
Anonymity Trilemma: Strong Anonymity, Low
Bandwidth Overhead, Low Latency—Choose Two

Debajyoti Das
Purdue University, USA

das48@purdue.edu

Sebastian Meiser
University College London, UK

s.meiser@ucl.ac.uk

Esfandiar Mohammadi
ETH Zurich, Switzerland

mohammadi@inf.ethz.ch

Aniket Kate
Purdue University, USA

aniket@purdue.edu

Abstract—This work investigates the fundamental constraints
of anonymous communication (AC) protocols. We analyze the
relationship between bandwidth overhead, latency overhead, and
sender anonymity or recipient anonymity against the global
passive (network-level) adversary. We confirm the trilemma that
an AC protocol can only achieve two out of the following three
properties: strong anonymity (i.e., anonymity up to a negligible
chance), low bandwidth overhead, and low latency overhead.

We further study anonymity against a stronger global passive
adversary that can additionally passively compromise some of the
AC protocol nodes. For a given number of compromised nodes,
we derive necessary constraints between bandwidth and latency
overhead whose violation make it impossible for an AC protocol
to achieve strong anonymity. We analyze prominent AC protocols
from the literature and depict to which extent those satisfy our
necessary constraints. Our fundamental necessary constraints
offer a guideline not only for improving existing AC systems
but also for designing novel AC protocols with non-traditional
bandwidth and latency overhead choices.

I. INTRODUCTION

Millions of users from all over the world employ anonymous

communication networks, such as Tor [1], to protect their

privacy over the Internet. The design choice made by the

Tor network to keep the latency and bandwidth overheads

small has made it highly attractive to its geographically

diverse user-base. However, over the last decade, the academic

literature [2]–[8] has demonstrated Tor’s vulnerability to a

variety of traffic correlation attacks. In fact, Tor also has been

successfully attacked in practice [9].

It is widely accepted that low-latency low-bandwidth over-

head of anonymous communication (AC) protocols, such as

Tor [10], can only provide a weak form of anonymity [11].

In the anonymity literature, several AC protocols were able

to overcome this security barrier to provide a stronger anony-

mity guarantee (cryptographic indistinguishability based ano-

nymity [12], [13]) by either increasing the latency overhead or

the bandwidth overhead. In particular, high-latency approaches

(such as threshold mix networks [14]) can ensure strong

anonymity by introducing significant communication delays

for users messages, while high-bandwidth approaches (such as

Dining Cryptographers network [15] and its extensions [16]–

[18]) can provide strong anonymity by adding copious noise

(or dummy) messages.

There have been a few efforts to propose hybrid ap-

proaches [19]–[24] that try to provide anonymity by simultane-

ously introducing latency and bandwidth overhead. However,

it is not clear how to balance such system parameters to ensure

strong anonymity while preserving practical performance.

In general, in the last 35 years a significant amount of

research efforts have been put towards constructing novel

AC protocols, deploying them, and attacking real-world AC

networks. However, unlike other security fields such as cryp-

tography, our understanding regarding the fundamental limits

and requirements of AC protocols remains limited. This work

takes some important steps towards answering fundamental

question associated with anonymous communication. “Can we

prove that strong anonymity cannot be achieved without intro-

ducing large latency or bandwidth overhead? When we wish to

introduce the latency and bandwidth overheads simultaneously,

do we know the overhead range values that still fall short at

providing stronger anonymity?”

Our Contribution. We confirm a previously conjectured [24],

[25] relationship between bandwidth overhead, latency over-

head and anonymity. We find that there are fundamental

bounds on sender and recipient anonymity properties [12],

[13], [26], [27] of a protocol that directly depend on the

introduced bandwidth and latency overheads.

This work presents a generic model of AC protocols using

petri nets [28], [29] such that different instantiations of this

model will represent different AC protocols, covering most

practical AC systems in the literature. We derive upper bounds

on anonymity as functions of bandwidth overhead and latency

overhead, against two prominent adversary classes: global pas-

sive network-level adversaries and strictly stronger adversaries

that additionally (passively) compromise some protocol parties

(e.g., relays in case of Tor). These bounds constitute necessary

constraints for anonymity. Naturally, the constraints are valid

against any stronger adversary class as well.

For both adversary classes, we analyze two different user

distributions (i.e., distributions that determine at which time or

rate users of the AC protocol send messages): (i) synchronized

user distributions, where users globally synchronize their mes-

sages, and (ii) unsynchronized user distributions, where each

user locally decides when to send his messages independent

of other users.

We analyze the trade-off between latency overhead and

bandwidth overhead required to achieve strong anonymity,

i.e., anonymity up to a negligible (in a security parameter η)

chance of failure. For any AC protocol where only a fraction

108

2018 IEEE Symposium on Security and Privacy

© 2018, Debajyoti Das. Under license to IEEE.
DOI 10.1109/SP.2018.00011

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

of β ∈ [0, 1] users send noise messages per communication

round, and where messages can only remain in the network

for � ≥ 0 communication rounds, we find that against

a global network-level adversary no protocol can achieve

strong anonymity if 2β� < 1 − 1/poly(η) even when all

the protocol parties are honest. In the case where a strictly

stronger adversary additionally passively compromises c (out

of K) protocol parties, we show that strong anonymity is

impossible if 2(� − c)β < 1 − 1/poly(η) (for c < �), or

2β� < 1− 1/poly(η) and � ∈ O(1) (for c ≥ �).
We also assess the practical impact of our results by

analyzing prominent AC protocols. Our impossibility results

naturally only offer necessary constraints for anonymity, but

not sufficient conditions for the AC protocol. However, these

necessary constraints for sender and recipient anonymity are

crucial for understanding bi-directional anonymous commu-

nication. In fact, we find that several AC protocols in the

literature are asymptotically close to the suggested constraints.

Moreover, designers of new AC protocols can use our nec-

essary constraints as guidelines for avoiding bad trade-off

between latency and bandwidth-overhead.

II. OVERVIEW

A. Formalization and Adversary Model

AC Protocols as Petri Nets. We define a view of AC

protocols as petri nets [28]–[30], i.e., as graphs with two

types of labeled nodes: places, that store colored tokens, and

transitions, that define how these tokens are sent over the

graph. In our case, each colored token represents a message,

places are the protocol parties that can receive, hold and send

messages, and transitions describe how parties exchange and

relay messages. Our model captures all AC protocols under the

assumption that messages are transmitted directly, i.e., in order

for Bob to receive a message from Alice, Alice has to send the

message and the message (albeit relayed, delayed and crypto-

graphically modified) eventually has to reach Bob. While this

requirement may sound strict, as elaborated in Section IV-B,

we effectively only exclude few esoteric protocols.

User Distributions, Communication Rounds, Bandwidth
Overhead, and Latency. We consider two types of user
distributions. In the first user distribution (synchronized) N
users send their messages in exactly N rounds (see Figure 1

for notations). Per round, exactly one user sends a message.

The protocol decides which users send noise messages in each

round. In the second user distribution (unsynchronized) each

user independently decides whether to send a message in a

round using a coin flip, with a success probability p.

The model considers synchronous communication rounds as

in [16], [17], [31], [32]. We model latency overhead � as the

number of rounds a message can be delayed by the protocol

before being delivered. We formalize bandwidth overhead β
as the number of noise messages per user that the protocol

can create in every round, i.e., the dummy message rate.

