
EnclaveDB: A Secure Database using SGX

Christian Priebe
Imperial College London

christian.priebe13@imperial.ac.uk

Kapil Vaswani
Microsoft Research

kapilv@microsoft.com

Manuel Costa
Microsoft Research

manuelc@microsoft.com

Abstract—We propose EnclaveDB, a database engine that
guarantees confidentiality, integrity, and freshness for data and
queries. EnclaveDB guarantees these properties even when the
database administrator is malicious, when an attacker has
compromised the operating system or the hypervisor, and when
the database runs in an untrusted host in the cloud. EnclaveDB
achieves this by placing sensitive data (tables, indexes and other
metadata) in enclaves protected by trusted hardware (such as
Intel SGX). EnclaveDB has a small trusted computing base,
which includes an in-memory storage and query engine, a
transaction manager and pre-compiled stored procedures. A key
component of EnclaveDB is an efficient protocol for checking
integrity and freshness of the database log. The protocol supports
concurrent, asynchronous appends and truncation, and requires
minimal synchronization between threads. Our experiments using
standard database benchmarks and a performance model that
simulates large enclaves show that EnclaveDB achieves strong
security with low overhead (up to 40% for TPC-C) compared to
an industry strength in-memory database engine.

I. INTRODUCTION

Modern data processing services hosted in cloud environ-

ments are under constant attack from malicious entities such

as database administrators, server administrators, hackers who

exploit bugs in the operating system or hypervisor, and even

nation states. This results in frequent data breaches that reduce

trust in online services. Semantically secure encryption can

provide strong and efficient protection for data at rest and

in transit, but this is not sufficient because data process-

ing systems decrypt sensitive data in memory during query

processing. Systems such as CryptDB [1], Monomi [2] and

Seabed [3] use property-preserving encryption to allow query

processing on encrypted data. This approach has been adopted

in several products [4], [5], but suffers from limited querying

capabilities and is prone to information leakage [6], [7], [8].

Another approach to enable secure query processing is

to use trusted execution environments or enclaves. Enclaves

(e.g., Intel Software Guard Extensions (SGX) [9]) can protect

sensitive data and code, even from powerful attackers that

control or have compromised the operating system and the

hypervisor on a host machine. While enclaves can mitigate

several attacks, using them requires careful refactoring of

applications into trusted and untrusted components to achieve

desired security and privacy goals. Furthermore, ensuring high

level security properties such as confidentiality, integrity, and

freshness requires additional logic to protect secrets when

they leave the enclave and verify their integrity when they

are read. This task is relatively simple in applications such

as password checkers, key management systems and simpler

Fig. 1: Overview of EnclaveDB’s architecture. EnclaveDB

hosts sensitive data along with natively compiled queries and

a query engine in an enclave.

data processing frameworks. For example, researchers have

proposed the use of enclaves for building secure versions of

streaming and batch processing frameworks in Opaque [10]

and VC3 [11]. However, redesigning more complex systems

such as databases to use enclaves and offer strong security

properties remains an open problem. Previous work that places

small pieces of the query engine in trusted hardware, such

as Cipherbase [12] and TrustedDB [13], does not provide

confidentiality for queries or integrity and freshness for data.

Alternatively, hosting the whole database service inside an

enclave [14] results in a large trusted computing base (TCB)

and increased performance overheads, and does not provide

protection from the database administrator.

In this paper, we propose EnclaveDB, a database that

ensures confidentiality, integrity, and freshness for queries

and data. EnclaveDB has a programming model similar to

conventional relational databases – authorized users can create

tables and indexes, and query the tables using stored pro-

cedures expressed in SQL. However, unlike a conventional

database, EnclaveDB provides security from hackers, mali-

cious server administrators and database administrators. As

shown in Figure 1, EnclaveDB protects database state by

hosting all sensitive data (tables, indexes, queries and other

intermediate state) in enclave memory. This design choice

is feasible due to rapidly decreasing DRAM costs and the

expected availability of systems which support large enclaves

(of the order of several hundred gigabytes).

Unlike a conventional database, EnclaveDB compiles

queries on sensitive data to native code using an ahead-of-time

compiler on a trusted client machine. Pre-compiled queries are

264

2018 IEEE Symposium on Security and Privacy

© 2018, Christian Priebe. Under license to IEEE.
DOI 10.1109/SP.2018.00025

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

signed, encrypted and deployed to an enclave on the untrusted

database server. Decoupling compilation from execution al-

lows components such as the query parser, compiler and opti-

mizer to be hosted in a trusted environment, thereby reducing

the attack surface available to the adversary. EnclaveDB clients

execute pre-compiled queries by establishing a secure channel

with the enclave and sending requests with encrypted parame-

ters. The enclave authenticates requests, decrypts parameters,

executes the pre-compiled query, encrypts query results, and

sends the results back to the client.
In addition to confidentiality of data and queries, EnclaveDB

also guarantees integrity and freshness of data. Integrity and

freshness are critical properties for many applications such as

banking, auctions, voting and control systems. The integrity

of in-memory tables and indexes is guaranteed by the enclave

hardware. The integrity of queries is ensured by hosting

queries and a transaction manager within the enclave. In

addition, EnclaveDB employs a number of checks to detect

and prevent integrity violations during query processing and

database recovery. This includes checks to detect invalid API

usage and Iago attacks [15] caused by a malicious database

server/operating system that violates its specification. A key

component of EnclaveDB is an efficient protocol for ensuring

confidentiality, integrity and freshness of the database log. The

protocol supports concurrent appends and truncation of the log

and requires minimal synchronization between threads.
We have built a prototype of EnclaveDB using Hekaton,

SQL Server’s in-memory database engine. Our prototype has

a small TCB (over 100X smaller than a conventional database

server). We evaluate the performance of EnclaveDB using

industry-standard database benchmarks and a performance

model that accounts for the overheads of enclaves. Our eval-

uation shows that EnclaveDB delivers high performance (up

to 31,000 tps for TPC-C) and has low overheads (up to 40%

lower throughput compared to an insecure baseline).
This paper makes the following contributions.

• We propose EnclaveDB, an in-memory database that uses

enclaves to provide strong security properties.

• EnclaveDB guarantees confidentiality, integrity and fresh-

ness using a combination of encryption, native compila-

tion and a scalable protocol for checking integrity and

freshness of the database log.

• EnclaveDB has a small TCB - over 100X smaller than a

conventional database server.

• We evaluate EnclaveDB using standard benchmarks and

a performance model that simulates enclave overheads.

The evaluation shows that EnclaveDB delivers security

with high performance.

The rest of this paper is organized as follows. We start

with an overview of enclaves and the Hekaton engine in

Section II. In Section III, we discuss our threat model. Sec-

tion IV explores EnclaveDB’s architecture. We then describe

the protocol for checking integrity of checkpoints and the

log in Section V. Section VI describes several optimizations

and Section VII discusses multi-party support, followed by

a detailed evaluation of EnclaveDB in Section VIII. Finally,

we present related work in Section IX and conclude with

Section X.

II. BACKGROUND

A. Enclaves

Trusted execution environments or enclaves such as Intel

SGX protect code and data from all other software in a system.

With OS support, an untrusted hosting application can create

an enclave in its virtual address space. Once an enclave has

been initialized, code and data within the enclave is isolated

from the rest of the system, including privileged software.

Application threads can however switch into enclave mode at

pre-defined entry points and execute user-mode instructions.

Intel SGX enforces isolation by storing enclave code and

data in a data structure called the Enclave Page Cache (EPC),

which resides in a preconfigured portion of DRAM called the

Processor Reserved Memory (PRM). The processor ensures

that any software outside the enclave cannot access the PRM.

However, code hosted inside an enclave can access both non-

PRM memory and PRM memory that belongs to the enclave.

SGX includes a memory encryption engine which encrypts

and authenticates enclave data evicted to memory, and ensures

integrity and freshness using a merkle-tree structure over

the EPC. SGX also protects enclaves against a variety of

hardware/software attacks including attempts to access enclave

memory via DMA or by reusing cached TLB translations.

In addition to isolation, enclaves also support sealing and

remote attestation. Sealing allows an enclave to securely

persist and retrieve secrets on the local host. Sealing keys

can be bound to a specific enclave identity or a signing

authority, e.g. the enclave owner. Sealed data is confidentiality-

and integrity-protected, but sealing does not provide freshness

guarantees. Remote attestation allows a remote challenger

to establish trust in an enclave. In Intel SGX, code hosted

in an enclave can request for a quote, which contains a

number of enclave attributes including a measurement of the

enclave’s initial state. The quote is signed by a processor-

specific attestation key. A remote challenger can use Intel’s

attestation verification service to verify that a given quote has

been signed by a valid attestation key. The challenger can also

verify that the enclave has been initialized in an expected state.

