealed, and indeed

Φ0 ∪ {ax2 	→ k} �∼ Φ1 ∪ {ax2 	→ k}
(witnessed by recipes ξ = sdec(ax1, ax2) and ζ = m).

2.4.2. Dynamic equivalences. Dynamic extensions of static
equivalence consider distinguishability for an attacker inter-
acting with protocols actively. Two classical equivalences
are trace equivalence and labelled bisimilarity:

Definition 4. If A and B are extended processes, we write

A �t B when for all A
tr
=⇒c (P,Φ), there exists (P ′,Φ′)

such that B
tr
=⇒c (P

′,Φ′) and Φ ∼ Φ′. A and B are trace
equivalent, denoted A ≈t B, when A �t B and B �t A.

Definition 5. Labelled bisimilarity ≈� is the largest symmet-

ric relation containing ∼ such that A ≈� B and A
α−→c A

′

entails existence of B′ such that B
α
=⇒c B

′ and A′ ≈� B′.
These two equivalences are well established as means

to express security properties [6], [4].

Example 6. The statement that P 0 and Q have same be-
havior is expressed by (P 0, ∅) ≈� (Q, ∅). On the contrary
(P 1, ∅) �≈t (Q, ∅) since the trace

(P 1, ∅) c(〈1,1〉). c〈ax1〉
=========⇒c (0, {ax1 	→ 0})

cannot be matched in (Q, ∅).

2.5. Decision problems for equivalences

We can now define the decision problems associated to
these equivalences.
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Definition 6 (parameterised equivalence problem). We de-
fine the decision problem Equiv≈R,F , with ≈ ∈ {∼,≈t,≈�}:

CONSTANTS: A signature F , a rewrite system R
INPUTS: two extended processes A,B
QUESTION: A ≈ B

In [3], Equiv∼R,F is proven undecidable in general, but
PTIME if R is subterm convergent. However, it does not
take the size of |R| into account: all procedures proposed so
far [3], [27], [29] are actually exponential in |R| or |F|. We
argue that the size of R should be considered for complexity
analyses as it can be specified by the user in many automated
tools. We therefore focus on:

Definition 7 (general equivalence problem). We define the
decision problem Equiv≈ψ , with ≈ ∈ {∼,≈t,≈�} and a
predicate ψ(F ,R, A,B):

INPUTS: a signature F , a rewrite system R, extended
processes A,B such that ψ(F ,R, A,B) holds.
QUESTION: A ≈ B

The predicate ψ is necessary to avoid trivial undecidabil-
ity and will be used for instance to restrict R to subterm
convergent theories. For the sake of convenience, the pred-
icate ψ will be specified in prose in theorem statements.

Remark 2.1. Input representation may influence complexity.
We adress the strongest configurations: lower bounds in the
tree representation of terms, upper bounds in DAG.

3. Complexity lower bounds

3.1. Static equivalence

We prove that, in our setting where the rewrite system
is part of the input, static equivalence is coNP hard. By
reduction from SAT, let ϕ =

∧p
i=1 Ci a boolean formula in

CNF with n variables x1, . . . , xn and p clauses C1, . . . , Cp.
Then we consider the constructors Fc = {0, 1, f/2, g/2}
and destructor Fd = {eval/n} which are equipped with the
rewrite system R defined by the following p+ 1 rules:

eval(f(x1, y), . . . , f(xn, y))→ 0

eval(g(ti1, y), . . . , g(t
i
n, y))→ 0

where 1 � i � p and

tij =

⎧⎨
⎩

xj if xj does not appear in Ci
0 if xj appears positively in Ci
1 if xj appears negatively in Ci

This assumes that no clause of ϕ contains both a litteral
and its negation, but such clauses can be removed by a
LOGSPACE preprocessing. Intuitively, if t1, . . . , tn ∈ {0, 1},
eval(g(t1, y), . . . , g(tn, y)) is a message and reduces to 0
iff the valuation {x1 	→ t1, . . . , xn 	→ tn} falsifies ϕ.
Then it sufficies to observe that, for some k ∈ Nprv,
{f(0, k), f(1, k)} ∼ {g(0, k), g(1, k)} iff ϕ is unsatisfiable.

Theorem 1. Equiv∼ is coNP hard for subterm destructor
rewrite systems.

3.2. Tools for reductions

We introduce tools for smoothing out lower bound
proofs. They are presented as extensions of the syntax and
semantics but can be encoded within the original calculus.
These encodings, provided in the appendix, preserve posi-
tiveness of processes and are of polynomial size.

Non-deterministic choice. One first, classical feature is
non-deterministic choice P +Q defined by semantics

(P ∪ {{P +Q}},Φ) ε−→c (P ∪ {{R}},Φ) if R ∈ {P,Q}
Boolean guess. We assume that Fc contains two constant
symbols 0 and 1 for booleans. One derivative of the non-
deterministic choice is the boolean guess Choose(x).P de-
fined by two rules, for b ∈ {0, 1}:

Choose(x).P
ε−→c P{x 	→ b}

Boolean circuits. Logical gates are boolean functions with
at most two inputs and two (identical) outputs. Typical
examples are 0, 1, ¬, ∧, ∨ or =. A boolean circuit is an
acyclic graph of gates, each input (resp. output) of a gate
being either isolated or connected to a unique output (resp.
input) of another gate. Such a circuit Γ with m isolated
inputs and n isolated outputs therefore models a function
Γ : Bm → B

n (where B = {0, 1}). We integrate circuits
into the calculus using syntax

x1, · · · , xn ← Γ(b1, · · · , bm).P
where x1, . . . , xn are variables and b1, · · · , bm terms, with

(P ∪ {{
x← Γ(
b).P}},Φ) ε−→c (P ∪ {{P{
x 	→ Γ(
b↓)}}},Φ)
if Msg(
b) and 
b↓ ⊆ B

3.3. coNEXP hardness of dynamic equivalences

Let us consider a circuit Γ : {0, 1}m+2 → {0, 1}n+1.
Using binary representation of integers, Γ can be interpreted
as a function �Γ� : �0, 2m−1�×�1, 3� → {0, 1}×�0, 2n−1�.
This way, Γ encodes a CNF formula �Γ�ϕ with 2n variables

x = x0, · · · , x2n−1 and 2m clauses:

�Γ�ϕ(
x) =

2m−1∧
i=0

�1i ∨ �2i ∨ �3i

where

{
�ji = xk if �Γ�(i, j) = (0, k)

�ji = ¬xk if �Γ�(i, j) = (1, k)

Rephrasing, �Γ�(i, j) returns a sign bit and the jth

variable of the ith clause of �Γ�ϕ.

Lemma 2 (SUCCINCT 3SAT [40]). The following problem
is NEXP-complete:

INPUT: A circuit Γ with m+2 inputs and n+1 outputs.
QUESTION: Is the 3SAT-formula �Γ�ϕ satisfiable?

Given an instance Γ of this problem, we design F , R
subterm destructor and A and B positive processes such that
A �≈t B iff A �≈� B iff �Γ�ϕ is satisfiable.
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Term algebra. Terms are built over the following signature
F = Fc � Fd and rewrite system R:

Fc � {0 , 1, Node/2, h/2, hN/2, hB/2}
Fd � {π/2, TestN/1, TestB/1}
π(Node(x, y), 0) → x π(Node(x, y), 1) → y
TestB(hB(0, z)) → 1 TestB(hB(1, z)) → 1

TestN(hN(Node(x, y), z))→ 1

This models argument-testing mechanisms and a binary-
tree datatype. We use syntactic sugar for recursive extrac-
tions: if � ∈ T (F ,N∪X 1)� is a sequence of terms, the nota-
tion t|� is inductively defined by t|ε � t and t|b·� � π(t, b)|�.
Reduction. We want to design processes A and B whose
equivalence rephrases to �Γ�ϕ being falsified by all valua-
tions of its variables. We manage this using two processes:

1) CheckTree(x) checks whether x is a correct encoding
of a valuation, that is, whether x is a complete binary
tree of height n whose leaves are booleans;

2) CheckSat(x) checks whether the valuation encoded by
x falsifies �Γ�ϕ.