Our two types of user distributions cover a large array of

possible scenarios. Results for our user distributions imply

� Latency overhead for every message
β Bandwidth overhead for every user per round
p Probability to send a message per user per round
K Number of (internal) protocol parties
c Number of compromised protocol parties
N Number of online users (that may send messages)
δ Adversarial advantage in the anonymity game
Π A protocol. Π ∈M : Π is within our model
η The security parameter
ε A (very small, but non-negligible) function

Fig. 1. Notation

results for similar distributions, if a reduction proof can show

that they are less favorable to the protocol.1

Adversaries. We consider global passive non-compromising
adversaries, that can observe all communication between

protocol parties; and strictly stronger partially compromising
(passive) adversaries, that can compromise protocol parties to

learn the mapping between inputs and outputs for this party.

Anonymity Property. We leverage an indistinguishability

based anonymity notion for sender anonymity: the adversary

has to distinguish two senders of its own choosing [12], [13].

For a security parameter η, we say that a protocol achieves

strong anonymity, if the adversary’s advantage remains negligi-

ble in η. Strong anonymity is relative to a strength η, which is

bound to system parameters or analysis parameters such as the

number of users or protocol parties, the latency overhead and

the bandwidth overhead. These parameters typically increase

as η increases, which improves the protocol’s anonymity.2

Anonymity in relation to η unifies a wide variety of possible

analyses on how the anonymity bound changes with changing

system parameters, and user numbers and behaviors.

B. Brief Overview of the Proof Technique

As non-compromising adversaries are a subset of partially
compromising adversaries, our proof technique for the former

is a simplified case of the latter. In general, we derive our

results in four main steps.

First, we define a concrete adversaryApaths, that uses a well

established strategy: upon recognizing the challenge message

(as soon as it reaches a receiver) Apaths constructs the possible

paths this message could have taken through the network, and

tries to identify the user who has sent the message.

Second, given the concrete adversary Apaths, we identify a

necessary invariant that any protocol has to fulfill in order to

provide anonymity. Intuitively: both challenge users chosen by
the adversary must be active (i.e., send at least one message)
before the challenge message reaches the recipient, and it
must be possible for these messages to meet in at least one
honest party along the way. We prove that indeed this natural

invariant is necessary for anonymity.

1Such distributions might contain usage patterns, irregularities between
users and synchronization failures that the adversary can exploit.

2In some analyses, individual parameters may reduce with increasing η,
such as the bandwidth overhead per user, as the other parameters, such as the
number of users, increase.

109

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

Next, we propose an ideal protocol Πideal that is optimal in

terms of satisfying the invariant: The probability that Πideal

fulfills the necessary invariant is at least as high as for any

protocol within our model (limited by the same constraints for

β and �). Moreover, whenever Πideal satisfies the invariant, the

advantage of Apaths is zero. Thus, Πideal is at least as good

as any protocol within our model at winning against Apaths.

Finally, we calculate the advantage of Apaths against Πideal

to obtain a lower bound on the adversarial advantage against

all protocols within our model.3

C. Scenarios and Lower Bounds

We devise necessary constraints for four different scenarios.

Let Π be a protocol in our model, with N users, restricted by

bandwidth overhead β ∈ [0, 1] and latency overhead � ≥ 0.

For the compromising cases, the adversary can compromise

c out of K protocol parties. We derive the following lower

bounds for δ-sender anonymity in the respective scenarios.

Synchronized Users, Non-compromising Adversaries:

δ ≥ 1− fβ(�), where fβ(x) = min
(
1,

(
x+βNx
N−1

))
.

Synchronized Users, Partially Compromising Adversaries:

δ ≥
{
1− [1− (

c
�

)
/
(
K
�

)
]fβ(�) c ≥ �

1− [1− 1/
(
K
c

)
]fβ(c)− fβ(�− c) c < �.

Unsynchronized Users, Non-compromising Adversaries:

δ ≥ 1 − [1/2 + fp(�)], where for p ≈ β we have

fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

Unsynchronized Users, Partially Compromising Adv.:

δ ≥

⎧⎪⎪⎨
⎪⎪⎩
1− [1− (

c
�

)
/
(
K
�

)
][1/2 + fp(�)] c ≥ �(

1− [1− 1/
(
K
c

)
][1/2 + fp(c)]

)
×

(
1− [1/2 + fp(�− c)]

)
c < �.

To keep the presentation concise, we focus on how to derive

bounds for sender anonymity. As the bounds for recipient

anonymity are obtained analogously, we only explain the

adjustments in the proofs and the corresponding resulting

bounds. The omitted canonical analysis can be found in [33].

D. Interpretation and Interesting Cases

Our first and third lower bounds, for respectively synchro-

nized and unsynchronized user behaviors against in a non-

compromised AC network, suggest an anonymity trilemma.

Both lower bounds can be simplified under some natural

constraints to the following simplified lemma:

Lemma 1 (Informal Trilemma). For security parameter η, no
protocol can achieve strong anonymity if 2�β < 1 − ε(η),
where ε(η) = 1

ηd for any positive constant d.

3Apaths is a possible adversary against all protocols within our model. If
Apaths has an advantage of δ against our ideal protocol Πideal (bounded
by β and �), then Apaths will also have an advantage of at least δ against
any protocol within our model (that is also bounded by β and �). Thus, our
bound for δ describes a lower bound on the adversarial advantage against
any protocol within the model, while against particular protocols there can be
other adversaries (in the same adversary class) with an even higher advantage.

Ideal asymptotic values for latency overhead is � = O(1)
(i.e., a constant number of hop separation from the receiver),

while ideal asymptotic values for bandwidth overhead is

β = O(1/N) = O(1/poly(η)) (i.e., a constant number of

message per round from all N = poly(η) users combined). It

is easy to see that for this ideal overhead �β = O(1/poly(η)),
the trilemma excludes strong anonymity, while, with latency

overhead � = N = O(poly(η)) or with bandwidth overhead

β = O(1), the trilemma does not exclude strong anonymity.

We find some interesting possible overhead constraints for

strong anonymity (e.g. � = O(η) and β = O(1/η)) demanding

some compromise in both latency and bandwidth. These con-

straints can help understand and improve existing AC protocols

as well as inform the design of future AC protocols.

For partially compromised scenarios the requirements are

naturally stronger. All constraints discussed for compromised

case in the following part are in addition to the requirements

from the non-compromised case. While bandwidth overhead

might be sufficient against non-compromising adversaries, it

is not sufficient if parts of the protocol are compromised. With

� = η and K
c = constant strong anonymity may be possible,

whereas with � = O(1), strong anonymity is impossible, even

for K ∈ poly(η) and c = O(1).
In case c < �, strong anonymity guarantees may be possible

only if 2(�− c)p > 1− ε(η), where p = p′ + β combines the

genuine user messages p′ with their bandwidth overhead β.

Our result shows a connection between the expected usage

behavior p and the latency �. If p is not particularly large,

the latency cannot be low; otherwise, the path-length cannot

be sufficiently high to ensure mixing at an honest node. In

other words, unless p is very large (as should be the case for

some file sharing applications), a low latency renders the AC

protocol cheap to compromise, i.e., c can be low.

Our necessary constraints enable protocol designers of

AC protocols to avoid bad trade-offs between latency and

bandwidth overhead. For a given expected user behavior and

a given target attacker against which the AC shall provide

anonymity, our constraints clearly state which combinations

of latency and bandwidth overhead to avoid.

E. Related Work

In contrast to previous work, our work provides necessary

constraints for strong anonymity w.r.t. to bandwidth and la-

tency overhead. While there is a successful line of work on

provable anonymity guarantees [12], [26], [27], [34]–[37], it is

incomparable since it provides lower bounds on anonymity for

specific protocols, and does not prove any general statements

about sufficient conditions for strong anonymity.