Once an enclave has been verified, the challenger can set up a

secure channel with the enclave (using a secure key exchange

protocol) and provision secrets such as encrypted code or data

encryption keys to the enclave.

B. Hekaton

Hekaton [16] is a database engine in SQL Server optimized

for OLTP workloads where data fits in memory. The engine’s

design is based on the observation that memory prices are

dropping and machines with over 1TB of memory are already

commonplace. As a result, datasets for many OLTP workloads

can fit entirely in memory.

Hekaton allows users to host selected tables in memory

and create one or more memory-resident indexes on the

table. Hekaton tables are durable - the Hekaton engine logs

265

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

transactions on memory resident tables to a persistent log

shared with SQL Server. Periodically, Hekaton checkpoints
the log by compressing log records into a more compact

representation on disk. On failure, the database state can be

recovered using checkpoints and the tail of the log. To further

optimize performance, Hekaton supports a mode of execution

where table definitions and SQL queries over in-memory tables

are compiled to efficient machine code. Native compilation is

restricted to queries where decisions typically made by the

query interpreter at runtime can be made at compile time, e.g.,

queries where the data types of all columns and variables are

known at compile time. These restrictions allow the Hekaton

compiler to generate efficient code with optimized control flow

and no runtime type checks.

In this paper, we show that the principles behind the

design of a high performance database engine are aligned with

security. Specifically, in-memory tables and indexes are ideal

data structures for securely hosting and querying sensitive data

in enclaves. In-memory tables eliminate the need for expensive

software encryption and integrity checking otherwise required

for disk-based tables. Query processing on in-memory data

minimizes the leakage of sensitive information and the number

of transitions between the enclave and the host. Finally,

native compilation allows query compilation and optimization

to be decoupled from query execution, enabling a mode of

compilation where queries are compiled on a trusted database

and deployed to an enclave on an untrusted server, significantly

reducing the attack surface available to an adversary.

III. THREAT MODEL

We consider a strong adversary that controls the entire

software stack on the database server, except the code inside

enclaves. This represents threats from an untrusted server

administrator, the database administrator, and attackers who

may compromise the operating system, the hypervisor or the

database server. The adversary can access and tamper with any

server-side state in memory, on disk and over the network. This

includes attacks that tamper with database files such as logs

and checkpoints e.g. overwriting, dropping, duplicating and/or

reordering log records. The adversary can mount replay attacks

by arbitrarily shutting down the database and attempting to

recover from a stale state. The adversary can attempt to

fork the database e.g. by running multiple replicas of the

database instance on the same or different machines and

sending requests from different clients to different instances.

The adversary can also observe and arbitrarily change control

flow e.g. make an arbitrary sequence of calls to any of the pre-

defined entry points in the enclave. However, denial of service

and side channels attacks (e.g., access patterns and timing) are

outside the scope of this paper. Side channels are a serious

concern with trusted hardware [17], [18], [19], [20], and

building efficient side channel protection for high performance

systems like EnclaveDB remains an open problem.

We trust the processor and assume the adversary cannot

physically open the processor package and extract secrets

or corrupt state inside the processor. We assume that the

code placed inside the enclave is correct and does not leak

secrets intentionally. Recent research has shown that it is

possible to automatically enforce and verify confidentiality for

reasonably sized applications at low runtime overheads [21].

We also assume that all client-side components such as SQL

clients and the key management service are trusted. This is a

common assumption in cloud-based systems and often realized

by hosting the client in a trusted on-premises environment (e.g.

behind firewalls controlled by the user) or in enclaves.

For encryption, we rely on a scheme that provides authen-

ticated encryption with associated data (AEAD). We write

Enc[k]{ad}(text) to represent the encryption of text using

key k and authentication data ad and assume that the result

contains the authenticated data. We write Dec[k](enc) to

represent authentication and decryption of ciphertext contain-

ing authentication data. We assume that our scheme is both

IND-CPA and IND-CTXT. Our implementation uses AES-

GCM [22], a high-performance AEAD scheme.

Even under this threat model, we wish to guarantee

both confidentiality and linearizability [23]. In a linearizable

database, transactions appear to execute sequentially in an

order consistent with real time. Therefore, clients do not have

to reason about concurrency or failures. In our context, a

linearizable database frees the clients from having to reason

about an active attacker. In addition to linearizability, we

would also like to ensure liveness i.e. the database should

always be able to recover from unexpected shutdowns at any

time. Note that liveness does not imply availability; an attacker

can always prevent progress e.g. by not allocating resources.

IV. ARCHITECTURE

An EnclaveDB service consists of an untrusted database

server that hosts public data and an enclave that contains

sensitive data. Figure 2 shows the server-side components

in EnclaveDB. The enclave hosts a modified Hekaton query

processing engine, natively compiled stored procedures, and

a trusted kernel which provides a runtime environment for

the database engine and security primitives such as attestation

and sealing. The untrusted host process runs all other compo-

nents of the database server, including a query compiler and

processor for public data, and the log and storage managers.

The untrusted server supports database administration tasks –

the database administrator may login to the database and per-

form maintenance operations (e.g., backups, troubleshooting

of server problems, configuration of storage options), but does

not get access to sensitive data. This is critically important,

since database administration is often outsourced (e.g., to a

cloud provider or third parties).

The query processor on the untrusted database server sup-

ports generic queries on public data; in cases where such data

exists, it can be kept out of the enclave, e.g., as a performance

optimization. The query processor is also responsible for

receiving requests to execute stored procedures on secret data

and handing them over to the Hekaton engine. EnclaveDB

currently does not support queries that operate over both public

and secret data; guaranteeing security in the presence of such

266

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Server-side components of EnclaveDB

queries is a challenging problem and left for future work. We

now describe these components in detail.

A. Trusted kernel

Conventional databases rely on OS services such as thread-

ing, memory management and storage. However, this layering

is not secure under a threat model where the OS may be

compromised. One way of protecting applications is to use

a library OS that runs within the enclave [14], [24]. However,

this introduces a large amount of trusted code in the software

stack. In EnclaveDB, we adopt the principle of least privilege –

we introduce a thin layer called the trusted kernel that provides

the Hekaton engine with the minimal set of services it requires.

The trusted kernel implements some enclave-specific services

such as management of enclave memory and enclave threads

(described below), and delegates other services such as storage

to the host operating system with additional logic for ensuring

confidentiality and integrity. We now describe services that

have implications for EnclaveDB.

Threading: SGX supports a mechanism for protecting

the state of threads from the host when in enclave mode.

Developers can reserve a part of enclave memory for an

array of thread control structures (TCS). SGX uses a TCS

to save and restore the host thread’s context when the thread

enters or exits the enclave. As required by SGX, the trusted

kernel allocates a stack for each thread in enclave memory

when a thread enters the enclave, and then transfers control to

the application. This ensures that the host cannot observe or

tamper with the thread’s state.

From an application’s perspective, this threading model is

best viewed as a pool of enclave threads. When the host calls

into the enclave, the trusted kernel effectively ’suspends’ the

host thread and switches to an unused enclave thread. When

the call completes (or an exception occurs), the trusted kernel

reclaims the enclave thread and execution resumes on the

host thread. Therefore, the size of the thread pool, which is

fixed on enclave creation, determines the maximum degree of

concurrency available to the application.

Thread-local storage: The trusted kernel supports thread-

local storage (TLS), which is used extensively by the Heka-

ton engine for efficient access to performance-critical data

structures such as transaction read/write sets. However, the

threading model described above leads to a subtle change in

Tx∗ TxAlloc()
bool TxExecute(Tx∗ tx, BYTE∗ name,

BYTE∗∗ params, BYTE∗∗ ret)
bool TxPrepare(Tx∗ tx, TxPrepareCallback prepareCb)
void TxCommit(Tx∗ tx)
void TxAbort(Tx∗ tx)

Table 1: Hekaton’s transaction processing API

the semantics of TLS. The trusted kernel does not guarantee

that TLS is preserved across multiple calls into the enclave

from the same host thread. Preserving TLS across calls would

require the kernel to trust a host assigned thread identifier,

thereby introducing a new attack vector. This change in

semantics did not mandate a code change in Hekaton since the

engine already re-establishes TLS from the heap on every entry

into the engine, except in the case of re-entrancy i.e. nested

calls into the engine. As described in Section V, Hekaton

components such as the log use re-entrancy (via callbacks)

and assume that TLS is preserved on re-entrant calls. Since the

trusted kernel does not guarantee these semantics, we modified

the Hekaton engine to save TLS on the heap before enclave

exits and restore TLS state on re-entrant calls.