A and B are defined in fig. 3 and their equivalence intu-
itively means: “for all terms x, either x is not an encoding
of a valuation or x falsifies a clause of �Γ�ϕ”. This is for-
malised by two lemmas, where P0 = c〈h(0, s)〉.c〈h(1, s)〉:
Lemma 3. Let x be a message which is not complete binary
tree of height n with boolean leaves. Then there exists a
reduction CheckTree(x)

ε
=⇒c C such that C ≈� ({{P0}}, ∅).

Lemma 4. Let x be a complete binary tree of height n
whose leaves are booleans, and valx the valuation map-
ping the variable number i =

∑m
k=1 pk2

k−1 of �Γ�ϕ to
x|p1···pm ∈ B. If valx does not satisfy �Γ�ϕ, there exists a
reduction CheckSat(x)

ε
=⇒c C such that C ≈� ({{P0}}, ∅).

These two lemmas are the key ingredients needed to
prove that �Γ�ϕ is satisfiable iff A �≈t B iff A �≈� B. Hence:

Theorem 5. Equiv≈t and Equiv≈� are coNEXP-hard for
subterm destructor rewrite systems and positive processes.

4. A symbolic setting

The main difficulty to decidability is the attacker’s abil-
ity to provide inputs with messages of its choice. One
traditionally relies on symbolic techniques, only recording
logical constraints characterising concrete actions. This is
the main ingredient of our decision procedure (section 5).

4.1. Constraints as formulas

We formalise trace constraints by a first-order logic
relying on two kinds of atomic formulas:

X �? u (deduction fact) and u =? v (equation)

where u, v are constructor protocol terms and X ∈ X 2 is a
new type of variable (second-order variable). They are used

to model deductive capabilities: X �? u intuitively means
that the attacker is able to deduce u. Equations u =? v and
their negations, disequations u �=? v, are typically imposed
by conditionals (if u = v then . . . else . . .). A first-order
formula over such atoms is simply called a formula. We
see sets of formulas as conjunctions of formulas and vice
versa. Moreover, a substitution {x 	→ t} is also interpreted
as x =? t.

A formula is to be interpreted through the valuation of
axioms, second-order variables and first-order variables. A
valuation of a formula is therefore a triple (Φ,Σ, σ) with

Φ : AX → T (F ,N ) (frame)

Σ : X 2 → T (F ,Npub ∪ AX ) (second-order solution)

σ : X 1 → T (Fc,N ) (first-order solution)

and the satisfiability relation |= is defined as follows:

(Φ,Σ, σ) |= (X �? u) iff Msg(XΣΦ) and XΣΦ↓ = uσ↓
(Φ,Σ, σ) |= (u =? v) iff uσ = vσ

Additionally, we use a form of bookkeeping to record
which knowledge is available to the attacker when perform-
ing a deduction X �? u. For that we decompose X 2 into

X 2 =
⊎
n∈N X 2

:n X 2
n =

⋃n
i=0 X 2

:i

Variables X 2
n points to recipes that only use the first n

protocol outputs. Formally speaking, this means that for all
Σ we assume img(Σ|X 2

n
) ⊆ T (F ,Npub ∪ {axi}ni=1).

4.2. Semantics with symbolic inputs

In a nutshell, we abstract inputs by variables constrained
by formulas. They are collected into constraint systems:

Definition 8. A constraint system is a tuple C = (Φ,D,E1):

• Φ = Φ(C) is a frame of constructor protocol terms (not
necessarily closed);

• D = D(C) is a set of deduction facts X �? t with
X ∈ X 2

|Φ| and t a constructor protocol term;

• E1 = E1(C) is a set of formulas each of the form

u =? v or ∀y1. . . . .∀yk.
∨p
j=1 uj �=? vj

where uj , vj , u, v are constructor protocol terms and
y1, . . . , yk ∈ X 1. The restriction of E1 to its equalities
is written E1|=.

We call C∅ = (∅, ∅, ∅) the empty constraint system.

Intuitively, Φ is a frame (with symbolic inputs), D
collects the deductions an attacker has to perform, and
E1 gathers the (dis)equations of the trace. The form of
disequations comes from the requirements that terms are
messages in the concrete semantics. For example, consider

if proj1(x) = y thenP elseQ

The positive and the negative branches of the test will trigger

x =? 〈y, x′〉 and ∀x′. x �=? 〈y, x′〉
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A

c(x)

+

CheckSat(x) CheckTree(x)

B

c(x)

+

CheckSat(x) CheckTree(x)c〈h(0, s)〉

c〈h(1, s)〉

CheckSat(x)

Choose(p1, . . . , pm)

b1, �1 ← Γ(
p, 0, 1)
b2, �2 ← Γ(
p, 1, 0)
b3, �3 ← Γ(
p, 1, 1)

v ←

⎛
⎝ b1 = x|�1 ∨

b2 = x|�2 ∨
b3 = x|�3

⎞
⎠

c〈h(v, s)〉

c〈h(1, s)〉

CheckTree(x)

+

∑n−1
i=0

Choose(p1, . . . , pi)

c〈hN(x|
p, s)〉

c〈h(1, s)〉

Choose(p1, . . . , pn)

c〈hB(x|
p, s)〉

c〈h(1, s)〉

Figure 3: Definition of the extended processes A and B

Notice in particular that x′ is implicitly quantified exis-
tentially in the first formula. As expected, such branching
constraints are closely related to a notion of unification:

Definition 9. Let T = {si, ti}i∈I be terms. A unifier of
E = {si =? ti}i∈I modulo R is a substitution σ such that

1) dom(σ) ⊆ vars(T );

2) for all i ∈ I , siσ↓ = tiσ↓, Msg(siσ) and Msg(tiσ).

A set S of unifiers modulo R is said complete when,
for all unifiers θ of E, there exist substitutions σ ∈ S and
τ such that θ|vars(T )↓ = (στ)↓.

We denote by mguR(E) a complete set of unifiers of E,
or simply mguR(s, t) for singletons E = {s =? t}. They
are known computable for (destructor) subterm convergent
rewrite systems using narrowing. This notion is reminiscent
to the classical, syntactic most general unifier mgu(E)
(known computable and unique up to variable renaming).

Example 7. Sticking to our running example, if a ∈ N

mguR(a, sdec(proj1(x), y)) = {{x 	→ 〈senc(a, y), z〉}}

However, when unifying t = proj1(x) with itself, as destruc-
tors shall not fail, we do not get the identity substitution but

mguR(t, t) = {{x 	→ 〈y, z〉}}

We now have all ingredients to specify the symbolic
semantics. A symbolic process is a pair (P, C), P multiset
of plain processes, C constraint system. Like concrete pro-

cesses, their semantics is given by a transition relation
a−→s

where a is either ε or a symbolic action a ∈ As with

As � {Y (X), Y 〈axn〉 | X,Y ∈ X 2, n ∈ N}

Again
a−→s is extended to a closure

w
=⇒s where w is a word

of symbolic actions. The most important rules defining
a−→s

are given in fig. 4 (remaining ones in the appendix). The
execution tree of running example P b is given in fig. 5.

4.3. Link with concrete semantics

Each symbolic trace abstracts several concrete traces.
The possible concretisations of a symbolic trace are there-
fore the concrete traces compatible with the constraints
of the symbolic process. We model this by the notion of
solution of a constraint system:

Definition 10. We say that (Σ, σ) is a solution of a con-
straint system C = (Φ,D,E1) when dom(Σ) = vars(D) ∩
X 2, dom(σ) = vars(D) ∩ X 1 and

(Φσ,Σ, σ) |= D ∧ E1

The substitution σ (resp. Σ) is called the first-order (resp.
second-order) solution of C and the set of solutions of C is
denoted Sol (C). C is said satisfiable when Sol (C) �= ∅.

In practice, σ is entirely determined by Σ. Indeed
an invariant—called origination property—verified by C∅
and preserved by symbolic transitions is that all variables
x ∈ X 1 of Φ(C) have been priorly determined by an input.
Formally, for all axk ∈ dom(Φ(C)) and x ∈ vars(axkΦ(C)):

∃X ∈ X 2
k−1, (X �? x) ∈ D

Using the notion of solution, we can then express the
link between the two semantics: all symbolic traces are con-
cretisable (soundness) and all concrete traces are represented
by a symbolic trace (completeness).