Previous work on attacks against anonymous communica-

tion protocols, except for Oya et al. [38], solely provides

upper bounds on anonymity for specific protocols [39]–[42].

Oya et al. [38] cast their attack in a general model and

provide a sophisticated generic attacker. However, they only

compute bounds w.r.t. a dummy message rate against timed

pool mixes, not against other protocols and not w.r.t. latency

and compromisation rate. Even more important, none of these

110

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

results discuss the relationship of the lower bounds for latency

and bandwidth overheads.

III. ANONYMITY DEFINITION AND USER DISTRIBUTIONS

A. AnoA-Style Anonymity Definition

We define our anonymity notions with a challenge-response

game similar to AnoA [26], [27], where the challenger sim-

ulates the protocol and the adversary tries to deanonymize

users. The challenger Ch(Π, α, b) allows the adversary to

adaptively control user communication in the network, up to

an uncertainty of one bit for challenges, and is parametric in

the following parts: (i) the AC protocol Π to be analyzed, (ii)

the so called anonymity function α, that describes the specific

variant of anonymity such as sender anonymity, recipient

anonymity and relationship anonymity, (iii) and the challenge

bit b which determines the decision the challenger takes in

challenge inputs from the adversary.

Given a security parameter η, we quantify the anonymity

provided by the protocol Π simulated by Ch(Π, α, b) in terms

of the advantage the probabilistic polynomial time (PPT)

adversary A has in correctly guessing Ch’s challenge bit b. We

measure this advantage in terms of indistinguishability of ran-

dom variables additively, where the random variables in ques-

tion represent the output of the interactions 〈A|Ch(Π, α, 0)〉
and 〈A|Ch(Π, α, 1)〉.
Definition 1 ((α, δ)-IND-ANO). A protocol Π is
(α, δ)-IND-ANO 4 for the security parameter η, an adversary
class C, an anonymity function α and a distinguishing factor
δ(·) ≥ 0, if for all ppt machines A ∈ C,
Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η).

For an anonymity function α, we say that a protocol Π
provides strong anonymity [12], [13] if it is (α, δ)−IND-ANO
with δ ≤ neg(η) for some negligible function neg. If δ is

instead non-negligible in η, then we say that Π provides

weak anonymity. Note that η does not measure the size of

the anonymity set, but the computational limitation of the

adversary.

Sender Anonymity. Sender anonymity characterizes the ano-

nymity of users against a malicious server through the inability

of the server (or some intermediary) to decide which of two

self-chosen users have been communicating with the server.

We borrow the sender anonymity αSA definition from the

AnoA framework [26], where αSA selects one of two possible

challenge users and makes sure that the users cannot be

distinguished based on the chosen recipient(s) or message(s).

Definition 2 (Sender anonymity). A protocol Π provides δ-

sender anonymity if it is (αSA, δ)-IND-ANO for αSA as
defined in Figure 2.

Recipient Anonymity. Recipient anonymity characterizes

that the recipient of a communication remains anonymous,

even to observers that have knowledge about the sender in

4AnoA also allows a multiplicative factor ε; we use the simplified version
with ε = 0, such that δ directly corresponds to the adversarial advantage.

Adaptive AnoA Challenger Ch(Π, α, b)

Upon message (Input, u, R,m): RunProtocol(u,R,m)

Upon message (Challenge, u0, u1, R0, R1,m):

if this is the first time, such a message is received then
Compute (u∗, R∗)← α(u0, u1, R0, R1, b)
RunProtocol(u∗, R∗,m))

end if

RunProtocol(u,R,m):

Run Π on r = (u,R,m) and forward all messages that are sent by
Π to the adversary A and send all messages by the adversary to Π.

αSA(u0, u1, R0, R1, b) = (ub, R0)

αRA(u0, u1, R0, R1, b) = (u0, Rb)

Fig. 2. Adaptive AnoA Challenger [26]

question. Similar to sender anonymity, we borrow the recipient

anonymity αRA definition from the AnoA framework, where

αRA selects one of two possible recipients for a message and

makes sure that the recipients cannot be distinguished based

on the chosen sender(s) or message(s).

Definition 3 (Recipient anonymity). A protocol Π provides
δ-recipient anonymity if it is (αRA, δ)-IND-ANO for αRA as
defined in Figure 2.

We omit the detailed technical notation of the anonymity

functions in the following sections, and write Pr [0 = A|b = i]
instead of Pr [0 = 〈A|Ch(Π, αSA, i)〉].
B. Game Setup

Let S be the set of all senders, R be the set of all recipients,

and P be the set of protocol parties that participate in the

execution of the protocol (like relays/mix-nodes in Tor/mix-

nets, for DC-net or P2P mixing users and protocol parties are

the same). We consider a system of total |S|= N senders.

Given our focus on sender anonymity, we need only a single

element in R. We allow the adversary to set the same entity

(say R) as the recipient of all messages, and expect R to be

compromised by the adversary. The adversary uses a challenge

(as defined in Figure 2) of the form (u0, u1, R, ,m0), where

u0, u1 ∈ S , for our sender anonymity game.

We consider a completely connected topology, which means

any party can send a message directly to any other party.

We assume a standard (bounded) synchronous communication

model as in [16], [17], [31], [32], where a protocol operates

in a sequence of communication rounds.5 In each round, a

party performs some local computation, sends messages (if

any) to other party through an authenticated link. By the

end of the round, every party receives all messages sent by

the other parties to her the same round. With our focus on

computing lower bounds, our model abstracts from the time

5While a time-sensitive model [43] would be more accurate, e.g., for low-
latency protocols like Tor [44], such a model would only strengthen the
attacker. As we present necessary constraints, our results also hold for the
more accurate setting.

111

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

the computations at the node take and also the length of the

messages. Nevertheless, as we are interested in quantifying the

communication/bandwidth overhead, unlike [16], [17], [32],

we do not assume that the parties have access to ready-made

broadcast communication channels; Parties are expected to

communicate with each other to implement broadcast fea-

tures [31], [45]. Lastly, the use of the asynchronous communi-

cation model offers more capabilities to the attacker, and thus,

our impossibility results for the synchronous model naturally

apply to the asynchronous model as well.

We define the latency overhead � as the number of rounds a

message can be delayed by the protocol before being delivered.

We define the bandwidth overhead β as the number of noise

messages per user that the protocol can create in every round

(i.e., the dummy message rate) and we do not restrict the time

these noise messages reside within the protocol.

We consider two types of global passive adversaries:

Our non-compromising adversaries (which model network-

level eavesdroppers) can observe all communication be-

tween all protocol parties, but do not compromise any party

of the AC protocol except the recipient R. We say that

the AC protocol is non-compromised. Our strictly stronger

partially compromising adversaries (which model hacking and

infiltration capabilities) can additionally compromise some of

the AC parties in the setup phase of the game to obtain

these parties’ mapping between the input messages and output

messages during the protocol’s runtime. We say that the AC

protocol is partially compromised.

C. User Distributions

We consider two kinds of user distributions in our anony-

mity games and both of them assume an N sized set S of users

that want to send messages. In both cases, the adversary can

choose any two senders u0, u1 ∈ S . However, the time and

method by which they actually send messages differs:

• In the synchronized user distribution the users globally

synchronize who should send a message at which point in

time. We assume that each user wants to send exactly one

message. Consequently, we choose a random permutation of

the set of users S and the users send messages in their

respective round. In every single round out of a total of N
rounds exactly one user sends a message. Since the users

globally synchronize their sending of messages, we allow the

protocol to also globally decide on the bandwidth overhead

it introduces. Note that here the requirements are identical to

those of the Bulk protocol in [17].