B. Query compilation and loading

In a conventional database, the database server compiles,

optimizes and executes queries. Therefore, the entire query

processing pipeline is part of the attack surface. EnclaveDB re-

duces the attack surface by relying on client-side, native query

compilation. The client packages all pre-compiled queries

(expressed as stored procedures) along with the query engine

and the trusted kernel, and deploys the package into an

enclave. This design offers strong security because the queries

are part of enclave measurement. However, the design also

implies that any change in schema e.g., adding or removing

queries, requires taking the database offline and redeploying

the package. Online schema changes can be supported using

a trusted loader; we leave this extension for future work.

C. Transaction processing

Hekaton uses a two-phase protocol for transaction process-

ing (Table 1, see Figure 3 for the complete protocol). When

the host receives a request to execute a stored procedure, it

first creates a new transaction using TxAlloc and assigns a

logical start timestamp to the transaction using a monotoni-

cally increasing counter stored in memory. It then executes the

stored procedure in the context of the transaction by calling

TxExecute along with the name of the stored procedure,

buffers containing parameter values, and buffers for storing

return values. TxExecute loads the natively compiled binary

corresponding to the stored procedure and transfers control to

a well-defined function within the binary. The binary calls into

the Hekaton engine to perform operations on Hekaton tables

and update transaction state (e.g., read and write sets, start

timestamps).

After executing the stored procedure, the host prepares

the transaction for committing by calling TxPrepare. The

267

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

prepare phase validates the transaction by checking for con-

flicts, assigns a logical end timestamp to the transaction,

waits for transactions it depends on to commit, and logs

the transaction’s write set. Since logging involves expensive

I/O operations, TxPrepare is asynchronous - it registers

a callback and returns after initiating the log I/O. Once the

I/O has completed, the host calls TxCommit to commit the

transaction, which releases any resources associated with the

transaction, unblocks all dependent transactions, and writes

return values to be sent to the client. However, if the prepare

phase fails (e.g., due to conflicts), the host calls TxAbort.

This protocol is vulnerable to a number of attacks from

a malicious host even if the Hekaton engine is hosted in

an enclave. The host can pass arbitrary transaction handles

(Tx*), tamper with the incoming request (e.g., by changing

parameter or return values), and invoke the protocol methods

out of order. We make the following client-side modifications

to ensure integrity of client-server interactions.

• We extend the query compiler to embed metadata such

as the stored procedure name and the position and type

of parameters in a dedicated section in the native binary.

This metadata is used to validate requests.

• EnclaveDB clients connect to EnclaveDB by creating

a secure channel with the enclave and establishing a

shared session key SK. During session creation, clients

authenticate the enclave using a quote that contains the

enclave’s measurement. The enclave can authenticate

clients using certificates or tokens issued by a trusted

authority; our implementation uses certificates embedded

in the EnclaveDB engine binary.

• EnclaveDB clients encrypt parameter values using SK.

Each parameter value is encrypted using authenticated

encryption with the parameter position, type and a nonce

as authentication data to prevent replay attacks.

We also make the following server-side modifications.

• The transaction processing APIs verify that transaction

objects passed as a parameter are allocated in enclave

memory, and procedure names, parameters and return

values are buffers in untrusted memory.

• TxExecute authenticates all incoming requests. If au-

thentication succeeds, EnclaveDB loads the native binary

and checks if the procedure name, parameter positions

and types are consistent with metadata stored in the

binary. If validation succeeds, EnclaveDB decrypts pa-

rameters, allocates buffers in enclave memory for return

values, and forwards the request to the Hekaton engine.

• After a stored procedure has executed, EnclaveDB en-

crypts return values (or error messages as described

below) and writes them to buffers allocated by the host.

• The engine maintains additional state to ensure that the

host does not attempt to commit a transaction if the

prepare phase failed.

Observe that once a request has been validated, the stored

procedure executes entirely within the enclave on tables hosted

in the enclave. This prevents the host from tampering with

query processing and reduces information leakage. We now

discuss cases where sensitive information is generated during

query processing.

Errors: Error conditions that occur during query process-

ing can be classified as secret dependent and secret indepen-
dent. Secret dependent errors directly or indirectly depend on

sensitive values e.g. values stored in the tables or passed as

parameters. This includes violations of database integrity con-

straints such as uniqueness, invalid cast/conversion, and invalid

arithmetic operations. Clearly, revealing these errors to the host

leaks information. However, this information is required by

SQL Server since the occurrence of an error (or lack thereof)

drives execution along different code paths e.g. the code path

where no results are sent to the client. EnclaveDB addresses

this problem by translating secret dependent errors into a

generic error, and packaging the actual error code and message

into a single message which is encrypted and delivered to the

client. The client extracts the message and relays the error

code to the application. In this process, the adversary learns

that some error occurred during query processing but does

not learn the cause of the error. This leakage can easily be

prevented by always relaying an error code (SUCCESS if no

error) and the result set (containing garbage on error) back to

the client. However, this requires changes to the SQL client-

server protocol and is outside the scope of this work.

Statistics: During execution, EnclaveDB collects a num-

ber of statistics that are useful for profiling and optimizing

performance. For example, EnclaveDB collects frequency and

execution time of each query, which can help identify slow

running queries. The optimizer utilizes cardinalities of val-

ues in columns to determine efficient query plans. Some of

these statistics are sensitive because they reveal properties of

sensitive data. Therefore, EnclaveDB maintains all profiling

information in enclave memory. EnclaveDB exposes an API to

export this information (in encrypted form) and import it into

a trusted client database, where it can be decrypted, analyzed,

and used during native compilation.

D. Key management

EnclaveDB supports a much simpler model for key man-

agement compared to existing systems [1], [12] which requires

users to associate and manage encryption keys for each column

containing sensitive data. In EnclaveDB, sensitive columns

are hosted in enclave memory, and data in these columns is

encrypted and integrity protected by the memory encryption

engine when it is evicted from the processor cache. Users

only need to create and manage a single database encryption

key DK, which is used to encrypt all persistent database

state. Users provision the key to a trusted key management

service (KMS), along with a policy that specifies the enclave

(identified using the enclave’s measurement) that the key can

be provisioned to. When an EnclaveDB instance starts or

resumes from a failure, it remotely attests with the KMS and

receives DK.

268

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Specification of the logging interface exposed

by the host to Hekaton

1: L← ∅
2: procedure LogAppend(tx, size, serializeCb, commitCb)
3: buf← alloc(size)
4: serializeCb(tx, buf)
5: L← L ∪ buf
6: startLogIO(tx, buf, commitCb)

7: procedure LogTruncate(buf)
8: L← L \ {b ∈ L | b < buf}
9: procedure GetLogIterator(start, end)

10: return {b ∈ L | b ≥ start ∧ b ≤ end}

Fig. 3: Transaction commit protocol in EnclaveDB

V. LOGGING AND RECOVERY

The Hekaton engine makes in-memory tables durable by

writing transactions on secret data to a persistent log managed

by the host (i.e. SQL Server). Since the host cannot be trusted,

EnclaveDB must ensure that a malicious host cannot observe

or tamper with the contents of the log. In this section, we

present a high-level specification of the logging and check-

pointing APIs and then describe protocols to ensure integrity.

As shown in Algorithm 1, the log can be abstracted as

a stream of bytes and a set L that contains indexes in the

stream where individual log records begin. The log supports

operations for appending log records, truncating the log, and

iterating over the log. The append operation allocates space

in the stream for the log record and returns an index buf in

the stream, which also serves as the address of the buffer

used for reading or writing the log record. The append op-

eration invokes a callback serializeCb, which writes the log

record in the allocated buffer, and schedules another callback

commitCb, which is invoked when the log record has been

flushed to disk. The truncation operation deallocates all buffers

preceding the given index. The iterator returns the indexes of

all log records between any two indexes start and end.

The Hekaton engine uses the log as follows (Figure 3).

After a transaction has been validated (in TxPrepare), the

engine serializes the transaction’s write set into a log record

Algorithm 2 Hekaton operations for creating checkpoints and

restoring the database after a failure

1: sys← ∅
2: procedure CreateCheckpoint(start, end)
3: {datafile, deltafile} ← SerializeLog(start, end)
4: sys← sys ∪ {datafile, deltafile}
5: WriteF ile(ROOT FILE, sys)
6: LogTruncate(end)

7: procedure RestoreDatabase(start, end)
8: sys← ReadF ile(ROOT FILE)
9: for {data, delta} ∈ sys do

10: RestoreCheckpoint(data, delta)

11: ReplayLog(start, end)

by calling LogAppend. Each log record includes the start

and end timestamp of the transaction. The host writes the

log record to disk and then invokes the commit callback. At

this point, the transaction enters the commit state. During

TxCommit, Hekaton unblocks dependent transactions and

notifies the client submitting the transaction. Hekaton is de-

signed to write multiple log records concurrently to avoid

scaling bottlenecks with the tail of the log. This is possible

because the serialization order of transactions is determined

solely by end timestamps and not by the ordering in the log.