Lemma 6. Let (Ps, C) be a symbolic process. We have

Soundness : if (Ps, C) trs=⇒s (P ′s, C′) and (Σ′, σ′) ∈ Sol (C′),
then (Psσ

′,Φ(C)σ′↓) trsΣ
′

==⇒c (P ′sσ′,Φ(C′)σ′↓)
Completeness : if (Σ, σ) ∈ Sol (C) and (Psσ,Φ(C)σ) trc=⇒c

(P ′c,Φ′), then there exist (Ps, C) trs=⇒s (P ′s, C′) and
(Σ′, σ′) ∈ Sol (C′) such that Σ ⊆ Σ′, P ′c = P ′sσ′,
trc = trsΣ

′ and Φ′ = Φ(C′)σ′↓
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(P ∪ {{if u = v thenQ1 elseQ2}}, (Φ,D,E1)) ε−→s (P ∪ {{Q1}}, (Φ,D,E1 ∧ σ)) (S-THEN)

if σ ∈ mguR(uμ↓ =? vμ↓)
(P ∪ {{u(x).Q}}, (Φ,D,E1)) Y (X)−−−→s (P ∪ {{Q}}, (Φ,D ∧X �? x ∧ Y �? y,E1 ∧ σ)) (S-IN)

if σ ∈ mguR(y =
? uμ↓) and X,Y ∈ X 2

:|Φ|

(P ∪ {{u〈t〉.Q}}, (Φ,D,E1)) Y 〈axn〉−−−−→s (P ∪ {{Q}}, (Φ ∪ {axn 	→ tσ↓},D ∧ Y �? y,E1 ∧ σ)) (S-OUT)

if σ ∈ mguR(y =
? uμ↓, tμ↓ =? tμ↓), y is fresh, Y ∈ X 2

:n and n = |Φ|+ 1

Figure 4: Some rules of the symbolic semantics (where μ = mgu(E1|=))

Pb,0 = {{P b}}
Φb,0 = ∅
Db,0 = ∅
E1
b,0 = ∅

Pb,1 =

{{
if proj2(x) = b then c〈0〉
else c〈proj2(x)〉

}}

Φb,1 = ∅
Db,1 = X 
? x ∧ Y 
? y

E1
b,1 = y =? c

Pb,2 = {{c〈0〉}}
Φb,2 = ∅
Db,2 = Db,1

E1
b,2 = E1

b,1 ∧ x =? 〈x1, b〉

Pb,4 = {{0}}
Φb,4 = {ax1 �→ 0}
Db,4 = Db,2 ∧ Z 
? z

E1
b,4 = E1

b,2 ∧ z =? c

Z〈ax1〉

ε

Pb,3 = {{c〈proj2(x)〉}}
Φb,3 = ∅
Db,3 = Db,1

E1
b,3 = E1

b,1 ∧ ∀x1.x �=? 〈x1, b〉

Pb,5 = {{0}}
Φb,5 = {ax1 �→ x3}
Db,5 = Db,3 ∧ Z 
? z

E1
b,5 = E1

b,3 ∧ z =? c

∧ x =? 〈x2, x3〉

Z〈ax1〉

ε

Y (X)

Figure 5: Symbolic execution tree of P b, b ∈ {0, 1}

5. Complexity upper bounds

As non-equivalence is not a simple structural property,
symbolic trees alone are not sufficient to decide dynamic
equivalences. This is the motivation of our novel proof tool,
partition trees. Our proof scenario is the following:

1) we show that equivalence of two processes rephrases
to a simple condition on their partition tree T ;

2) we construct T so that its nodes—which contain sym-
bolic processes—have solutions of exponential size.

1 and 2 justify that, whenever two processes are not equiv-
alent, there exists a concrete witness of non-equivalence
of exponential size. This naturally leads to a coNEXP
procedure for trace equivalence and labelled bisimilarity.

5.1. Most general solutions

Similarly to mgu’s, we define mgs’—most general
solutions—of a constraint system, acting as solutions of
minimal size. For that, if π is a predicate on second-order
substitutions stable under domain extension—meaning that
π(Σ) and Σ ⊆ Σ′ entails π(Σ′)—we consider the set of
solutions of a constraint system C satisfying π:

Solπ(C) = {(Σ, σ) ∈ Sol (C) | π(Σ)}

Definition 11. The most general solutions of C satisfying
π, denoted mgsπ(C), is the set of substitutions Σ such that:

1) img(Σ) ⊆ T (F ,Npub ∪ AX ∪ X 2) and dom(Σ) ⊆
vars(C) ∩ X 2;

2) instantiating by fresh public names yields a solution:

for all bijective mapping Σ′ from the second-order vari-
ables of vars(C,Σ) � dom(Σ) to fresh public names,
there exists σ such that (ΣΣ′|vars(C), σ) ∈ Solπ(C)

3) all solutions are instances of a mgs:

for all (Σ, σ) ∈ Solπ(C), there exist Σ′ ∈ mgsπ(C)
and Σ′′ such that Σ = Σ′Σ′′|vars(C).

We suppose that all substitutions in mgsπ(C) are distinct
modulo renaming of variables.

This notion is very natural in that it follows in the
steps of the definition of mgu’s. The computation of mgs’ is
however more involved—it is in the same vein, though more
general than other work on constraint solving for security
protocols [14], [22]. The approach is twofold:

1) constraint systems C are extended, in particular with
a set of second-order constraints E2(C). This set is
completely analogous to E1 but gathers (dis)equalities
on second-order terms;

2) we use a (terminating) constraint-solving relation →
over extended constraint systems.

A dedicated notation ⊥ is used to denote a constraint
system without solution. mgs(C) is then obtained by taking
the second-order mgu’s of solved systems reachable from C:

mgs(C) =
{
mgu(E2(C′)|=)

∣∣∣∣ C →
� C′, C′ �= ⊥,

C′ irreducible

}

Because of lack of space we omit the description of this
constraint solving procedure. The details can be found in
the technical report [2] but are not necessary to understand
the overall decision procedure.

5.2. Partition tree

Partition trees are key to our decision procedure. Struc-
turally speaking, a partition tree is similar to a symbolic
execution tree where children of each node are refined
to guide the decision of dynamic equivalences. Typically
its nodes—so-called configurations—contain symbolic pro-
cesses sharing statically-equivalent solutions:
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Definition 12. A configuration is a triple (Γ, π, �) where Γ
is a set of symbolic processes, � ∈ As ∪ {ε} and π is a
predicate on second-order solutions. We also assume that,
for all (P, C) ∈ Γ:

1) Solπ(C) �= ∅ and |mgsπ(C)| = 1;
2) if (Σ, σ) ∈ Solπ(C) and (P ′, C′) ∈ Γ, then for some

σ′, (Σ, σ′) ∈ Solπ(C′) and Φ(C)σ ∼ Φ(C′)σ′.
When a node n of a partition tree is labelled by (Γ, π, �)

we denote by Γ(n), π(n), and �(n) the corresponding ele-
ments of the configuration. Note an important consequence
of the definition: all constraint systems in Γ(n) have a
unique mgs (by point 1) and this mgs is common to all
of them (by point 2). We denote it mgs(n). The definition
of partition trees is then the following:

Definition 13. Let P1 and P2 be two closed plain processes.
A partition tree T of P1 and P2 is a finite tree whose nodes
are labelled by configurations. It also verifies, for all nodes
n and (P, C) ∈ Γ(n):

1) the initial processes are in the root:

if n is the root of the tree then �(n) = ε, π(n) = �
and Γ(n) contains ({{P1}}, C∅) and ({{P2}}, C∅);

2) nodes are closed under ε-transition:

if (P, C) ε
=⇒s (P ′, C′) and Solπ(n)(C′) �= ∅ then

(P ′, C′) ∈ Γ;

3) completeness of the partition tree:

if (P, C) �
=⇒s (P ′, C′) and (Σ, σ) ∈ Solπ(n)(C′) then

there exists n′ child of n s.t. (P ′, C′) ∈ Γ(n′), �(n′) = �
and (Σ′, σ) ∈ Solπ(n

′)(C′) for some Σ′;

Besides, if nc is a child node of n and (Pc, Cc) ∈ Γ(nc):
4) predicates are refined along branches: π(nc) ⊆ π(n);

5) soundness of the partition tree:

if (Σ, σ) ∈ Solπ(n)(C), (Σc, σc) ∈ Solπ(nc)(Cc) and
Σ ⊆ Σc, then Γ(nc) contains all (P ′, C′) such that

(P, C) �(nc)
===⇒s (P ′, C′) and Φ(Cc)σc ∼ Φ(C′)σ′ for

some σ′ such that (Σc, σ
′) ∈ Sol (C′).