• In the unsynchronized user distribution each of the N users

wants to send messages eventually and we assume that each

user locally flips a (biased) coin every round to decide whether

or not to send a message. In this case we define the bandwidth

overhead as an increased chance of users sending messages.

Since the protocol does not globally synchronize the input

messages, for noise messages also we allow the users to decide

it locally and send noise messages with a certain probability.

Protocol

S TS

$1

P1 TP1

P2 TP2

P3 TP3

R

Fig. 3. Petri net of an AC protocol with K = 3 parties.

IV. A PROTOCOL MODEL FOR AC PROTOCOLS

An AC protocol allows any user in the set of users S to

send messages to any user in R, via a set of anonymizing

parties P. We define protocols that are under observation of

an eavesdropping adversary A that may have compromised

a set of c parties Pc ⊆ P and that furthermore observes the

communication links between any two parties, including users.

Technically, whenever a party P1 ∈ P∪S sends a message

to another party P2 ∈ P∪R, the adversary is able to observe

this fact together with the current round number. However,

we assume the protocol applies sufficient cryptography, s.t.,

the adversary can not read the content of any message except

the messages sent to the malicious recipient, which technically

results in simply being able to additionally recognize when the

challenge reaches the recipient.

For an actual protocol, the sets S, R, and P might not be

mutually exclusive [15], [16], [18]. Since we have only one

malicious party in R, and the content of a message can only

be read when it reaches its final recipient, we consider R to be

mutually exclusive from S ∪ P for the purpose of simplicity.

With the above preliminaries in mind, we shall now formally

define our generic AC protocol using a petri net model.

A. Protocol Model

We model any AC protocol with K parties by a timed

colored petri net [28]–[30] M , consisting of places S for

the users, P1, . . . , PK symbolizing the protocol parties, $1 for

randomness and R for recipients of messages, and colored

tokens m symbolizing the messages (real or noise) sent by

clients or protocol parties, and transitions TS for inserting

messages into the network and TP1
, . . . , TPK

as functions for

sending the messages from one party to another. The structure

of the petri net with its places, tokens and transitions remains

the same for every AC protocol. However, the implementation

of the guards within the transitions is different for different

protocols: protocols can choose to which party messages are

to be sent next and whether they should be delayed. But,

protocols in M are oblivious to the challenge message or the

challenge users. We refer to Figure 3 for a graphical depiction

of petri net model M .

112

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

Definition 4 (Colored token). A colored token is represented
by the tuple m = 〈msg, meta, tr, IDt, prev, next, ts〉, where,
msg is the content of the message, meta is the internal protocol
meta-data for this message, tr is the time the message can
remain in the network, IDt is a new unique ID generated by
each transition for each token by honest parties; dishonest
parties instead keep IDt untouched to allow the adversary to
link incoming and outgoing messages, prev is party/user that
sent the token and next is the user/party that receives the
token. Finally, ts is the time remaining for the token to be
eligible for a firing event (a feature of timed petri-net). Here,
ts either describes when new messages are introduced into the
petri net or is set to the next round, such that messages can be
processed in every round as soon as they enter the network.

The four fields IDt, prev, next, ts are public, and are visible

to the adversary. The remaining three fields msg, meta and tr
in a token are private and can not be observed by the adversary,

with the exception that msg can be observed when a message

reaches its destination, i.e, is received by a recipient. Formally,

we introduce a set Tokens, that is initially empty and in which

we collect the pair (t, r), where t is a copy of a token and r
the round number in which the token was observed.

Places. Any AC protocol with K parties P = {P1, . . . , PK}
consists of the following places:

• S: A token in S denotes a user message (real or noise)

which is scheduled to enter the network after ts rounds.

• $1: This place is responsible for providing randomness.

Whenever a transition picks a token from this place, the

transition basically picks a random value.

• Pi with Pi ∈ P: A token in Pi denotes a message which

is currently held by the party Pi ∈ P.

• R: A token in R denotes a message which has already

been delivered to a recipient.

Transitions. As part of the initial configuration, the chal-

lenger populates S on behalf of the protocol. All other places

are initially empty. The transitions then consumes tokens from

one place and generate tokens to other places, to modify the

configuration of the petri-net. The event of consumption of a

token from one place by a transition and generation of a new

token represents the movement of a message from one party to

another. We define the following transitions (refer to Figure 4

for the pseudocodes of the transitions):

• TS : takes a token 〈msg, , , , u, , ts〉 from S and a

token from $1 to write t = 〈msg,meta, �, IDt, u, Pi, ts = 1〉 to

Pi; the values of i and meta are decided by the AC protocol.

• TPi : takes a token 〈msg,meta, tr, IDt, , Pi, ts〉
from Pi and a token from $1 to write t =
〈msg,meta′, tr − 1, IDt

′, Pi, P
′, 1〉 to P ′. If Pi is an honest

party IDt
′ is freshly generated, but if Pi is a compromised

party IDt
′ = IDt. The place P ′ ∈ {P1, . . . , PK} ∪ {R} and

meta′ are decided by the AC protocol, with the exception

that if tr = 0, P ′ always is R.

In either case, the transition also adds an element (t′, r) to the

set Tokens, where r is the current round number and t′ is a

copy of the respective (new) token t, with the fields meta and

TS on tokens q = 〈msg, , , , u, , ts〉 from S and $ from $1:

(Pi,meta) = fΠ(q, $); IDt = a fresh randomly generated ID
r = current round; t = 〈msg,meta, �, IDt, u, Pi, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt, u, Pi, 1〉, r)
else Tokens = Tokens ∪ (〈 , , , IDt, u, Pi, 1〉, r)

Output: token t at Pi

TPi
on tokens q = 〈msg, , tr, IDt, , Pi, ts〉 from Pi, $ from $1:

(P ′,meta′) = fΠ(q, $) ; r = current round
if tr − 1 = 0 then P ′ = R
if Pi is honest then IDt

′ = a fresh randomly generated ID
else if Pi is compromised then IDt

′ = IDt

t = 〈msg,meta′, tr − 1, IDt
′, Pi, P

′, 1〉
if Pi = R then Tokens = Tokens∪ (〈msg, , , IDt

′, Pi, P
′, 1〉, r)

else Tokens = Tokens ∪ (〈 , , , IDt
′, Pi, P

′, 1〉, r)
Output: token t at P ′

fΠ: A function provided by Π to determine routing and the meta field.

Fig. 4. Transitions in petri net model M

tr are removed. If the place where t was written to is not R,

then additionally the field msg is removed.

Game Setting. Recall that we define anonymity as a game

between a PPT adversary A and an honest challenger Ch.

Validity of the Protocol Model. The above protocol model

M behaves as expected (more details in Lemma 2 in Ap-

pendix A). We show in Lemma 2 that the protocols indeed

have a bandwidth overhead of β and a latency overhead of

�. For every message that is sent from one party in S ∪ P
to another party in P ∪ R, the adversary learns the time, the

sender, and the receiver. When a message leaves the network,

the attacker learns whether it was the target (i.e., the challenge)

message. The attacker also learns the mapping between the

input and output messages of compromised parties.

B. Expressing Protocols

Our protocol model M allows the expression of any AC

protocol with very few, esoteric exceptions.

Mix networks can be naturally embedded into our model, in

particular any stop-and-go mix [46] that uses discrete distri-

bution and even AC protocols with specialized path selection

algorithms [47], [48]. For the sake of our necessary constraints,

low-latency protocols (with time-bounded channels) that are

not round-based (e.g., Tor [44]) can be expressed in a round-

based variant, since it only strengthens the protocols anony-

mity properties. This section illustrates embedding techniques

into our model for some other kinds of protocols, but a much

larger variety of protocols can be expressed in our model.