Also note that failures can occur at any point e.g. after a

log record has been flushed to disk but before the client is

notified or dependent transactions are unblocked. We refer to

transactions for which Hekaton may have unblocked dependent

transactions or notified the client as visible transactions, and

transactions whose dependent transactions remain blocked and

no notifications have been generated as invisible transactions.

To avoid unbounded growth of the log, Hekaton periodically

creates checkpoints and then truncates the log (Figure 2). Each

checkpoint is a pair of append-only files, a data file and a delta

file. The data file contains all records that have been inserted or

updated since the last checkpoint and the delta file contains all

deleted records. Checkpoints are created using an in-memory

cache of log records, which is updated during commit. The

names of data and delta files are saved in a special table

called the system table (sys), which is persisted in a file called

the root file. To avoid data loss, Hekaton truncates the log at

a carefully selected index called the truncation index, which

satisfies the invariant that all transactions committing after the

truncation operation will be allocated indexes higher than the

truncation index. During recovery (see RestoreDatabase in

Algorithm 2), Hekaton retrieves the truncation index from the

database master file and the list of checkpoint file pairs from

the root file. It restores tables and indexes from checkpoints,

and replays the tail of the log from the truncation index.

A. Log Integrity

One way of ensuring integrity of the log and checkpoints

is to use an encrypted file system [14]. An encrypted file

system encrypts files with a key stored in enclave memory

and checks integrity using a merkle tree [25]. However,

maintaining a merkle tree for highly concurrent and write-

intensive workloads such as a database log can be expensive.

269

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

A merkle tree introduces contention because the log is an

append-only structure with a large number of threads writing

close to the tail of the file. These threads will update roughly

the same set of nodes in the merkle tree, and contend for

locks protecting these nodes [26], [27]. The merkle tree also

introduces contention for any monotonic counter(s) used to

protect the tree against replay attacks. Finally, the size of

a merkle tree is proportional to the size of the log, which

can grow to several 100 GBs. If (a part of) the merkle tree

is maintained in enclave memory, it reduces the amount of

enclave memory available to the database. On the other hand,

if the merkle tree is maintained on disk, a single log append

can translate into multiple updates on disk.

In this paper, we propose a new and efficient protocol

(Algorithm 3) for checking integrity and freshness of the log.

The protocol is based on the following observations.

• Correctness of database recovery does not depend on the

order of log records in the log. Instead, the ordering of

transactions is determined by start and end timestamps

embedded in the log records. Therefore, the log can be

viewed as a set of log records instead of a raw file.

• Hekaton can ensure state continuity as long as all check-

points, and log records of all visible transactions that have

not been truncated are read during recovery.

Our protocol uses monotonic counters (Section V-C)

to track sets of log records and identify log records

that must exist in the log on recovery. We assume

a monotonic counter service that exposes an API with

functions CreateCounter, GetCounter, IncCounter, and

SetCounter. CreateCounter creates counters bound to the

TCB of the enclave and the platform, IncCounter atomically

increments the counter and returns the previous value of the

counter, and SetCounter sets a counter to a given value if it

is higher than the counter’s current value or fails otherwise.

The protocol uses three counters: W tracks log records that

have been written to the log, V tracks log records generated

by visible transactions, and R tracks truncated log records. To

ensure that the protocol does not introduce new synchroniza-

tion bottlenecks, we track these sets separately for each thread

using per-thread monotonic counters. In other words, W, V,

and R are k-dimensional vectors, where k is the number of

enclave threads, which is fixed on enclave creation.

The counters are updated as follows. Each thread t process-

ing a transaction increments the counter Wt after transaction

validation but before sending the log record to the host

(Line 17). All log records are encrypted with DK using authen-

ticated encryption, with authentication data consisting of the

thread identifier t, the counter value Wt and the log record’s

index in the log (Line 18); the authentication data is stored in

the log record’s header. This ensures that each log record can

be uniquely identified by the pair of attributes (t, w) embedded

in the log record. The counter Vt is incremented during the

commit callback for a log record generated by thread t before
unblocking dependent transactions and notifying the client

(Line 25). At any point in time, the difference between pairs

Fig. 4: Serialization points during transaction processing.

of counters Wt and Vt represents log records of transactions

that are not yet visible.

Tracking truncated log records is more challenging because

at any given point, there are multiple log records being written

to the log at indexes assigned by the host, and a malicious

host can mount attacks by assigning indexes arbitrarily e.g. in

portions of the log that have already been truncated. In order

to detect malicious behavior, we establish a contract between

EnclaveDB and the host based on the notion of serialization
points. A serialization point is defined as follows.

Definition 5.1: Let t be a transaction and l be an index in

the log. Let log(t) represent the first index in the log where a

log record for transaction t has been written. A serialization

point is a pair (t, l) such that all transactions committing after

t should be written to the log after the index l. Formally, let ≤
represent the happens before relationship between transactions.

serialization point(t, l)⇒ ∀t′ | t ≤ t′, log(t′) > l

It also follows that given a serialization point (t, l), the log

can be safely truncated at l once all transactions that have

committed before t have been written to a checkpoint. From

the perspective of integrity checking, serialization points have

the following implications.

• Given a serialization point (t, l), it follows that once

transaction t commits, a correct log implementation never

returns an index l′ such that l′ ≤ l in any subsequent calls

to LogAppend. A violation of this property indicates an

attack.

• Once a serialization point (t, l) is established, we can

safely compute the expected number of log records that

have written before the index l because no more log

records should be written at any index l′ ≤ l.

There are many ways of establishing serialization points.

For example, Hekaton establishes serialization points by

grouping transactions based on end timestamps and waiting
for all transactions in group gn−1 to commit (and hence be

written to the log) before committing any transactions in gn+1.

Figure 4 illustrates this mechanism using a sample execution.

Transactions are color-coded according to groups. (T5, L1) is

a valid serialization point because all transactions committing

after T5 are written to the log after L1. Our protocol is inde-

270

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Protocol for checking integrity of the log

1: Monotonic counters
2: ∀t ∈ Threads,Wt ← 0, Vt ← 0, Rt ← 0
3: E ← 0
4: Volatile enclave state
5: ∀t ∈ Threads, lt ← ∅, s0t ← 0
6: b0 ← 0, p← 1
7:
8: procedure EnclaveLogAppend(tx, size)
9: size← size+HEADER SZ

10: LogAppend(tx, size, enclaveSerializeCb, enclaveCommitCb)

11:
12: procedure enclaveSerializeCb(tx, buf, size)
13: t← GetCurrentThreadId()
14: assert(buf > bp)
15: tmp← malloc(size−HEADER SZ)
16: serializeCb(tx, tmp)
17: w ← IncCounter(Wt)
18: buf← Enc[DK]{GetCounter(E), t, w}(tmp)
19: lt ← lt ∪ buf
20: free(tmp)

21:
22: procedure enclaveCommitCb(tx, enc)
23: {e, t, c}, buf ← Dec[DK](enc)
24: assert(e == GetCounter(E) ∧ c == GetCounter(Vt))
25: IncCounter(Vt)
26: commitCb(tx, buf)
27:
28: procedure OnSerializationPoint(buf)
29: ∀t, spt ← sp−1

t + | {b ∈ lt | b < buf} |
30: ∀t, lt ← lt \ {b ∈ lt | b < buf}
31: bp ← buf
32: p← p+ 1

33:
Require: (∃ i | i ≤ p ∧ bi == buf)
34: procedure EnclaveLogTruncate(buf)
35: j ← (i | i ≤ p ∧ bi == buf)
36: ∀t, SetCounter(Rt, s

j
t)

37: LogTruncate(buf)
38:
39: procedure ReplayLog(start, end)
40: ∀t, ct ← GetCounter(Rt)
41: ∀t, spt ← GetCounter(Rt)
42: I = GetLogIterator(start, end)
43: for enc ∈ I do
44: {e, t, c}, buf← Dec[DK](enc)
45: assert(e == GetCounter(E))
46: if GetCounter(Rt) ≤ c ≤ GetCounter(Vt) then
47: assert (c == ct + 1)
48: ct ← ct + 1
49: lt ← lt ∪ buf
50: ApplyLogRecord(buf)
51: ∀t, assert(ct == GetCounter(Vt))
52: if ∃t | ct �= GetCounter(Wt) then
53: OnSerializationPoint(end)
54: CreateCheckpoint(start, end)
55: IncCounter(E)

56: ∀t, SetCounter(Vt, GetCounter(Wt))

pendent of the way and the frequency with which serialization

points are established; it only requires that the client of the log

(i.e. Hekaton) periodically establish serialization points, and

notify the protocol when a serialization point is established.