We denote by PTree(P1, P2) the (infinite) set of all
partition trees of P1 and P2.

The nodes of T ∈ PTree(P1, P2) gather statically-
equivalent processes, while second-order predicates π de-
scribe the recipes the attacker has to use to reach a given
node. Symbolic traces are then embedded into the tree
as edges (item 3) and the edge relation encompasses all
symbolic traces leading to statically-equivalent processes
(item 5). Typically, trace equivalence of P1 and P2 will be
stated as a condition on the branches of T .

Example 8. Two partition trees are presented in fig. 6. They
use notations of fig. 5, Ebi = ({{Pb,i}}, (Φb,i,Db,i,E1b,i)),
EbQ = (c〈proj2(x)〉, Cb,1) and EfQ = ({{0}}, Cf ) with

Cf = (Φf ,Df ,E
1
f ) Df = {X �? x, Y �? y, Z �? z}

Φf = {ax1 	→ x2} E1f = {y =? c, z =? c, x = 〈x1, x2〉}

In this example, second-order predicates π are described
by second-order formulas ϕ2 (casting the satisfiability rela-
tion of our first-order logic in the natural way).

A criterion for equivalence. Each branch a partition tree
T intuitively encompasses equivalent trace scenarios. Typ-
ically, trace equivalence will be interpreted as a simple

condition on these branches. Assuming (P, C) a
=⇒s (Pc, Cc),

a ∈ As ∪ {ε}, we write (P, C), n a−→T (Pc, Cc), nc when
n, nc are nodes of T with nc is a child of n (if a ∈ As) or
n = nc (if a = ε), (P, C) ∈ Γ(n) and (Pc, Cc) ∈ Γ(nc). It

is extended into the closure
tr
=⇒T as usual. The core of our

procedure for trace equivalence is then stated by:

Lemma 7. Let P1, P2 be two ground plain processes, a
partition tree T ∈ PTree(P1, P2) and n0 the root of T .

({{P1}}, ∅) �t ({{P2}}, ∅)
iff

for all reductions ({{P1}}, C∅), n0 tr
=⇒T (P, C), n

there exists a reduction ({{P2}}, C∅), n0 tr
=⇒T (P ′, C′), n

Proof (sketch). We prove both directions separately.
(⇒) We proceed by contraposition. The key argument is
the following claim (), provable by induction on |tr|:

Let n node of T and (P1, C1), (P2, C2) ∈ Γ(n). If

• (P1, C1), n tr
=⇒T (P ′1, C′1), n′

• for all (P ′2, C′2), (P2, C2), n
tr
=⇒T� (P ′2, C′2), n′

• (Σ, σ1) ∈ Solπ(n
′)(C′1)

• (Σ, σ2) ∈ Sol (C2)
then we have Φ(C′1)σ1 �∼ Φ for all concrete reductions

(P2σ2,Φ(C2)σ2↓) trΣ′
==⇒c (P,Φ) s.t. Σ ⊆ Σ′.

Then, assume ({{P1}}, C∅), n0 tr
=⇒T (P, C), n and, for

all (P ′, C′), ({{P2}}, C∅), n0 tr
=⇒T� (P ′, C′), n. We know

by soundness of the symbolic semantics (theorem 6) that

({{P1}}, ∅) trΣ
==⇒c (Pσ,Φ(C)σ↓) for an arbitrary (Σ, σ) ∈

Solπ(n)(C). We thus obtain ({{P1}}, ∅) ��t ({{P2}}, ∅) by
() with P1 = {{P1}}, P2 = {{P2}} and C1 = C2 = C∅.
(⇐) Suppose ({{P1}}, ∅) trc=⇒c (P1,Φ1). We have to show

that there exists (P2,Φ2) s.t. ({{P2}}, ∅) trc=⇒c (P2,Φ2)
and Φ1 ∼ Φ2. By completeness of the symbolic se-
mantics (theorem 6), we have tr, n, (P, C) ∈ Γ(n) and
(Σ, σ) ∈ Sol (CA) s.t. Φ = Φ(C)σ↓, trc = trΣ and

({{P1}}, C∅), n0 tr
=⇒T (P, C), n

By hypothesis, there exists (P ′, C′) ∈ Γ(n) s.t.

({{P2}}, C∅), n0 tr
=⇒T (P ′, C′), n.By definition 12, there is

σ′ s.t. (Σ, σ′) ∈ Sol (C′) and Φ = Φ(C)σ↓ ∼ Φ(C′)σ′↓.
Therefore, we obtain by theorem 6, ({{P2}}, ∅) trΣ

==⇒c

(P ′σ′,Φ(C′)σ′↓). As trcΦ↓ = trΣΦ↓ and Φ ∼ Φ(C′)σ′↓
we have that trcΦ(C′)σ′↓ = trΣΦ(C′)σ′↓. Hence, we

conclude that ({{P2}}, ∅) trc=⇒c (P ′σ′,Φ(C′)σ′↓).

538

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 17,2024 at 16:38:30 UTC from IEEE Xplore.  Restrictions apply. 



Γ � ({{P 0}}, C∅), ({{Q}}, C∅)
� � ε

π � �

Γ � E0
1 , E0

2 , E0
Q

� � Y (X)

π � X =?〈X1, 0〉

Γ � E0
4 , Ef

Q

� � Z〈ax1〉
π � X =?〈X1, 0〉

Z〈ax1〉

Y (X)

Γ � E0
1 , E0

3 , E0
Q

� � Y (X)

π � ∀X1. X �=?〈X1, 0〉

Γ � E0
5 , Ef

Q

� � Z〈ax1〉
π � ∀X1. X �=?〈X1, 0〉

Z〈ax1〉

Y (X)

(a) Partition tree T0 ∈ PTree(P 0, Q)

Γ � ({{P 0}}, C∅), ({{Q}}, C∅)
� � ε

π � �

Γ � E0
1 , E0

2 , E0
Q

� � Y (X)

π � X =?〈X1, 0〉

Γ � E0
4

� � Z〈ax1〉
π � X =?〈X1, 0〉

Z〈ax1〉

Γ � Ef
Q

� � Z〈ax1〉
π � X =?〈X1, 0〉

Z〈ax1〉

Y (X)

Γ � E0
1 , E0

3 , E0
Q

� � Y (X)

π � ∀X1. X �=?〈X1, 0〉

Γ � E0
5 , Ef

Q

� � Z〈ax1〉
π � ∀X1. X �=?〈X1, 0〉

Z〈ax1〉

Y (X)

(b) Partition tree T1 ∈ PTree(P 1, Q)

Figure 6: Example of partition trees

This lemma justifies decidability of trace equivalence
given a partition tree—whose construction is outlined in the
next paragraph. We investigate complexity afterwards.

Remark 5.1. A similar result can be stated for labelled
bisimilarity, omitted here due to lack of space. In spirit,
we cope with the more complex notion of equivalence
by considering subtrees of T rather than simple nodes.
The procedure is outlined in the appendix and described
extensively in the technical report [2].

Generation of a partition tree. Let us describe, in broad
lines, the ingredients to compute T ∈ PTree(P1, P2).

1) First, constraint systems are extended with additional
components, e.g. logical constraints on second-order
terms or deduction facts modelling the attacker knowl-
edge, and symbolic semantics are lifted to extended con-
straint systems. The goal is to carry additional informa-
tion through the procedure to help with the generation of
the predicates π. Typically, initial processes Pi = {{Pi}},
i ∈ {1, 2}, are put under the form (Pi, C∅, Ce∅) with Ce∅
the empty extended constraint system.

2) We define simplification rules putting extended constraint
systems in a form where their satisfiability is trivial to
decide. Typically, the set Sroot of symbolic processes at
the root of the partition tree is obtained by saturating
{(P1, C∅, Ce∅), (P2, C∅, Ce∅)} under ε-transitions and using
simplification rules to get rid of unsatisfiable constraint
systems.