Users as protocol parties. In peer-to-peer protocols like

dining cryptographers networks (DC net) [16], [18], there are

no separate protocol parties, users act as a type of relays. Also,

any noise sent by users counts into the bandwidth overhead of

the protocol (we will see in Claim 2 that noise sent by nodes

that are not users can be treated differently). Whenever a user

wants to send a message it should use the transition TS , but

when it acts as a relay it should use the transition TPi . For

113

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

interested readers, we show in Appendix A how to model a

specific DC net type protocol using our petri net model.

Splitting and Recombining Messages. We model protocols

that split and later re-combine messages by declaring one of

the parts as the main message and the other parts as noise,

which may count into the bandwidth overhead. This declara-

tion is mainly required for the analysis, i.e., for evaluating the

success of the adversary and for quantifying the amount of

noise messages introduced by the protocol. We do not restrict

the strategy by which the protocol decides which message

is “the main share” (i.e., the message that is sent on) and

which is “an additional share” (i.e., a fresh noise message). A

more complex scenario involves threshold schemes in which

a smaller number of shares suffices for reconstructing the

message and in which some shares are dropped randomly.

In such cases we consider the protocol to decide beforehand

which of the constructed shares will be dropped later and to

declare one of the remaining shares the “main share”.

Broadcasting Messages. If the protocol chooses to copy or

broadcast messages to several receivers, we consider the copy

sent to the challenge receiver to be the main message and

copies sent to other receivers to be noise (which, if the copies

are created by nodes that are not users, will not count into the

bandwidth overhead).6

Private Information Retrieval. In schemes based on private

information retrieval we require that the receiver retrieves the

information sufficiently fast (within the latency limit). Other-

wise, our method is similar to the broadcasting of messages:

the receiver of interest will retrieve the main message, whereas

other receivers will retrieve copies that are modeled as noise.

Excluded Protocols. For this work we exclude protocols that

cannot guarantee the delivery of a message within the given

latency bound (except if this occurs with a negligible proba-

bility). Moreover, we cannot easily express the exploitation of

side channels to transfer information, e.g., sending information

about one message in the meta-data of another message, or

sending bits of information by not sending a message.

C. Construction of a Concrete Adversary

Given two challenge users u0 and u1 and the set of observed

tokens (t, r) ∈ Tokens, where t is the token and r the round

in which the token was observed, an adversary can construct

the sets Sj (for j ∈ {0, 1}). Assume the challenge message

arrives at the receiver R in a round r. We construct possible

paths of varying length k, s.t., each element p ∈ Sj represents

a possible path of the challenge message starting from uj (j ∈
{0, 1}) and the challenge message then arrives at R in round

rk = r. With challenge bit b, Sb cannot be empty, as the actual

path taken by the challenge message to reach R has to be one

element in Sb.

6We note that in some cases, where users act as nodes and broadcast
messages to other users, our quantification of the bandwidth overhead might
be a bit harsh. If the group of users to which the broadcast will be sent is
known in advance (i.e., if messages are broadcast to all users or to pre-existing
groups of users), we can allow the protocol to use a single receiver for these
messages instead.

Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t.

t1.prev = uj ∧ tk.next = R

∧ tk.msg = Challenge ∧ k ≤ �

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ (∃t′i+1 : (t′i+1, ri+1) ∈ Tokens ∧ t′i+1.prev = ti.next

∧ t′i+1.IDt = ti.IDt)⇒ t′i+1 = ti+1)}
Definition 5 (Adversary Apaths). Given a set of users S ,
a set of protocol parties P of size K, and a number of
possibly compromised nodes c, the adversary Apaths proceeds
as follows: 1) Apaths selects and compromises c different
parties from P uniformly at random. 2) Apaths chooses two
challenge users u0, u1 ∈ S uniformly at random. 3) Apaths

makes observations and, based upon those, constructs the sets
S0 and S1. For any i ∈ {0, 1}, if Si = ∅, then Apaths returns
1− i. Otherwise, it returns 0 or 1 uniformly at random.

Apaths thus checks whether both challenge users could have
sent the challenge message. We explicitly ignore differences

in probabilities of the challenge users having sent the chal-

lenge message, as those probabilities can be protocol specific.

Naturally, when c = 0, Apaths represents a non-compromising
adversary; but when c �= 0, Apaths is partially compromising.

D. Protocol Invariants

We now investigate the robustness of protocols against our

adversary. We define an invariant that, if not satisfied, allows

Apaths to win against any protocol. Moreover, we present

a protocol that maximizes the probability of fulfilling the

invariant. Moreover, we show that whenever the invariant is

fulfilled by our protocol, the advantage of Apaths reduces to

zero (as it is forced to randomly guess b).

Necessary invariant for protocol anonymity. It is necessary

that at least both challenge users send messages in one of the

� rounds before the challenge message reaches the recipient,

as otherwise there is no way both of them could have sent

the challenge message. Moreover, on the path of the actual

challenge message, there needs to be at least one honest

(uncompromised) party, as otherwise the adversary can track

the challenge message from the sender to the recipient (Sb

will have exactly one element and S1−b will be empty). Those

two conditions together form our necessary protocol invariant.

Invariant 1. Let u0 and u1 be the challenge users; let b be the
challenge bit; and let t0 be the time when ub sends the chal-
lenge message. Assume that the challenge message reaches the
recipient at r. Assume furthermore that u1−b sends her mes-
sages (including noise messages) at V = {t1, t2, t3, . . . , tk}.
Now, let T = {t : t ∈ V ∧ (r − �) ≤ t < r}. Then,

(i) the set T is not empty, and
(ii) the challenge message passes through at least one honest

node at some time t′ such that, t′ ∈ {min(T), . . . , r − 1}.
Claim 1 (Invariant 1 is necessary for anonymity). Let Π be
any protocol ∈ M with latency overhead � and bandwidth

114

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

overhead β. Let u0, u1, b and T be defined as in Invariant 1.
If Invariant 1 is not satisfied by Π, then our adversary Apaths

as in Definition 5 wins.

We refer to Appendix B for the proof. We next claim that it

suffices to consider noise messages sent by users that also

remain within the system for at most � rounds, i.e., noise

messages that follow the same rules as real messages. Note that

we consider every new message originating from any user’s

client as a fresh noise message.

Claim 2 (Internal noise does not influence Invariant 1). Any
message not originating from an end user u ∈ S does not
influence the probability for Invariant 1 being true. Moreover,
noise messages do not contribute to the probability for Invari-
ant 1 being true after they stayed in the network for � rounds.

We refer to Appendix B for the proof. We henceforth

consider noise messages as a protocol input.

E. Ideal Protocol
We construct a protocol Πideal that maximizes the prob-

ability of fulfilling Invariant 1. We show that the invariant

is sufficient for Πideal to win against Apaths, i.e., to reduce

Apaths’s advantage to 0. Claim 1 shows that for any protocol

in our model Apaths wins whenever Invariant 1 does not hold.

Thus, an upper bound on the probability that Πideal satisfies

Invariant 1 yields an upper bound for all these protocols.
Given the set of all protocol parties P = {P0, . . . , PK−1} of

size K, the strategy of Πideal is as follows: in a round r, Πideal

delivers all messages scheduled for delivery to a recipient. All

other messages (including the messages that enter Πideal in

round r) are sent to the protocol party Pi with i = r mod K.