Our protocol uses serialization points for tracking truncated

log records as follows. We maintain (in volatile enclave

memory) the sequence of serialization points b, a per-thread

list of indexes lt at which thread t has written log records

since the most recent serialization point, and a sequence s
of sets, one for each serialization point, where each element

spt is a number of log records written by thread t before the

serialization point p. When a new log record is created, we

add its index to the list lt after checking that the host does not

violate the serialization point contract (line 14). We introduce

a new operation OnSerializationPoint which is invoked by

Hekaton when it establishes a serialization point. For each

thread t, this operation computes a summary spt and removes

all indexes preceding the serialization point from lt.
We also modified Hekaton to invoke EnclaveLogTruncate

after creating a checkpoint, passing in a truncation index,

which must be a previously declared serialization point. This

operation updates the vector clock R (line 36) to reflect the set

of truncated log records using a previously computed summary

before calling out to truncate the log.

During recovery (ReplayLog), EnclaveDB reads the coun-

ters R and scans the tail of the log. While scanning, we check

that log records have not been tampered with and that the

log records generated by each thread appear in order of their

counter value with no gaps (Line 47). After scanning the tail,

we check if all visible log records (tracked by V) have been

read (Line 51), and report a freshness violation otherwise.

Note that the recovery protocol excludes log records gen-

erated by invisible transactions i.e. log records with counter

values greater than Vt. Excluding these log records is safe

because unlike Hekaton, the increment of the counter Vt

(line 25) is the commit point in EnclaveDB - clients and

dependent transactions are notified only after the increment.

However, simply excluding these log records allows the ad-

versary to mount a ’replay’ attack by withholding log records

belonging to invisible transactions and adding them to the

log in a later execution, thereby creating non-linearizable

executions. We prevent these attacks by invalidating all such

log records using an additional monotonic epoch counter E.

This counter is included in each log record’s authentication

data, and incremented (line 55) when log records belonging

to invisible transactions are detected in the log (line 52).

The increment, coupled with the additional check that all log

records read during recovery must belong to the current epoch

(line 45) invalidates all invisible log records that the adversary

may have withheld. We create a checkpoint and truncate the

whole log before incrementing the epoch counter to ensure that

visible transactions are not lost. We also update the counters

V, setting them equal to W before resuming execution.

B. Checkpoint Integrity

As discussed, EnclaveDB periodically truncates the log after

creating checkpoints. To avoid data loss, EnclaveDB must

ensure that before log records are truncated from the log, they

have been included in checkpoint files that are guaranteed to

be read during recovery. Furthermore, EnclaveDB must also

ensure that any tampering with the checkpoint files is detected.

EnclaveDB achieves these properties as follows. First, En-

claveDB maintains a cryptographic hash for each data and

delta file. The hash is updated as blocks are added to the

271

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 Protocol for checking integrity and freshness of

checkpoints.

1: S ← 0 //Monotonic counter
2: procedure EnclaveWriteF ile(name, data)
3: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
4: IncCounter(S)

5:
6: procedure EnclaveReadF ile(name)
7: enc← ReadF ile(name,GetCounter(S))
8: s, data← Dec[DK](enc)
9: assert(s == GetCounter(S))

10: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
11: IncCounter(S)
12: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
13: IncCounter(S)
14: return data

file. Once all writes to a checkpoint file have completed, the

hash is saved in the system table along with the file name.

EnclaveDB checks the integrity of all checkpoint file pairs

read during recovery by comparing the hash of their contents

with the hash in the root file.

Next, EnclaveDB uses a state-continuity protocol based on

Ariadne [28] to save and restore the system table within the

root file while guaranteeing integrity, freshness and liveness.

The protocol (shown in Algorithm 4) uses a monotonic counter

S to track versions of the root file. The protocol binds the

contents of each file with the counter value (by adding the

counter value to the file and generating a keyed MAC). Then

the file is written to disk and the counter is incremented. The

protocol allows the adversary to obtain a file with a counter

value one more than the current counter (by introducing a

failure after the file has been written but before the increment).

However, all such versions are invalidated by writing two

versions of the current root file (i.e. with enclosed counter

value matching S) with counter values S+1 and S+2 before

using the root file to reconstruct the system table. Refer to [28]

for a proof of correctness.

C. Monotonic Counters

The protocol described above relies on monotonic counters

to ensure state continuity. There are many ways of imple-

menting monotonic counters. For instance, SGX uses wear-

limited NVRAM available in the management engine [9].

Our experiments confirmed prior results [28] which show that

accessing these counters is slow (~100ms per counter update),

and not sufficient for the latency and throughput requirements

of EnclaveDB. In EnclaveDB, we use a dedicated monotonic

counter service implemented using replicated enclaves [29].

The service stores counters in enclaves replicated across

different fault domains and uses a consensus protocol to order

operations on counters. This approach is more flexible and

efficient than SGX counters, and can tolerate failures as long

as a quorum of replicas is available.

D. Forking attacks

The protocol described above ensures that any database

enclave recovers to the latest state. However, it permits the

adversary to launch forking attacks by creating multiple en-

claves with the same package on one or more servers, and

directing different clients to different enclaves. EnclaveDB

prevents forking attacks by ensuring that at any point in

time, only one enclave (and therefore one database instance)

is ’active’. On creation, each EnclaveDB enclave generates

a 128-bit GUID. This GUID is encrypted using the public

key of the KMS and included in the enclave’s quote. The

KMS maintains a mapping from database instances to GUIDs

and a black list of all GUIDs it has previously received in

quotes. When it receives a quote containing a new GUID, it

adds the current GUID to the blacklist and updates the GUID

associated with the database instance. Each database enclave

also includes its GUID (encrypted using the session key) in

all communication with clients. EnclaveDB clients verify that

they are establishing a session with or receiving a response

from the most recent incarnation of the database by validating

the response with the KMS, and retrying if validation fails.

E. Proof Sketch

In this section, we present an informal proof that the logging

protocol described above guarantees integrity, continuity and

liveness. Integrity and continuity are critical for establishing

that EnclaveDB guarantees linearizability (proof beyond the

scope of this paper), and liveness ensures that EnclaveDB

makes progress in the absence of an attacker.

Claim 5.1: Checkpoint continuity. Once EnclWriteFile
completes writing a root file, all log records included in
checkpoint file pairs referenced in the root file are guaranteed
to be read during any subsequent recovery.
This follows from the freshness guarantees of Ariadne’s pro-

tocol which prevents replay attacks, and integrity checks on

the root file and checkpoint file pairs.

Claim 5.2: Continuity. Log records generated by visible
transactions are either contained in the log or included in a
checkpoint file pair contained in the root file.
Consider a visible transaction T which generates log record l.
Let c be the counter value embedded in the log record, t be

the identifier of the enclave thread generating the log record,

and e be the epoch in which the log record is generated.

First, observe that each log record is uniquely identified by

the pair (t, c). This follows from the fact that c is obtained from

the tamper-proof, monotonic counter Wt, which is atomically

incremented every time a log record is generated.

Now consider any recovery that occurs following a failure

after the transaction T became visible. It follows that c < Vt.

There are two possible cases we encounter during recovery.

• Rt ≤ c < Vt. In this case, the log record l must be

read from the log since the recovery protocol reads all

records from Rt to Vt for each thread t. If the log record

is missing or has been duplicated, either the assert at line

47 or 51 fails. If the log record has been tampered with,

authentication fails. In either case, the database fails to

recover.

272

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

• c < Rt. In this case, we show that the log record must

belong to a checkpoint included in the root file. Observe

that the counters R are updated after a checkpoint has

been created and before the log is truncated. This im-

plies that the counters always under-approximate the set

of log records that have been included in checkpoints.

Therefore, if c < Rt, then the log record must have

been included in a checkpoint. This, in conjunction with

checkpoint continuity (Claim 5.1) ensures that either

the log record is included in a checkpoint read during

recovery, or the database fails to recover.

Claim 5.3: Integrity. Invisible transactions have no effect
on database state.
We show that log records generated by invisible transac-

tions are ignored while reconstructing database state during

recovery. Consider a log record l generated by an invisible

transaction T . Let c and e be the counter and epoch values

associated with l, and t be the enclave thread that generated

the log record. By definition, the commit callback was not

invoked for l. Since the counter Vt is incremented in the

commit callback, it must be true that Wt ≥ c and Vt < c
until a failure occurs. We consider two cases.

• If no failure occurs, then clearly the log record l is never

used during recovery. Furthermore, since the commit call-

back is never invoked for l, any transactions dependent

on T continue to remain blocked, and the client issuing

T is not sent a signed notification.

• If a failure occurs, then in the next recovery step, l is

not used to reconstruct state since c > Vt. Furthermore,

since Vt < Wt, EnclaveDB creates a checkpoint that

does not include l and increments the epoch counter

before updating Vt and resuming transaction processing.