3) From the processes of the root, two sets of children
processes are then defined: Sin (processes ε-reachable
after an input transition) and Sout (processes ε-reachable
after an output transition). Sin and Sout may need to be
partitioned to satisfy the requirement that processes of
a same configuration are statically equivalent. This is
achieved by case-distinction rules, resulting into

Sin = S1in � . . . � Spin Sout = S1out � . . . � Sqout
This gives p + q children in the partition tree. For
example, the first child node is defined by

• Γ = {(P, C) | (P, C, Ce) ∈ S1in}

• � = Y (X)
• π(Σ) iff ∃σ. (Σ, σ) ∈ Sol (Ce) (where Ce is an

arbitrary extended constraint system appearing in S1in)

4) The construction is then kept up top-down: for all current
leaves of the partition tree for which visible actions are
still reachable, we generate the sets Sin and Sout and
partition them using case-distinction rules, giving birth
to new leaves. This process naturally terminates as the

transition relation
a−→s is strongly terminating.

We prove in the technical report [2] that this procedure
indeed generates a partition tree T ∈ PTree(P1, P2).

Final result. Using the procedure above to generate a
partition tree and lemma 7, we obtain a decision procedure
for trace equivalence. This procedure is actually the one im-
plemented in our automated tool, DEEPSEC. As mentionned
earlier, we also have a decision procedure for labelled bisim-
ilarity based on partition trees, outlined in the appendix.

However, in the end, we use a different argument to
obtain the theoretical complexity upper bound expected
(coNEXP). By careful analysis of the sizes of the extended
constraint systems carried out during the procedure and
by bounding the number of applications of case-distinction
rules, we can prove that the partition tree we generate has
solutions of exponential size. Hence:

Theorem 8. There exists p ∈ N such that for all conver-
gent subterm destructor rewriting system R, closed plain
processes P1 and P2 there exists a partition tree T ∈
PTree(P1, P2) such that for all nodes n in T , for all
Σ ∈ mgs(n), |Σ|dag < 2(|P1,P2,R|dag+|F|)p .

The combination of this theorem and lemma 7 straight-
forwardly justifies the existence, whenever P1 �≈t P2, of a
concrete trace of exponential size in P1 or P2 which is not
matched in the other process. This easily leads to a coNEXP
decision procedure for trace equivalence, using the fact that
static equivalence is NP—this result is easily obtained from
existing procedures, e.g. [3], [27], [29]. As we explained,
the procedure can be adapted for labelled bisimilarity. We
refer to appendix for an outline or the technical report [2]
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for details. Hence:

Theorem 9. Equiv≈t and Equiv≈� are coNEXP for subterm
convergent destructor rewriting systems.

6. Implementation
Building on the previous section we have implemented

a prototype for verifying trace equivalence in OCaml, called
DEEPSEC (DEciding Equivalence Properties in SECurity
protocols), publicly available at [1]. The tool’s specification
language extends the grammar presented in section 2.2: in
particular, we define a non-deterministic choice operator
P + Q, a let operator for variable assignment let x =
u in P else Q, as well as bounded replication !nP defining n
copies of P in parallel. These additional primitives are only
here for modelling convinience—and the native integration
allowed specific optimisations compared to encoding within
the initial calculus. The syntax and structure of DEEPSEC’s
input files are similar to the ones of the widely used
ProVerif [17] tool. We hope this will make it easier for new
users to discover and handle our tool.

Partial order reductions. The tool also implements partial
order reductions (POR), an optimisation technique for pro-
tocol analysis developed by Baelde et al. [12]. The basic idea
is to discard part of the state space that is redundant. This
optimisation is sound when processes are action determi-
nate, as defined in [12]. Assigning a different channel name
to each parallel process is a simple, syntactic way to ensure
this property although this is not always possible—typically
when looking at anonymity or unlinkability properties. In
practice, DEEPSEC automatically detects action-determinate
processes and activates the POR, which drastically reduces
the number of symbolic executions that need be considered.

Distributing the computation. Following the outline of
section 5, the main task of DEEPSEC is to generate a par-
tition tree. This task can be distributed: computing a given
node of the tree can be done independently of its sibling
nodes. However, some engineering is needed to avoid heavy
communication overhead due to task scheduling. Indeed,
the partition tree is indeed not a balanced tree and it is
impossible to know which branches will be larger than
others. Hence, in practice we do not directly compute and
return the children of each node in the most straightforward
manner, but proceed in two steps:

1) We start with a breadth-first generation of the partition
tree. The number of pending nodes will gradually grow
until, potentially, exceeding a threshold parameter n.

2) Each available core focuses on one of these nodes,
computes the whole subtree rooted by this node (depth-
first manner), and is then assigned a new node. If
at some point cores become idle—because all nodes
generated at step 1 are either completed or currently
assigned to an active core—we restart this two-step
procedure on incomplete nodes.

While parallelisation is also supported by the AKISS

tool, DEEPSEC goes one step further as it is also able to
distribute the computation through clusters of computers.

Benchmarks. We performed extensive benchmarks to com-
pare our tool against other tools that verify equivalence
properties for a bounded number of sessions: AKISS [19],
APTE [20], SAT-EQUIV [30] and SPEC [47]. Experiments
are carried out on Intel Xeon 3.10GHz cores, with 50Go
of memory. AKISS and DEEPSEC use 35 cores as they
support parallelisation—unlike the others which therefore
use a single core. The results are summarised in fig. 7.

We analysed strong secrecy, an equivalence based ver-
sion of secrecy, for several classical authentication protocols.
These benchmarks are mainly used for measuring scalability
when increasing the number of sessions (fig. 7 indicates
the number of roles in parallel, as depending on the exact
scenario a session may require more or less roles). The
DEEPSEC tool clearly outperforms AKISS, APTE, and SPEC.
The SAT-EQUIV tool becomes more efficient, when the
number of sessions significantly increases. However, the
Otway-Rees protocol cannot be analysed by SAT-EQUIV

as it does not satisfy their type compliance condition and
the Needham-Schroeder-Lowe protocol is out of its scope,
as SAT-EQUIV does not support asymmetric encryption.
DEEPSEC is even able to verify a higher number of roles
than those reported in fig. 7. Setting a timout of 12 hours,
e.g., the Denning-Sacco and Yahalom-Lowe protocols can
be verified for 52 roles in 11h09m, resp. 25 roles in 10h04m.

To illustrate the broad scope of the tool we analyse
unlinkability and anonymity properties for a number of other
protocols: Abadi and Fournet’s anonymous authentication
protocol [5], the AKA protocol deployed in 3G telephony
networks [10], the Passive Authentication and Basic Access
Control (BAC) protocols implemented in the European pass-
port [37], as well as the Prêt-à-Voter (PaV) [43] and several
variants of the mixnet based Helios [7] voting protocols.
We comment a bit more on the voting protocol examples.
Relying on the reduction result of Arapinis et al. [9], we
know that it is sufficient to consider three voters, two honest
and one dishonest one, to conclude vote privacy for an
arbitrary number of voters. Moreover, when revoting is
allowed, which is the case for Helios, but not for PaV,
we only need to consider a server which accepts seven
ballots that may come from any of the three voters. For the
Helios protocol we consider several versions. The vanilla
Helios version, which does not allow revoting, is known
to be vulnerable to a ballot-copy attack [32]—the attacker
simply copies the ballot of a honest voter in order to bias
the outcome. Two countermeasures have been proposed to
thwart this attack: one applies a ballot weeding procedure
(W), while the other is based on a zero-knowledge proof
(ZKP) that links the identity of the voter to the ballot. When
no revote (NR) is allowed these two versions are indeed
shown to be secure. When allowing revoting we consider
the case where seven ballots can be accepted [9], under two
different scenarios. When only the dishonest voter revotes
(dR) we can show the security of the weeding mechanism.
When however one honest voter re-votes twice (the same
vote), a variant of the ballot-copy, pointed out to us by
Rønne [41], is possible in the weeding version. The attacker
intercepts or delays the first honest vote, and casts this
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ballot in his name. The same ballot by the honest voter
is than removed through weeding. However, as the honest
voter casts a second (differently randomised) ballot the tally
is biased by containing an additional vote for the honest
voter’s candidate. This attack is found by DEEPSEC. We
can show that the ZKP version does not suffer from this
attack as ballots are linked to voter identities and cannot
be cast on behalf of someone else. Besides note that, while
PaV is a priori in the scope of AKISS, it failed to produce a
proof: AKISS only approximates trace equivalence of non-
determinate processes and finds a false attack here.