For every message that enters the protocol, Πideal queries an

oracle O for the number of rounds the message should remain

in the protocol. We define the following events:
• u.sent(x, y) : user u has sent at least one message within

rounds from x to y. For a single round we use u.sent(x).
• Cmpr(x) : Apaths has compromised the next x consecu-

tive parties on the path.
• ¬H : NOT of event H .

Given a message sent at t0 by sender x, and delivered to the

recipient at (t0 + t), we define Pt for sender v ∈ S \ {x}:
Pt =

∑t0

j=r−�
Pr [v.sent(j) ∧ ¬v.sent(j + 1, t0)]× Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [v.sent(j) ∧ ¬v.sent(r − �, j − 1)]

× Pr [¬Cmpr(r − j)]

When v = u1−b, and the message is the challenge message,

Pt is the probability of fulfilling Invariant 1, for the strategy

above. For each message, oracle O chooses an optimal t that

maximizes the expectation of Pt over all users. After the oracle

has decided the latencies for all messages, it sets the time t
for the messages from u1−b to �. Since the oracle uses the

knowledge of u1−b, Πideal is slightly more powerful than

protocols in M . Due to the over-approximation with this

(not realizable) oracle, the resulting protocol is optimal w.r.t.

Invariant 1 (Refer to Claim 3 and Claim 4).

Claim 3 (Ideal protocol is ideal for the invariant). Against
the given adversary Apaths, Πideal satisfies Invariant 1 with
probability at least as high as any other protocol in M .

Claim 4 (Ideal protocol wins). If Πideal satisfies Invariant 1,
Apaths has an advantage of zero:

Pr[b = Apaths | Invariant 1 holds] = 1
2

We refer to Appendix B for the proofs of Claim 3 and Claim 4.

V. SYNCHRONIZED USERS WITH NON-COMPROMISING

ADVERSARIES

Our first scenario is a protocol-friendly user distribution

UB , where inputs from all users are globally synchronized:

over the course of N rounds, exactly one user per round sends

a message, following a random permutation that assigns one

round to each user. Analogously, the protocol globally instructs

the users to send up to β ∈ [0, 1] noise messages per user per

round, or B = βN noise messages per round in total.

In real life, the user distribution is independent of the

protocol. However, to make the user distribution protocol-

friendly in our modeling we consider a globally controlled user

distribution. For this scenario, we consider non-compromising
passive adversaries that can observe all network traffic.

A. Lower Bound on Adversarial Advantage

Theorem 1. For user distribution UB , no protocol Π ∈ M
can provide δ-sender anonymity, for any δ < 1−fβ(�), where
fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Proof. By Claim 3 and Claim 4, we know that Πideal is an

optimal protocol against Apaths; and with c = 0, Apaths is our

representative non-compromising adversary. Thus, it suffices to

calculate the advantage of Apaths against Πideal as a lower

bound of the adversary’s advantage against any protocol.

Let, u0 and u1 be the users chosen by the adversary and

let b be the challenge bit. Let t0 be the round in which ub

sends the challenge message and let r be the round in which

the challenge message reaches the recipient.

Recall that Invariant 1 is necessary for the protocol to pro-

vide anonymity; u1−b sends her messages (can be a noise mes-

sage) at V = {t1, t2, t3, . . . , tk}, then T = {t : t ∈ V ∧ (r −
�) ≤ t < r}. Since we are considering a non-compromising

adversary, Pr [Invariant 1 is true] = Pr [T is not empty] .
With the above in mind, let us define the following events:

H1: In � rounds u1−b sends at least one noise message.

H2: u1−b sends his own message within the chosen � rounds.

H3: there is at least one message from u1−b within the chosen

� rounds ≡ T is not empty ≡ Invariant 1 is true.

Consider any slice of � rounds around the challenge message,

there are exactly (� − 1) user messages other than the chal-

lenge message. Hence, any slice of � rounds yields the same

probability of containing a user message from u1−b, except

when r < � OR r > N where the probability is smaller. Thus,

no matter what value of t is returned by O, Pr [H2] ≤ �−1
N−1 .

Given any values �, β ≥ 0 , Apaths has the least chance of

winning, if for a given interval of � rounds, βN� unique users

115

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

are picked to send the noise messages in such a way that they

are not scheduled to send their own messages in that interval.

Pr [¬H3] = Pr [¬H1,¬H2] ≥ max(0, (N− �− βN�)/(N− 1)).

Pr [H3] = 1− Pr [¬H3] ≤ min(1, ((�+ βN�)/(N− 1))).

Thus, we can bound the probability for the adversary as

Pr[0 = Apaths|b = 1] = Pr[1 = Apaths|b = 0] = 1
2Pr [H3];

and Pr[0 = Apaths|b = 0] = 1− 1
2Pr [H3]. And therefore,

since δ ≥ Pr[0 = Apaths|b = 0] − Pr[0 = Apaths|b = 1],
δ ≥ 1− Pr [H3] ≥ 1− fβ(�).

B. Impossibility for Strong Anonymity

We now investigate under which constraints for � and β
Theorem 1 rules out strong anonymity.

Theorem 2. For user distribution UB with � < N and
βN ≥ 1, no protocol Π ∈M can achieve strong anonymity if
2�β < 1− ε(η), where ε(η) = 1

ηd for a positive constant d.

We refer to Appendix B for the proof.

Interesting Cases. For illustration, we now discuss a few

examples for different values of �, β, and N.

1) If � = N, we can have δ = 0 even for β = 0. Anonymity

can be achieved trivially by accumulating all messages from

all N users and delivering them together at round (N+ 1). In

this case 2�β = 0 < 1− ε(η), but also βN = 0 < 1.

2) β = 1
η , � = η: We have δ ≥ N−η−N

N ≥ −η
N . In � rounds

the protocol can send �βN = N noise messages and achieve

strong anonymity (all N users send a noise message each).

3) β = 1
2τ , � = τ , where τ is a positive integer: Here we

have, δ ≥ N−τ− N
2

N = 1
2− τ

N . Here, strong anonymity is possible

if τ
N ≥ 1

2 − neg(η). Even though 2�β = 1 > 1 − neg(η),
anonymity depends on the relation between τ and N.

4) β = 1
9 , � = 3: For η > 3 and N > 4, which is a very

natural assumption, we have 2�β = 2
3 < 1−neg(η). Then, δ ≥

N−3−N
3

N > neg(η). In � rounds Πideal receives only (N3 + 3)
messages, and thus, with high probability u1−b does not send

a message. Hence, Πideal cannot achieve strong anonymity.

VI. SYNCHRONIZED USERS WITH PARTIALLY

COMPROMISING ADVERSARIES

We now extend our analysis of the previous section by

having compromised protocol parties. Given the set of protocol

parties P, now our adversary Apaths can compromise a set of

c parties Pc ⊂ P. If Apaths can compromise all the parties

in P, anonymity is broken trivially - that’s why we do not

analyze that case separately. Recall from Section IV-C that

Apaths picks the c parties from P uniformly at random. We

consider the same user distribution UB as in Section V.

A. Lower Bound on Adversarial Advantage

Theorem 3. For user distribution UB , no protocol Π ∈ M
can provide δ-sender anonymity, for any

δ <

{
1− [1− (

c
�

)
/
(
K
�

)
]fβ(�) c ≥ �

1− [1− 1/
(
K
c

)
]fβ(c)− fβ(�− c) c < �

where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Case c ≥ �:

r − c r − � t0 r

Case c < t < �:

r − � t0 r − c r

Case t < c < �:

r − � r − c t0 r

Arriving messages satisfy Invariant 1.

Arriving messages satisfy Invariant 1 depending on Pc.