Incrementing the epoch counter invalidates l.

Claim 5.4: Liveness. EnclaveDB does not introduce new
states where execution terminates in the absence of an active
attacker.

We show that none of the assertions introduced by En-

claveDB fail in the absence of an active attacker.

• Authentication failures. If requests, responses, the log and

checkpoints are not tampered with, and the database is

not forked, none of the authentication checks fail.

• Thread-level commit ordering failure (line 47). Each

thread in EnclaveDB generates a log record with counter

value c only after a previous log record with counter value

c−1 has been saved to storage. Therefore, in the absence

of an active attacker, the recovery protocol should receive

log records in a sequence that respects this ordering.

• Mismatched epoch (line 45). We prove this using in-

duction. It is easy to see that this assertion cannot fail

with E = 0. Assume this assertion does not fail during

recovery when E = i. Consider any subsequent recovery

which increments the epoch counter. In the absence of an

active attacker, EnclaveDB initiates recovery with start
and end indexes equal to the most recent truncation index

and the tail of the log. This ensures that the entire log is

truncated before the epoch counter is incremented. Since

new log records are generated only after the counter is

incremented and recovery completes, all subsequent log

records will be generated with epoch counter i+1. There-

fore, there will be no epoch mismatch when E = i+ 1.

VI. OPTIMIZATIONS

In EnclaveDB, the use of enclaves introduces several

sources of overheads. These include the cost of context

switching (saving and restoring thread context and invalidating

hardware TLB), memory encryption and integrity checking,

encrypting and decrypting data, and copying data in and out

of enclaves. Compared to prior work that uses trusted hardware

for evaluating individual expressions of a query in trusted

hardware [12], [13], EnclaveDB has a much smaller number of

context switches because the entire transaction is evaluated in

enclave mode. Furthermore, the number of context switches is

fixed and independent of the amount of data being processed.

Also, EnclaveDB incurs the cost of software encryption and

decryption only at transaction boundaries (parameters and

return values), and for log records and checkpoints, which

is significantly more efficient than encrypting and decrypt-

ing individual values. When compared to designs such as

Haven [14], EnclaveDB achieves better performance because

of more efficient protocols for ensuring integrity and freshness.

We implemented a number of optimizations to further improve

performance.

• We refactored the Hekaton engine to move state and logic

that does not depend on secrets to the host. This includes

state for tracking whether log IO for a transaction has

been completed.

• SQL Server uses a co-operative thread scheduler where

all threads are expected to periodically yield control. In

EnclaveDB, every yield results in a context switch. We

modified the Hekaton engine to reduce the frequency with

which threads yield (by 50%).

• We use prefetching to reduce the number of context

switches. Prefetching involves speculatively calling an

enclave API as part of a previous enclave invocation,

caching its results on the host and returning the cached

result when the API is subsequently called. This opti-

mization only applies to side-effect free APIs.

• We cache values of per-thread monotonic counters in

thread-local state. Therefore, we incur the cost of context

switches only on writes.

These optimizations resulted in a significant reduction in

the number of context switches (from an average of 110 to 10

context switches per transaction). This includes 5 calls into the

enclave and an additional callback to write the log record if

the transaction performs any writes, and 4 calls out of enclave

mode, which includes 2 monotonic counter updates.

VII. MULTI-PARTY SQL

In this section, we show how EnclaveDB can be extended to

support a scenario where mutually untrusting users can host a

273

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

shared database while guaranteeing strong security properties.

For simplicity, we consider a fixed set of mutually untrusting

users U = {U1, . . . Uk} who share a database hosted in an

untrusted environment. Each user Ui is associated with a

public-private key pair (PKi,SKi). A subset of these users

may collude with the database administrator. For this paper,

we assume that the table definitions and stored procedures are

pre-defined and known to all users. We would like to guarantee

the following properties (in addition to protection from the

administrator).

• Access control. Only authorized users can execute stored

procedures.

• Integrity. Authorized users can only execute one among

the set of pre-defined stored procedures.

• Confidentiality. Authorized users learn no information

about the state of the database apart from the results of

stored procedures they execute.

We achieve these properties as follows. Each user Ui

creates her own copy of the enclave package by compiling

all table definitions and stored procedures in her own trusted

environment. Additionally, Ui embeds the public keys of all

authorized users in a well-known section of the trusted kernel

binary. The DBA (who is not trusted) repeats this process and

deploys his version of the package on an untrusted server. On

enclave creation, EnclaveDB generates a new DK instead of

retrieving the key from the KMS, and seals DK to the platform

for future recovery. This key is used to encrypt log records and

checkpoints and shared with all users using a secret sharing

algorithm [30].

Once the database is initialized, any user Ui can use

remote attestation to check that the database enclave has been

correctly initialized by comparing the enclave’s measurement

with the measurement of her package, and initiate creation of a

secure channel. The enclave authenticates requests for creating

a secure channel using public keys embedded in the trusted

kernel binary. Once a secure channel is established, the user

can send requests to execute any of the pre-compiled stored

procedures. EnclaveDB ensures that users learn nothing more

than the response of transactions they execute.

VIII. EVALUATION

We have developed and tested EnclaveDB on Intel SGX.

Our implementation uses an in-house SGX SDK and Intel

SGX PSW v1.1.28151. Since the current generation of Intel

Skylake CPUs restricts the EPC to 128MB, we can only deploy

small databases using SGX hardware. To evaluate performance

for realistic database sizes, we use a performance model that

simulates large enclaves and accounts for the main sources of

overheads. In this section, we describe the performance model

and present results from an evaluation using two standard

database benchmarks.
Performance model: To model SGX performance with

larger enclaves, we assume that code in SGX will have

the same performance as current CPUs except for (1) the

additional cost of enclave transitions and (2) the additional

cost incurred by last level cache (LLC) misses due to memory

encryption and integrity checking while accessing the EPC.

We model enclave transitions by introducing a system call to

change protection of a pre-allocated page. This call flushes

the TLB and adds a delay of ~10000 cycles, which is approx-

imately the cost of a transition measured on SGX hardware.

For modeling the cost of memory encryption, we con-

sidered the option of artificially reducing DRAM frequency

and hence available memory bandwidth (similar to [14]).

However, reducing frequency affects both enclave and non-

enclave code, and does not accurately reflect the slowdown

caused by memory encryption. Instead, we model the cost

of memory encryption by using binary instrumentation to

’penalize’ all memory accesses generated by code within the

enclave. Our instrumentation tool injects a fixed delay before

every memory access within the enclave (excluding accesses

to the stack since they are likely to hit in the caches). The

amount of delay is obtained using a process of calibration

on current SGX hardware. We first measure the overhead of

running a set of micro-benchmarks using SGX enclaves. The

delay is the lowest number of cycles such that running the

same benchmarks after injecting the delay before every access

on the same hardware without enclaves results in overhead

higher than the overhead of running the application within the

enclave. Our microbenchmarks consists of a simple key-value

store [31] and a set of machine learning applications [32].

Using this calibration process, we find that our performance

model with a delay of 10 cycles always over-approximate

overheads of current SGX hardware. For example, SGX incurs

an overhead of 37% for the key-value store whereas our

performance model estimates the overhead to be 42%. On

processors of older generations, we introduce this delay by

injecting a single pause instruction. On Skylake processors

and CPUs from newer generations, a pause has much higher

latency (∼140 cycles). We therefore inject a sequence of 20

NOPs instead, which delays the access by 10 cycles. This

delay is implementation dependent so that the model should

be re-calibrated if the implementation changes.

Benchmarks and Setup: We evaluate the performance of

EnclaveDB using two standard database benchmarks, TPC-

C [33] and TATP [34]. The TPC-C benchmark represents

the activity of a wholesale supplier which manages and sells

products. We use a database with 256 warehouses. This

database has an in-memory size of 32GB. The workload

consists of a client driver running on two machines simulating

64 concurrent users each; each user executes five stored

procedures in accordance with the TPC-C specification [33].

The in-memory size grows by ~6GB/min during execution

of this workload. The TATP benchmark simulates a typical

location register database used by mobile carriers to store

information about valid subscribers, including their mobile

phone number and their current location. The database consists

of 4 tables and 7 stored procedures. We create a database with

10 million subscribers. The client driver simulates 100 active

subscribers querying and updating the database.

We optimized these benchmarks for use with an in-memory

database by creating appropriately sized indexes to optimize

274

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

query performance. The workload we generate drives CPU

utilization close to 100% in the baseline configuration while

leaving just enough slack for the checkpointing process to keep

up with the rate of transaction commits. We run each bench-

mark 5 times for 20 minutes each and measure performance

every minute. We performed the experiments on Intel Xeon

E7 servers running at 2.1 Ghz. The servers have 4 sockets

with 8 cores each (hyper-threading disabled). Each CPU has

an integrated memory controller with 4 memory channels

attached to 8 32GB DDR4 DIMMs (2 DIMMs per channel),

with a total capacity of 512GB. The storage subsystem consists

of 8 256GB SSDs and is used for storing both the log and

checkpoints. The servers run Windows Server 2016.