Finally we note that the BAC, Prêt-à-Voter and Helios
protocols are not action-determinate and therefore do not
benefit from the POR optimisation, which explains the
much higher verification times when increasing the sessions.
Nevertheless, as exemplified by the Helios hR-W example,
attacks may be found very efficiently, as it generally does
not require to explore the entire state space.

7. Conclusion and future work

In this paper we have studied automated verification of
equivalence properties, encompassing both theoretical and
practical aspects. We provide tight complexity results for
static equivalence, trace equivalence and labelled bisimilar-
ity, summarised in fig. 1. In particular we show that deciding
trace equivalence and labelled bisimilarity for a bounded
number of sessions is coNEXP complete for subterm con-
vergent destructor rewrite systems. Finally, we implement
our procedure in the DEEPSEC prototype. As demonstrated
through an extensive benchmark (fig. 7), our tool is broad
in scope and efficient compared to other tools.

Our work opens several directions for future work. First,
we wish to lift the restriction of subterm convergent equa-
tional theories. Even though the problem becomes quickly
undecidable for more general rewrite theories, we plan to
design a partially correct, i.e., sound, complete, but not nec-
essarily terminating, procedure, as the procedure underlying
the AKISS tool [19]. Second, we plan to avoid the restriction
to destructor rewrite systems to more general ones. From the
complexity point of view we envision to study parametrised
complexity (taking the rewrite system, or the degree of non-
determinism as a parameter). This may increase our under-
standing of which parts of the input are responsible of the
high complexity, and guide further optimisations. We have
seen that the POR techniques have dramatically increased
the tool’s performances on action-determinate processes. We
wish to develop similar techniques for more general classes
of processes.
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Protocol (# of roles) Akiss APTE SPEC Sat-Eq DeepSec

S
tr

o
n
g

se
cr

ec
y

Denning-

Sacco

3 � <1s � <1s � 11s � <1s � <1s

6 � <1s � 1s OM � <1s � <1s

7 � 6s � 3s � <1s � <1s

10 OM � 9m49 � <1s � <1s

12 � � <1s � <1s

14 � <1s � <1s

17 � <1s � 1s

29 � <1s � 6s

Wide

Mouth

Frog

3 � <1s � <1s � 5s � <1s � <1s

6 � <1s � <1s �1h11m � <1s � <1s

7 � <1s � 1s OM � <1s � <1s

10 � 10s � 3m35 � <1s � 1s

12 �22m16s � � <1s � <1s

14 OM � <1s � <1s

17 � <1s � 1s

23 � <1s � 3s

Yahalom-

Lowe

3 � <1s � <1s � 7s � <1s � <1s

6 � 2s � 41s OM � <1s � <1s

7 � 42s �34m38s � 1s � <1s

10 OM � � 1s � <1s

12 � 4s � 2s

14 � 7s � 2s

17 � 12s � 8s

Needham-

Schroeder-

Lowe

2 � <1s � <1s � 30s

�

� <1s

4 � 3s BUG � � <1s

8 OM � 2s

12 � 21s

Otway-Rees

3 � 28s � 2s �58m9s

�

� <1s

6 OM OM � � <1s

7 � <1s

10 � 3s

14 � 5m28s

A
n
o
n
y
m

it
y

Private

Authentication

2 � <1s � <1s

� �

� <1s

4 � <1s � 1s � <1s

6 � 21s � 4m18s � <1s

8 OM � � 1s

10 � 2s

15 � 32s

3G-AKA
4 � 1m34s � 1h38m

� �
� 0s

6 OM � � 3s

Passive

Authentication

2 � <1s � <1s

� �

� <1s

4 � <1s � 1s � <1s

6 � 2m22s � 1m26s � <1s

7 � 1h42m � 1m40s � 1s

9 � � 1h55m � <1s

15 � � 4s

21 � 8s

U
n
li

n
k
ab

il
it

y

3G-AKA
4 � 1m35s � 1h23m

� �
� <1s

6 OM � � 2s

Passive

Authentication

4 � <1s � 1s

� �

� <1s

6 � 2m15s � 1m27s � <1s

7 � 1h40m � 1m44s � 1s

9 � � 2h08m � <1s

15 � � 9s

21 � 15s

BAC
4 OM �38m56s

� � � 1s

6 � �

V
o
te

p
ri

v
ac

y

Prêt-à-Voter 6 � � � � � 2s

Helios Vanilla 6 � 47s � <1s � � � <1s

Helios NR-W 6

OM � � �

� 1s

Helios NR-ZKP 6 � 2s

Helios dR-W 10 �30m 24s

Helios dR-ZKP 10 � 9m 26s

Helios hR-W 11 � 2s

Helios hR-ZKP 11 � 2h 42m

� successful verification � attack found � out of scope
OM out of memory/stack overflow � timeout (12 hours)

Figure 7: Benchmark results
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mixes. In 11th European Symp. On Research In Computer Security
(ESORICS’06), volume 4189 of Lecture Notes in Computer Science,
pages 313–326. Springer, 2006.

[44] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer. A formal
definition of protocol indistinguishability and its verification using
Maude-NPA. In 10th International Workshop on Security and Trust
Management STM’14, volume 8743 of Lecture Notes in Computer
Science, pages 162–177. Springer, 2014.

[45] B. Schmidt, S. Meier, C. Cremers, and D. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In 25th
International Conference on Computer Aided Verification (CAV’13),
volume 8044 of Lecture Notes in Computer Science, pages 696–701.
Springer, 2013.

[46] A. Tiu and J. Dawson. Automating open bisimulation checking for
the spi-calculus. In 23rd Computer Security Foundations Symposium
(CSF’10), pages 307–321. IEEE Comp. Soc. Press, 2010.

[47] A. Tiu, N. Nguyen, and R. Horne. SPEC: an equivalence checker
for security protocols. In 14th Asian Symposium on Programming
Languages and Systems (APLAS’16), volume 10017 of Lecture Notes
in Computer Science, pages 87–95. Springer, 2016.

Appendix A.
Encoding calculus extensions

In section 3.2 we introduced calculus extensions—sum,
guess, circuit—to make establishment of complexity lower
bounds easier. Here we present how the new operators can
be encoded within the original calculus. More precisely we
construct a translation �·� with the following properties:

Lemma 10. If P is a closed plain process in the extended
syntax, �P � is a closed plain process in the original syntax
computable in polynomial time in |P |. Besides, after casting
≈ ∈ {≈t,≈�} to the extended semantics, we have

({{�P �}}, ∅) ≈ ({{P}}, ∅)
Since the extended semantics does not affect processes

in the original syntax, this lemma justifies that equivalence
in the extended calculus reduces in polynomial time to
equivalence in the original calculus. The construction of �·�
is detailed below and the proof of the above lemma can be
found in the technical report [2].

Sums. The non-deterministic choice can be implemented by
a standard encoding, using an internal communication on a
fresh private channel:

�P +Q� � s〈s〉 | s(x).�P � | s(y).�Q�

where s ∈ Nprv and x, y ∈ X 1 are fresh.

Guesses. Using the same mechanism as sums, we can
encode the binary guess.

�Choose(x).P � � s〈0〉 | s〈1〉 | s(x).�P �

where s ∈ Nprv is fresh. We recall that 0 and 1 are two
constructor symbols of the signature.

Circuits. Seeing a circuit edge as a private channel, a circuit
computation can easily be simulated by internal communi-
cation. Let Γ : Bm → B

n be a circuit. For simplicity we
only consider the case where gates have two inputs and
two outputs: handling lower arities is straightforward. If
(c1, c2, g, c3, c4) ∈ Γ is such a gate, we first define notation:

�c1, c2, g, c3, c4� � c1(x).c2(y).
∏
b,b′∈B

P c3,c4g,b,b′

with P c,c
′

g,b,b′ � if x = b then

if y = b′ then
(c〈g(b, b′)〉 | c′〈g(b, b′)〉)

where c1, c2, c3, c4 ∈ Nprv. Note that g(b, b′) denotes the
boolean obtained from the truth table of g, for b, b′ fixed:
in particular g is not a function symbol of the signature F .
It finally leads to

�
x← Γ(
b).P � � Pargs | Pcompute | Preturn

where Pargs =

m∏
k=1

cik〈bk〉

and Pcompute =
∏

(c1,c2,g,c3,c4)∈Γ
�c1, c2, g, c3, c4�

and Preturn = co1(x1) . . . con(xn).�P �

where (cik)
m
k=1 (resp. (cok)

n
k=1) are the isolated input (resp.

output) edges of Γ.