Arriving messages don’t satisfy Invariant 1.

Fig. 5. Satisfying Invariant 1 depending on the arrival time of messages from
u1−b in the cases of the proof for Theorem 3.

Proof. Let u0, u1 be the challenge users and let b be the

challenge bit. Moreover, let t0 be the time the challenge

message is sent by ub and let r = t0 + t be the time it is

received by the recipient, where t is the delivery time decided

by the oracle O. Similar to Section V, we now calculate the

advantage of Apaths against Πideal.

We distinguish two cases, depending on � and c: 1) First,

where the number of compromised parties c is at least as large

as the maximal latency �. In this case, all parties on the path

of the challenge message could be compromised. 2) Second,

where not all parties on the path of the challenge message

can be compromised. And hence, the analysis focuses on the

arrival times of messages from u1−b. For a graphical depiction

of the relationship between the rounds a message from u1−b

arrives and it satisfying Invariant 1 we refer to Figure 5.

1) Case c ≥ �. We know, � ≥ t holds by definition. The

invariant is true only if u1−b sends at least one message in

one of the rounds between (r−�) and (r−1). Additionally, if

u1−b sends at least one message in {r−�, . . . , t0}, the invariant

holds only if there is at least one non-compromised party on

the path between t0 and (r − 1). Whereas, if u1−b does not

send any message in {r − �, . . . , t0}, and the first message

from u1−b in the interval {t0 + 1, r − 1} arrives at t1, the

invariant holds only if there is at least one non-compromised

party on the path between t1 and (r − 1).
Note that K > c ≥ �. Also recall from Section IV that

Apaths picks the c parties uniformly at random from K parties.

Hence,
Pr [Invariant 1 is true]

≤
∑t0

j=r−�
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(j + 1, t0)]

× Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(r − �, j − 1)]

× Pr [¬Cmpr(r − j)]

≤ Pr [¬Cmpr(�)]× Pr [u1−b.sent(r − �, r − 1)]

≤ [1−
(c
�

)
/
(K
�

)
]×min(1, ((�+ βN�)/(N− 1))).

116

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

By Claim 1 the adversary wins whenever Invariant 1 is not

true, and by Claim 4 Apaths has zero advantage whenever

Πideal satisfies the invariant. Hence, we know that the proba-

bility that the adversary guesses incorrectly is bounded by:

Pr [0 = Apaths|b = 1] = Pr [1 = Apaths|b = 0]

≤ 1
2Pr [Invariant 1 is true] ≤ 1

2 [1−
(c
�

)
/
(K
�

)
]×min(1, (�+βN�

N−1)).

Thus, δ ≥ 1− [1− (c
�

)
/
(K
�

)
]×min(1, (�+βN�

N−1)).

2) Case c ≤ �: The probability that all parties on the

mutual path of the challenge message and a message from the

alternative sender u1−b are compromised now mainly depends

on the arrival time of the messages from u1−b. We find two

sub-cases depending on the oracle’s choice for t.

2a) Case c ≤ t:
Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − �, r − c)] + Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c, r)]× Pr [¬Cmpr(c)]

≤ min(1, (
(�−c)+βN(�−c)

N−1))

+ min(1, (
N−(�−c)−βN(�−c)

N−1)(c+βNc
N−(�−c)−βN(�−c)

))[1− 1

(Kc)
]

≤ fβ(�− c) + fβ(c)[1− 1/
(K
c

)
].

Note that the probability that there are no messages from

u1−b in [(r− �), (r−c)] and that there is at least one message

from u1−b in [(r− c), r] are not independent from each other.

The best thing a protocol can do with the noise messages is

to have Nβ� unique users, different from the � users who send

their actual message, send the noise messages. Thus, if a user

sends a message in [(r−�), (r−c)], he can not send a message

in [(r−c), r]. The above calculations are done considering that

best scenario. Also note that the value of K may be larger or

smaller than � and t, but as long as c ≤ K, the bound given

above holds. Hence, δ ≥ 1− fβ(�− c)− [1− 1/
(
K
c

)
]× fβ(c).

2b) Case t < c :
Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − �, r − c)]× Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c), r)]× Pr [¬Cmpr(t)]

≤ Pr [u1−b.sent(r − �, r − c)] + Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c, r)]× Pr [¬Cmpr(t)]

The event expression above is the same as in the previous

case (t > c). The bound on δ thus follows analogously.

B. Impossibility for Strong Anonymity
Theorem 4. For user distribution UB with K ∈ poly(η), K >
c ≥ � , � < N and βN ≥ 1 , no protocol Π ∈ M can
achieve strong anonymity if 2�β < 1 − ε(η) or � ∈ O(1),
where ε(η) = 1/ηd for a positive constant d.

We refer to Appendix B for the proof. To achieve strong

anonymity against Apaths, we need � ∈ ω(1), additional to the

constraint of 2�β > 1−neg(η). We now focus on the constraint

� ∈ ω(1) and refer to Section V-B for a comprehensive case

study on the other constraint.

Interesting Cases. Now we are going to discuss a few

interesting cases for different values of � < c, and K.

1) � = η and K/c = constant: In this case we have,(
c
�

)
/
(
K
�

)
= c(c−1)...(c−�+1)

K(K−1)...(K−�+1)
< (c/K)� = (c/K)η. Hence,

(
c
�

)
/
(
K
�

)
becomes negligible and strong anonymity is possible. Even

though c has a high value, because of the high value of � it is

highly likely that the challenge message will meet a message

from u1−b at some honest node, given a high value of β such

that 2�β > 1− neg(η).
2) � = O(1), c = O(1): Now we have,

(
c
�

)
/
(
K
�

)
=

c(c−1)...(c−�+1)
K(K−1)...(K−�+1)

> ((c− �)/(K− �))�. But K ∈ poly(η), and c
and � can only have integer values. Hence ((c− �)/(K− �))� is

non-negligible, and hence
(
c
�

)
/
(
K
�

)
is also non-negligible. Even

though c has a small value, � is also small. Hence, it is unlikely

that the challenge message will mix with a message from

u1−b at some honest node. Thus, strong anonymity cannot

be achieved.

Theorem 5. For user distribution UB with K ∈ poly(η), c ∈
O(1), K > � > c, � < N and βN ≥ 1, no protocol Π ∈M
can achieve strong anonymity if 2(�− c)β < 1− ε(η), where
ε(η) = 1

ηd for a positive constant d.

We refer to Appendix B for the proof. The analysis in this

case is exactly same as Section V-B, except that here we need

to consider the slice of (�− c) rounds instead of � rounds.

It is worth repeating here, all the constraints we have derived

in Section V and Section VI are necessary for anonymity, but

they are not sufficient conditions for anonymity.

VII. UNSYNCHRONIZED USERS WITH

NON-COMPROMISING ADVERSARIES

In this and the subsequent section we use an unsynchronised

user distribution UP : In each round, independent of other

users and other rounds, each client tosses a biased coin with

success probability p ∈ (0, 1]. On a success the client sends a

message in that round, otherwise it does not send a message.

Consequently, the number of messages per round follows

Binomial distribution Binom(N, p) if the number of users

N is large and p sufficiently small, the resulting binomial

distribution reduces to a Poisson distribution, which is a close

approximation of real-life traffic patterns.

For a protocol with bandwidth overhead β, we distinguish

between the actual probability that users want to send mes-

sages p′ and the value for p that we use in our analysis, i.e., we

set p = p′+β. In this unsynchronised scenario the bandwidth

of genuine messages contributes to the anonymity bound. As

in Section V we consider a non-compromising adversary.