We evaluated each benchmark in four configurations. BASE
is the configuration with Hekaton running outside enclaves.

CRYPT is a configuration with EnclaveDB running in simu-

lated enclave mode. The model emulates enclaves within the

application’s address space by allocating a region of virtual

memory and loading all enclave binaries in that part of the

address space. In this configuration, all software security fea-

tures such as log/checkpoint encryption and integrity checking

are enabled. CRYPT-CALL is a configuration that adds the

cost of context switching to CRYPT. Finally, CRYPT-CALL-
MEM adds the cost of memory encryption to CRYPT-CALL. In

all configurations except BASE, we simulate enclaves of size

192GB. We configured the trusted kernel to use 128 threads;

for each thread, we allocate a stack of size 64K. For both

benchmarks, we consider all tables and stored procedures as

sensitive and host them in enclaves.

Trusted computing base: We measured the size of the

TCB for both these benchmarks. The Hekaton engine is 300K

LOC and the trusted kernel is 25K LOC. The queries and table

definitions are 41K and 18K lines of auto-generated code in

TPC-C and TATP respectively. In comparison, the SQL Server

OLTP engine is 10M LOC and Windows is >100M LOC.

Thus, the TCB of EnclaveDB is over two orders of magnitude

smaller than a conventional database and over an order of

magnitude smaller than systems such as Haven [14] whose

library OS has >5M LOC [35]. The main components that

contribute to the TCB in EnclaveDB are checkpointing and

recovery (̃ 100K LOC) and the transaction manager (̃ 50K

LOC). Reducing the TCB further, either by refactoring the

engine, or using verification remains an open problem.

Context switches: The number of context switches is

an important indicator of overheads for applications using

enclaves. We measured the number of context switches per

transaction for both benchmarks. On average, TPC-C incurs 5

context switches into the enclave (4 for the commit protocol,

and 1 call to serialize the log record). TPC-C also incurs 3

call outs per transaction on average, a call out to notify the

host of the outcome of TxPrepare, a call out to create a log

record, and a number of other less frequent call outs that occur

periodically. TATP has a similar profile, with the difference

that context switches due to logging are less frequent since

80% of the transactions are read-only. In either case, the

number of context switches is independent of the amount of

Fig. 5: TPC-C and TATP throughput for different configura-

tions. The plot shows the maximum, 95th percentile, mean,

median and minimum throughput values over a period of 20

minutes across 5 executions.

state in the enclave and the transaction logic (except in the

case of read-only transactions).

TPC-C: Figure 5 shows the variation in TPC-C through-

put for different configurations. In the baseline configuration,

EnclaveDB achieves a mean throughput of 52,000 tps (which

translates to 1.35 million new order transactions per minute or

tpmC), with a peak of over 1.6 million tpmC. The throughput

in both CRYPT and CRYPT-CALL configurations is statistically

similar to the baseline. This suggests that the additional

overheads of running the database with the trusted kernel,

switching thread contexts, copying data in and out of the

enclave, and encryption and integrity checking are negligible.

We attribute this to our design which minimizes the number of

context switches, amortizes the cost of encryption/decryption,

and the efficient protocol for checking integrity of the log.

We also find that the variability in throughput is lower in the

CRYPT configuration compared to baseline. This is due to two

aspects of our design. First, virtual memory for the enclave is

allocated at enclave creation and never returned to the host

operating system. In contrast, the in-memory engine running

outside the enclave periodically returns unused memory back

to the SQL buffer pool, and must re-allocate memory when

required. Secondly, the enclave thread scheduler yields control

to the host less often compared to the baseline scheduler to

reduce switching costs.

Finally, we observe that the CRYPT-CALL-MEM configu-

ration, which models the cost of memory encryption, has a

mean throughput of 31,000 tps, a drop of ~40% compared

to baseline. Even with these overheads, throughput is over

two orders of magnitude higher than prior work [14], which

achieved a throughput of ~80 tpsE for the TPC-E benchmark

on a 4-core machine using a similar performance model.

To further understand these overheads, we compared the

configurations CRYPT and CRYPT-CALL-MEM with baseline

across a number of other performance metrics. Figure 6 shows

the comparison over a 20-minute window with samples col-

lected every 10 seconds and averaged every minute. All con-

figurations have high CPU utilization (over 90%) on average,

which suggests that CPU remains the main bottleneck. The

periodic changes in CPU, memory, and disk bandwidth utiliza-

tion in BASE (and to a lesser extent in CRYPT) are caused by

275

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Profiles comparing CPU, memory bandwidth and disk bandwidth utilization for the TPC-C benchmark. BASE (unmarked

lines), CRY (red lines marked with diamonds) and CCM (blue lines marked with stars) represent the baseline, CRYPT and

CRYPT-CALL-MEM configurations.

checkpointing. The similarity of memory and disk utilization

between BASE and CRYPT also confirms that the the integrity

checking protocol does not introduce new bottlenecks. We also

observe that memory bandwidth utilization is high (reaching

10GBps), and memory reads dominate writes, whereas disk

writes dominate reads. This is expected since most of the

transaction processing occurs in-memory, whereas disk traffic

is dominated by writes to the log. Finally, we observe that both

memory and disk bandwidth utilization in CRYPT-CALL-MEM
configuration are significantly lower than baseline and CRYPT,

caused by pause instructions which model memory encryption.

Based on these observations, we conclude that if the next

generation SGX hardware can deliver an effective memory

read/write bandwidth of ~6GBps and 2GBps respectively with

large enclaves, we can expect overheads of ~40%.

TATP: We deployed a scaled down version of the TATP

benchmark (with 1000 subscribers) in EnclaveDB using SGX

hardware. We were only able to run this benchmark for 40,000

transactions (4 client threads issuing 10,000 transactions each)

before running out of enclave memory. For this scaled down

workload, Hekaton achieves a peak throughput of 7,900 tps

whereas EnclaveDB achieved a peak throughput of 7,700 tps,

an overhead of 2.5%. This is however, not a representative

workload because of the small size of the database and short

duration of the workload.

Figure 5 shows the throughput for the full TATP workload.

EnclaveDB achieves a higher throughput of 71,000 tps with

low variability compared to TPC-C because it is a predomi-

nantly read only workload (with 80% read transactions). The

mean throughput reduces to ~65,000 tps after switching to

the CRYPT configuration. Accounting for the costs of context

switching and memory encryption reduces the throughput

further; we observe a mean throughput of 60,500 tps in the

CRYPT-CALL-MEM configuration, an overhead of 15% relative

to baseline.

As shown in Figure 7, CPU remains the main bottleneck in

the CRYPT-CALL-MEM configuration. Also, much like TPC-C,

memory reads dominate writes and disk writes dominate reads.

However, both memory and disk bandwidth utilization are

lower compared to TPC-C, reflecting the predominantly read-

only nature of the workload. The memory read bandwidth for

the CRYPT-CALL-MEM configuration is higher than baseline.

This is because the additional memory traffic generated by

EnclaveDB (due to context switching, encryption/decryption

and integrity checking) dominates the reduction in utilization

caused by pause instructions. We also measured the end-to-

end latency for this benchmark. We find an increase in average

latency by 10%, 18% and 22% for CRYPT, CRYPT-CALL, and

CRYPT-CALL-MEM configurations respectively over BASE.

Based on these experiments, we can conclude that En-

claveDB achieves a very desirable combination of strong

security (confidentiality and integrity) and high performance,

a combination we believe should be acceptable to most users.

IX. RELATED WORK

Existing research on secure databases falls into two broad

categories, one based on homomorphic encryption, and the

other using trusted hardware.

Homomorphic encryption: Homomorphic

encryption [36] refers to encryption schemes that permit

operations on encrypted values. While fully homomorphic

encryption is not practical yet [37], a number of partially

homomorphic encryption schemes have been proposed [38],

[39], [40] that permit specific operations on encrypted data,

potentially at the cost of weaker security. Systems such

as CryptDB [1], Monomi [2], and Seabed [3] use these

schemes to provide secure query processing while protecting

the confidentiality of data. However, the types of queries

supported by these systems are limited by the availability of

corresponding encryption schemes or need to be augmented,

e.g. by offloading parts of the query execution to clients [41],

[2]. Arx [42] introduces two new types of database indices

for range and equality queries based on garbled circuits [43].