Appendix B.
Full symbolic semantics

Now we present the remaining rules of the symbolic
semantics, partly presented in fig. 4. Note the formula
introduced by the rule S-ELSE. It has to take into account
that an equality test fails if the compared terms are not
messages—even if they are syntactically equal. For that we
define, if σ is a substitution, the formula

¬σ � ∀z̃δ.
∨

x∈dom(σ)

x �=? xσ

where z̃δ = vars(σ) � dom(σ). The rules can be found in
fig. 8.
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(P ∪ {{0}}, C) ε−→s (P, C) (S-NULL)

(P ∪ {{if u = v thenQ1 elseQ2}}, (Φ,D,E1)) ε−→s (P ∪ {{Q1}}, (Φ,D,E1 ∧ σ)) (S-THEN)

if σ ∈ mguR(uμ↓ =? vμ↓)
(P ∪ {{if u = v thenQ1 elseQ2}}, (Φ,D,E1)) ε−→s (P ∪ {{Q2}}, (Φ,D,E1 ∧

∧
δ∈mguR(uμ↓,vμ↓)

¬δ)) (S-ELSE)

(P ∪ {{u〈t〉.Q1, v(x).Q2}}, (Φ,D,E1)) ε−→s (P ∪ {{Q1, Q2{x→ t}}}, (Φ,D,E1 ∧ σ)) (S-COMM)

if σ ∈ mguR(uμ↓ =? vμ↓, tμ↓ =? tμ↓)
(P ∪ {{P | Q}}, (Φ,D,E1)) ε−→s (P ∪ {{P,Q}}, (Φ,D,E1)) (S-PAR)

(P ∪ {{u(x).Q}}, (Φ,D,E1)) Y (X)−−−→s (P ∪ {{Q}}, (Φ,D ∧X �? x ∧ Y �? y,E1 ∧ σ)) (S-IN)

if σ ∈ mguR(y =
? uμ↓) and X,Y ∈ X 2

:|Φ|

(P ∪ {{u〈t〉.Q}}, (Φ,D,E1)) Y 〈axn〉−−−−→s (P ∪ {{Q}}, (Φ ∪ {axn 	→ tσ↓},D ∧ Y �? y,E1 ∧ σ)) (S-OUT)

if σ ∈ mguR(y =
? uμ↓, tμ↓ =? tμ↓), y is fresh, X ∈ X 2

:n and n = |Φ|+ 1

Figure 8: Symbolic semantics (where μ = mgu(E1|=))

Appendix C.
Overview of case-distinction rules

At the end of section 5.2, we mentioned the use of case-
distinction rules to generate the partition tree. We give here
more details about these rules. Their purpose is to transform
a set of extended symbolic process into sets of extended
symbolic process where the constraint systems in each set
have statically equivalence solutions. For this reason, case-
distinction rules are presented as (three) transition rules
operating on sets of sets of extended symbolic process.

Extended constraint systems. We need more formalism on
extended constraint systems. First, we consider that recipes
can now contain second-order variables; that is, the set of
recipes is T (F ,Npub ∪ AX ∪ X 2). Besides, we extend
the notion of formula in several ways. Deduction fact are
generalised to the form ξ �? u where ξ is a recipe. Besides,
we introduce two new atomic formulas:

ξ =? ξ′ (recipe equation) and ξ =?
f ξ

′ (equality fact)

where ξ, ξ′ are recipes. Recipe equations are similar to (first-
order) equations whereas equality facts state that two recipes
deduce the same term; namely

(Φ,Σ, σ) |= ξ =?
f ξ

′ iff Msg(ξΣΦ),Msg(ξ′ΣΦ),
and ξΣΦ↓ = ξ′ΣΦ↓

Moreover, we distinguish two forms of first-order for-
mulas called deduction (resp. equality) formulas:

∀S.H ⇐ C1 ∧ . . . ∧ Cn
where

• S is a set of (first- and second-order) variables;
• H is a deduction (resp. equality) fact;
• for all i ∈ Nn, Ci is either a deduction fact of the form
X �? u or an equation.

This intuitively states that the statement H holds un-
der premisses C1, . . . , Cn. We finally get to the notion of
extended constraint systems.

Definition 14. An extended constraint system C is a tuple
(Φ,D,E1,E2,K,F) where

• (Φ,D,E1) is a constraint system;
• E2 is a conjunction of recipe equations or formulas of

the form ∀Y1, . . . , Yk.
∨p
j=1 ξj �=? ζj ;

• K is a conjunction of deduction facts;
• F is a conjunction of deduction or equality formulas.

E2 is similar to E1 but gathers constraints on recipes.
On the contrary, K and F are not constraints but represent
the attacker knowledge:

• deduction facts in K materialise the deduction capabil-
ities of the attacker;

• deduction formulas in F reason about potentially de-
ducible terms.

After an output transition, our decision procedure dis-
tinguishes whether the new output term can increase the
deduction capabilities of the attacker. This is done by adding
a formula to F which is then simplified into a deduction fact,
so that we can easily decide whether

a) it induces a new deducible term (in which case it is
added to K), or

b) it is a consequence of the deduction facts already in K.

More generally we say that (ξ, u)—or simply u—is a
consequence of a set of deduction facts S when u can be
deduced from S (using recipe ξ). The notion of solution
of extended constraint systems carries out this idea: we
say that (Σ, σ) is a solution of (Φ,D,E1,E2,K,F) when
(Φσ,Σ, σ) |= D ∧ E1 ∧ E2 with the two requirements that

1) all recipes in Σ must be a consequence of the attacker
knowledge K;

2) recipes in Σ must be chosen in a uniform way: two
different recipes in the solution must deduce different
protocol terms.

Rule SAT. Le us now present the three case-distinction
rules. We recall that these rules operate on sets of sets of
constraint systems S representing the children partition in
the partition tree. The first rule, SAT, helps obtaining the
requirement that n ∈ S shall contain constraint systems with
the same second-order solutions. Thus, the rule will perform
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a case distinction on whether solutions of all constraint
systems in the same set n ∈ S are instance of a common
mgs Σ. This is formalised by the rule

S ∪ {{(Pi, Ci, Cei )}pi=1} → S ∪ {Epos, Eneg} (SAT)

with Epos = {(Pi, Ci, Cei :Σ)}pi=1
and Eneg = {(Pi, Ci, Cei [E2 ∧ ¬Σ])}pi=1

where Σ ∈ mgs(Cej ) for some j, and C:Σ is the application
of Σ to C. The definition of C:Σ is actually a little more
involved than a plain application of substitution—as some
structural invariants have to be maintained for the sake of
the procedure—but we omit details for readability.

This rule is also applied to solve syntactic disequations
and formulas in F. For this usage, Σ is not computed as a
simple mgs of Cej but embodies additionial constraints. For

exemple, if E1(Cej ) contains the disequation x �=? v, the
rule will partition the solutions depending on whether they
satisfy or such disequations. This is done by considering the
mgs of Cejσ where σ = {x→ v}.

Rule EQ. The second rule, EQ, focuses on static equivalence
between constraint systems of a same node of the partition
tree. For instance, given two deduction facts ξ �? u, ζ �? v
in some attacker knowledge K, the rule distinguishes so-
lutions in which the two deduction facts deduce the same
protocol term.

S ∪ {{(Pi, Ci, Cei )}pi=1} → S ∪ {Epos, Eneg} (EQ)

with Epos = {(Pi, Ci, Cei :Σ[F ∪ {ψi}])}pi=1
and Eneg = {(Pi, Ci, Cei [E2 ∧ ¬Σ])}pi=1

where Σ ∈ mgs(Cejmgu(u, v)) for some j and deduction

facts (ξ �? u), (ζ �? v) ∈ K(Cej ). The formulas ψi state that
recipes ξ and ζ should deduce the same protocol terms:

ψi = (ξΣ =?
f ζΣ⇐ ui =

? vi)

where (ξ �? ui), (ζ �? vi) ∈ K(Cei ).