With these, it can support a similar set of queries as previous

systems while using semantically-secure encryption. In

276

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Profiles comparing CPU, memory bandwidth and disk bandwidth utilization for the TATP benchmark.

contrast, EnclaveDB supports a broader set of queries,

including arbitrary arithmetic, string manipulation, grouping

and sorting, and uses strong probabilistic encryption. In

addition, EnclaveDB provides not only confidentiality but

also integrity and freshness guarantees for both stored data

and query results.

Trusted hardware: Several database designs have been

proposed that incorporate secure coprocessors [44], [45], [46]

to securely process sensitive data. The data is stored in

encrypted form on the host system and is only decrypted

on the coprocessor as part of the query execution. However,

currently available coprocessors are limited in terms of pro-

cessing speed, storage, and bandwidth. TrustedDB [13] and

Cipherbase [12] outsource computations on sensitive data to

secure co-processors and FPGAs. These approaches require

additional hardware and focus only on confidentiality, but do

not guarantee the integrity or freshness of computation. They

also suffer from high overheads due to the cost of data transfer

over PCIe.

Haven [14] and Graphene [24] use Intel SGX for isolation

and run unmodified applications by bundling them with an in-

enclave library OS. Haven can run an unmodified version of

SQL server but its library OS alone has over 5M LOC [35].

To avoid the large TCB overhead of a whole library OS,

SCONE [47] places the C standard library inside the enclave

and delegates all system calls performed by the application to

the untrusted host. Compared to EnclaveDB, it still runs the

full application inside the enclave while EnclaveDB further

minimises the TCB by running large parts of the database

server outside of the enclave. Panoply [48] allows applications

to be split into multiple compartments and to be run across

multiple enclaves following the principle of least privilege.

Similarly, Glamdring [49] semi-automatically partitions appli-

cations to only run security-sensitive code within enclaves.

However, these approaches are not easily applicable to com-

plex applications such as databases.

X. CONCLUSIONS

In this paper, we proposed EnclaveDB, a database that

uses trusted execution environments such as SGX enclaves

to guarantee confidentiality and integrity with low overhead.

EnclaveDB makes a careful set of design choices that reduce

the TCB to a small set of security critical components such

as the query engine and the transaction manager, and removes

trust from the DBA. EnclaveDB also supports a multi-party

mode where multiple, mutually distrusting users host sensitive

data and execute queries in a shared database instance. A key

component of EnclaveDB is an efficient protocol for ensuring

the integrity and freshness of the database log. There are many

ways EnclaveDB can be improved, such as support for online

schema changes, dynamically changing the set of authorized

users, and further reducing the TCB. But we believe that

EnclaveDB lays a strong foundation for the next generation

of secure databases.

REFERENCES

[1] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Process-
ing,” in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11, 2011, pp. 85–100.

[2] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the 39th
international conference on Very Large Data Bases, ser. PVLDB’13.
VLDB Endowment, 2013, pp. 289–300.

[3] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,
H. Singh, and A. Modi, “Big Data Analytics over Encrypted Datasets
with Seabed,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16, 2016.

[4] Microsoft. (2016) Always Encrypted Database Engine. [Online].
Available: https://msdn.microsoft.com/en-us/library/mt163865.aspx

[5] Google. (2017) Encrypted BigQuery client. [Online]. Available:
https://github.com/google/encrypted-bigquery-client

[6] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-Abuse Attacks against Order-Revealing Encryption,” in Pro-
ceedings of the 2017 IEEE Symposium on Security and Privacy, ser. SP
’17. San Jose, California, USA: IEEE Computer Society, 2017.

[7] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by
Order-Revealing Encryption?” in ACM Conference on Computer and
Communications Security (CCS). Vienna, Austria: ACM, 2016.

[8] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
Property-Preserving Encrypted Databases,” in ACM Conference on Com-
puter and Communications Security (CCS). Denver, CO, USA: ACM,
2015.

[9] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proceedings of the 2Nd

277

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’13, 2013.

[10] W. Zheng, A. Dave, J. Beekman, R. A. Popa, J. Gonzalez, and I. Stoica,
“Opaque: A Data Analytics Platform with Strong Security,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). Boston, MA: USENIX Association, 2017.

[11] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 38–54.

[12] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann,
R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Secure Database-as-
a-service with Cipherbase,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13,
2013, pp. 1033–1036.

[13] S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware Based Database
with Privacy and Data Confidentiality,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 205–216.

[14] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” ACM Trans. Comput. Syst., vol. 33,
no. 3, pp. 8:1–8:26, Aug. 2015.

[15] S. Checkoway and H. Shacham, “Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13, 2013.

[16] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: SQL Server’s memory-
optimized OLTP engine,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, 2013, pp. 1243–1254.

[17] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing Page
Faults from Telling Your Secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp.
317–328.

[18] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems,” in 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, 2015, pp. 640–656.

[19] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privi-
leged Side-Channel Attacks in Shielded Execution with DéJà Vu,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’17, 2017.

[20] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” CoRR, vol. abs/1702.07521, 2017.

[21] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia, and
K. Vaswani, “A Design and Verification Methodology for Secure Iso-
lated Regions,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’16,
2016.

[22] D. McGrew and J.Viega, “The Galois countermode of operation
(GCM),” Submission to NIST Modes of Operation Process, 2004.

[23] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, Jul. 1990.

[24] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, 2017, pp. 645–658.

[25] R. C. Merkle, “Secrecy, Authentication, and Public Key Systems,” Ph.D.
dissertation, Stanford University, 1979, aAI8001972.

[26] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and
P. Guillemin, “Tec-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks. cryptographic hardware and
embedded systems-ches,” 2007.

[27] H. Pang and K.-L. Tan, “Authenticating query results in edge com-
puting,” in Proceedings of the 20th International Conference on Data
Engineering, 2004.

[28] R. Strackx and F. Piessens, “Ariadne: A Minimal Approach to State
Continuity,” in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, 2016, pp. 875–892.

[29] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted

execution,” in 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, 2017, pp. 1289–1306.

[30] A. Shamir, “How to Share a Secret,” Communication of ACM, vol. 22,
no. 11, Nov. 1979.

[31] Kissdb. [Online]. Available: https://github.com/ftes/kissdb-sgx

[32] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learning
on Trusted Processors,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 619–636.

[33] TPC. (2017) TPC-C Homepage. [Online]. Available: http://www.tpc.
org/tpcc/

[34] TATP. (2017) Telecom Application Transaction Processing Benchmark.
[Online]. Available: http://tatpbenchmark.sourceforge.net/

[35] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the Library OS from the Top Down,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI,
2011, pp. 291–304.

[36] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC ’09, 2009, pp. 169–178.

[37] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the
AES Circuit,” in Advances in Cryptology–CRYPTO 2012. Springer,
2012, pp. 850–867.

[38] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology Eurocrypt 1999. Springer-
Verlag, 1999, pp. 223–238.

[39] M. Bellare, A. Boldyreva, and A. O’Neil, “Deterministic Encryption and
Efficiently Searchable Encryption,” in Proceedings of the International
Symposium on Cryptography, 2007.

[40] G. Amanatidis, A. Boldyreva, and A. O’Neil, “New Security Models
and Provably-Secure Schemes for Basic Query Support in Outsourced
Databases,” in Proceedings of the International Symposium on Cryptog-
raphy, 2007.

[41] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
Over Encrypted Data in the Database-Service-Provider Model,” in
Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data. ACM, 2002, pp. 216–227.

[42] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” IACR Cryptology ePrint Archive, vol. 2016, p. 591,
2016.

[43] A. C.-C. Yao, “How to generate and exchange secrets,” in Foundations
of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986,
pp. 162–167.

[44] S. W. Smith and D. Safford, “Practical Server Privacy with Secure
Coprocessors,” IBM Systems Journal, vol. 40, no. 3, pp. 683–695, 2001.

[45] L. Bouganim and P. Pucheral, “Chip-secured Data Access: Confidential
Data on Untrusted Servers,” in Proceedings of the 28th International
Conference on Very Large Data Bases, ser. VLDB ’02, 2002, pp. 131–
142.

[46] E. Mykletun and G. Tsudik, “Incorporating a secure coprocessor in
the database-as-a-service model,” in Innovative Architecture for Future
Generation High-Performance Processors and Systems, 2005. IEEE,
2005, pp. 7–pp.

[47] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’16, 2016, pp. 689–703.

[48] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux Applications with SGX Enclaves,” in 24th Annual Network and
Distributed System Security Symposium, San Diego, California, USA,
February, 2017, 2017.

[49] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and
P. Pietzuch, “Glamdring: Automatic Application Partitioning for Intel
SGX,” in 2017 USENIX Annual Technical Conference (USENIX ATC

17). Santa Clara, CA: USENIX Association, 2017, pp. 285–298.

278

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 03:21:04 UTC from IEEE Xplore. Restrictions apply.