Rule REW. The third rule, REW, focuses on intruder knowl-
edge, that is K. Typically, when the last symbolic transition
is an output, the rule applies rewrite rules on this output to
determine whether the attacker can deduce new messages
from it. For example, sdec(senc(x, y), y)→ x leads to

S ∪ {{(Pi, Ci, Cei )}pi=1} → S ∪ {Epos, Eneg} (REW)

with Epos = {(Pi, Ci, Cei :Σ[F ∪ {ψi}])}pi=1
and Eneg = {(Pi, Ci, Cei [E2 ∧ ¬Σ])}pi=1

where for some j, (ξ �? u) ∈ K(Cej ), Σ = mgs(Cej ′) with

Cej ′ = Cej [D ∧X �? y][E1 ∧ senc(x, y) =? u]

with X,x, y fresh. Here the solutions Cej ′ represents the
solutions of Cej in which we can apply a decryption on ξ.

Hence the formula ψi, stating that sdec(ξΣ, XΣ) should
deduce a message:

ψi = ∀X,x, y.(sdec(ξΣ, XΣ) �? x)
⇐ (y =? vi ∧ senc(x, y) =? ui)

where ξ �? ui ∈ K(Cei ) and (XΣ, vi) is a consequence of
K(Cei :Σ) and D(Cei :Σ).

Appendix D.
Bounding the size of solutions

One key argument to obtain the coNEXP complexity is
the bound on the sizes of mgs’ of partition trees (theorem 8).
Let us give some insight about this result. In all case-
distinction rules, we apply mgs’ Σ of constraint systems.
Therefore we need to bound

1) the size of such substitutions Σ
2) the number of applications of the three rules.

We only detail the first (polynomial) bound here and
omit the second (exponential) bound due to lack of space.
Technically, we use a measure counting the protocol sub-
terms not already deduced by a recipe in E2, K and D:

M(Ce) =

∣∣∣∣∣∣∣

⎧⎪⎨
⎪⎩t ∈ PT (C

e)� X 1

∣∣∣∣∣∣∣
for all ξ ∈ stc(Ce)
ξ /∈ X 2, (ξ, t) is
not consequence of
K(Ce) and D(Ce)

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
where

• μi = mgu(Ei(Ce)|=) for i ∈ {1, 2};
• PT (Ce) is the set of protocol subterms in Φ(Ce)μ1,
K(Ce)μ1, D(Ce)μ1 and μ1;

• stc(Ce) is a set of recipes subterms of img(μ2) directly
consequence of K(Ce)μ2 and D(Ce).

The important argument is that this measure decreases
by application of mgs, namely

∀Σ ∈ mgs(Ce),M(Ce:Σ) �M(Ce)
This relation also holds for any constraint systems with
the same recipe structure as Ce, i.e. constraint systems that
differs from Ce by its protocol terms but not its recipes.
In particular, in all case-distinction rules described in the
previous appendix, we have

∀i ∈ Np,M(Cei :Σ) �M(Cei )
Additionally, the growth of stc(Ce) after application of mgs
can also be bounded—with a dependency in |F|. More
precisely, if α the maximal arity of F , we proved that for
all Σ ∈ mgs(Ce):

|R(Ce:Σ)| − |R(Ce)| � α(M(Ce)−M(Ce:Σ))
Let us then consider the two initial processes P1 and P2

for which the procedure is intended to generate a partition
tree. Let us also consider a constraint system C in some
node of T . Seeing C as an extended constraint system where
K(C) = ∅ and E2(C) = �, we easily obtain

M(Ce) �M(C) and M(C) � |PT (C)|
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({{P 1}}, ∅)
({{Q}}, ∅) ({{

if proj2(〈1, 1〉) = 1 then c〈0〉
else c〈proj2(〈1, 1〉)〉

}}
, ∅
)

({{c〈proj2(〈1, 1〉)〉}}, ∅)

({{c〈0〉}}, ∅)
({{c〈proj2(〈1, 1〉)〉}}, ∅)

c(1)

c〈ax1〉

c〈ax1〉

Figure 9: A concrete witness of ({{P 1}}, ∅) �≈� ({{Q}}, ∅).

Finally, from the the symbolic semantics (fig. 4), we can
see that a protocol term in C is a protocol term in P1 or P2
on which a mgu σ has been applied. This lead to

|PT (C)| � 2|P1, P2|dag(1 + |R|dag)
Above, we showed the relation between |R(Ce:Σ)| and

|R(Ce)| when Σ ∈ mgs(Ce). However, for case distinction
rules, we also compute most general solutions of the con-
straint system with additional deduction facts and protocol
term equations. Hence, to compute |R(Ce:Σ)|, we need to
also consider the terms introduced by rewrite rules and
disequations. For instance, with the rule REW, we have
that for all i, |R(Cei :Σ)| − |R(Cei )| � |F|(2|P1, P2|dag(1 +
|R|dag)+ |R|dag(2+ |F|)). This shows that the DAG size of
recipes in constraint systems increases at most polynomially
in P1,P2, F and R.

Appendix E.
Decidability of labelled bisimilarity

In the body of the paper, we outlined quite precisely the
decision procedure for trace equivalence through lemma 7:
we explain here how to adapt this approach to labelled
bisimilarity. Typically, a witness of A �≈t B is a sequence
of actions tr, and a set of pairs of recipes—witnessing
violations of static equivalence. The case of bisimilarity is
more involved. Borrowing vocabulary from game’s theory,
a witness that A �≈� B is an adversary’s winning strategy in
the bisimulation game. Such a strategy can be modelled as
a tree whose nodes are labelled by pairs of processes:

1) for each node n labelled (A,B) such that A ∼ B, the
attacker shall be able to choose an action a ∈ A and
either a transition A

a−→c A
′ or B

a−→c B
′;

2) say, for example, that A
a−→c A

′ has been chosen. Then
the labels of the children of n are all (A′, B′) where

B
a
=⇒c B

′ and A′ ∼ B′.
Example 9. Consider the running examples P 1 and Q. A
witness of ({{P1}}, ∅) �≈� ({{Q}}, ∅) is depicted in fig. 9.
First, the adversary inputs 〈1, 1〉, selecting the transition

(Q, ∅) c(〈1,1〉)−−−−−→c ({{c〈proj2(〈1, 1〉)〉}}, ∅)
Whatever the answer of the defender, the adversary can

then reach a leave of the tree by choosing the transition

({{c〈proj2(〈1, 1〉)〉}}, ∅)
c〈ax1〉−−−−→c ({{0}}, {ax1 	→ 1})

The defender can indeed not answer to this move without
violating static equivalence.

As for trace equivalence we can show that we can decide
labelled bisimulation in coNEXP.

Theorem 11. Equiv≈� for convergent subterm destructor
rewriting systems is in coNEXP.

Proof overview. Our first goal is to show that there exists
p such that whenever ({{P1}}, ∅) �≈� ({{P2}}, ∅) then there

exists a witness w such that |w|dag < 2|P1,P2,R|pdag . We
therefore introduce the notion of symbolic witness: a
symbolic witness are similar to subtrees of the partition
tree PTree(P1, P2) where

• internal nodes n contain a pair of processes of Γ(n);
• leaves contain a single process (witnessing impossibil-

ity for the defender to answer to the attacker’s move).

A solution of a symbolic witness is a function that
maps each node n to a second-order solution of Γ(n).
To ensure coherence of a solution we require that the
solution of child nodes extend the solution of their parent.
We can then show that ({{P1}}, ∅) �≈� ({{P2}}, ∅) iff there
exists a symbolic witness with non-empty solution.

Then, relying on theorem 8 just as for trace equiv-
alence, we want to show that any symbolic witness
with non-empty solution entails existence of a concrete

witness w such that |w|dag < 2|P1,P2,R|pdag . However, a
solution of a symbolic witness requires that the solution
of each child extends the solution of the parent—which
is not guaranteed by the definition of partition trees in
general. Fortunately, our construction appears to ensure
the existence of such a solution of the parent node while
preserving the exponential size.

Given the concrete witness we obtain a straightfor-
ward procedure for non-bisimilarity running in NEXP:

1) We first guess the witness w (structure only). As
mentionned above it sufficies to guess w of expo-
nential size.

2) Then we check validity of w. This requires to ex-
plore the possibly-exponential number of branches
of w and to verify an exponential number of static
equivalences (whose frames are at most of exponen-
tial size). Therefore, checking non-validity of w can
indeed be performed in non-deterministic exponen-
tial time—since static equivalence is coNP.
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