A. Lower Bound on Adversarial Advantage

Theorem 6. For user distribution UP , no protocol Π ∈ M
can provide δ-sender anonymity, for any δ < 1−(

1
2 + fp(�)

)
,

where fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

Proof. Since we consider a non-compromising adversary,

Pr [Invariant 1 is True] = Pr [T is not empty] , where T is

defined as in Invariant 1.

Let us consider the random variables X(1), X(2), . . . , X(N),

where X(i) denotes the event of the ith user sending her own

117

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

message within a given interval of � rounds [a, b], with (b −
a) = �. All X(i)s are mutually independent and we have,

X(i) =

{
0 with probability (1− p)�

1 with probability (1− (1− p)�).

Next, let X =
∑N

i=1 X
(i) be a random variable representing

the number of users that send messages in an interval of �
rounds. We calculate for the expected value E[X] of X ,

E[X] =
∑N

i=1 E[X
(i)] = N(1− (1− p)�) = μ.

Using the Chernoff Bound on the random variable X we

derive Pr [X − μ ≥ Na] ≤ exp(−2a2N), which for a = μ
N lets

us estimate, Pr [X ≥ 2μ] ≤ exp (−2(μ2/N2)N). For brevity in the

following calculation we denote, Pr [X ≥ 2μ] by E and the

event that T is non-empty by Y and since all users are acting

independently from each other we get for j ∈ {0, . . . ,N},
Pr [Y |X = j] = 1− Pr [¬Y |X = j] = j

N
.

For 2μ ≤ N, we have,

Pr [Y]

=Pr [X ≥ 2μ]× Pr [Y |X ≥ 2μ] + Pr [X < 2μ]× Pr [Y |X < 2μ]

≤Pr [X ≥ 2μ]× Pr [Y |X = N] + Pr [X < 2μ]× Pr [Y |X = 2μ]

=E × Pr [Y |X = N] + (1− E)× Pr [Y |X = 2μ]

=E × N

N
+ (1− E)× 2μ

N
= 1− (1− E) (1− 2fp(�)) .

If 2μ > N, we get with f(�) = min
(
1
2 , 1− (1− p)�

)
,

Pr [Y] ≤ E + (1− E) 1 ≤ 1 ≤ 1− (1− E) (1− 2fp(�)).
Thus, δ ≥ 1−Pr [Y] ≥ (1−E) (1− 2fp(�)) . We now use

Markov’s Inequality on X and derive E = Pr [X ≥ 2μ] ≤ 1
2 ,

which means, δ ≥ 1
2 (1− 2fp(�)) ≥ 1

2 − fp(�).

Note that in the proof of Theorem 6, in case p is a constant and

N is a very high value, then E goes towards zero and instead

of using Markov’s inequality, we can derive δ ≥ 1− 2fp(�).

B. Impossibility for Strong Anonymity

Theorem 7. For user distribution UP and p > 0, no protocol
Π ∈ M can achieve strong anonymity if 2�p < 1 − ε(η),
where ε(η) = 1/ηd for a positive constant d.

We refer to Appendix B for the proof. Similar to the

constraints in Section V and Section VI, this is also a necessary

constraint for anonymity, not a sufficient condition. There can

exist � and p such that 2�p > 1−neg(η), but still no protocol

can achieve strong anonymity.

Interesting Cases. Now we are going to discuss a few

interesting cases for different values of �, p, and N.

1) p = 1
η , � = η : Here, fp(�) = 1−(1− p)

�
> 1−1/e > 1

2 .

Hence, δ ≥ 1
2 − fp(�) = 0. Since p� = 1, in � rounds the

protocol has 1 message per user on an average. So, the protocol

has a high chance of winning. Whereas in Section V-B, we

saw that Πideal can win with absolute certainty in this case.

2) p = 1
2τ , � = τ , τ is a positive integer: even for τ > 2,

fp(�) = 1−(1− p)� < 0.45. Hence, δ ≥ 1
2−fp(�) > 0.05. Even

though 2�p = 1, strong anonymity can not be achieved. In an

expected scenario, in a slice of � rounds only p� = 1
2 portion of

the total users send messages, and hence there is a significant

chance that u1−b is in the other half. Note that this is different

from the scenario with synchronized users where Πideal could

achieve strong anonymity in this case (c.f. Section V-B).

3) p = 1
9 , � = 3: Here, fp(�) = 1−(1− p)� = 1−(

8
9

)3
< 0.29,

and δ ≥ 1
2 − fp(�) > 0.21; because of low values of both p

and � only a few users send messages within the interval of

� rounds, and hence the protocol has a small chance to win.

As in Section V-B, Πideal can not achieve strong anonymity

in this case, since the necessary constraints are not satisfied.

VIII. UNSYNCHRONIZED USERS WITH PARTIALLY

COMPROMISING ADVERSARIES

Finally, we consider partially compromising adversaries that

can compromise a set of c parties Pc ⊂ P for the user

distribution UP defined in Section VII.

A. Lower Bound on Adversarial Advantage

Theorem 8. For user distribution UP , no protocol Π ∈ M
can provide δ-sender anonymity, for any

δ <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− [1− (

c
�

)
/
(
K
�

)
][12 + fp(�)] c ≥ �(

1− [1− 1/
(
K
c

)
][12 + fp(c)]

)
×

(
1− [1/2 + fp(�− c)]

)
c < �

where fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

We derive the bound in Theorem 8 by combining the

techniques presented in Section VI and Section VII. Since

the proof does not introduce novel techniques, we omit it and

instead refer the interested reader to Appendix B for the proof.

B. Impossibility for Strong Anonymity

To analyze the negligibility condition of δ in this scenario,

we heavily borrow the analyses that we already have con-

ducted in Section VII-B and Section VI-B. We are going to

analyze this scenario in two parts:

Case c ≥ �: We have, δ ≥ 1− [1− (
c
�

)
/
(
K
�

)
]
[
1
2
+ fp(�)

]
.

To make δ negligible, both the factors [1 − (
c
�

)
/
(
K
�

)
] and

[1/2+ fp(�)] have to become overwhelming. From Theorem 4,

we know that we need � ∈ ω(1) to make [1 − (
c
�

)
/
(
K
�

)
]

overwhelming. This is a necessary condition, but not sufficient.

For a detailed discussion, we refer to Section VI-B. From

Section VII-B we know that the necessary condition for

[1/2 + fp(�)] to be overwhelming is 2�p > 1 − neg(η). Hence,

both conditions are necessary to achieve strong anonymity.

Case c < �: We have,

δ ≥ (1− [1/2 + fp(�− c)])(1− [1− 1/
(
K
c

)
][1/2 + fp(c)]).

In the above expression, we can see two factors:

(i) F1 = (1−[1
2
+fp(�−c)]), (ii) F2 = (1−[1−1/

(
K
c

)
][1

2
+fp(c)]).

To make δ negligible, it suffices that F1 or F2 become

negligible. Unlike Section VI, here fp(� − c) and fp(c) are

independent, which allows us to analyze F1 and F2 inde-

pendently. First, F1 is similar to the δ-bound in Section VII,

except that we consider fp(� − c) instead of fp(�). Hence,

the analysis of F1 is analogous to Section VII-B. Second,

F2 is negligible if both [1 − 1/
(
K
c

)
] and [1/2 + fp(c)] are

overwhelming. From Section VI-B we know that [1 − 1/
(
K
c

)
]

can not be overwhelming for a constant c. Moreover, fp(c)
can be analyzed exactly as fp(�) in Section VII-B.

118

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

IX. RECIPIENT ANONYMITY

We derive impossibility results for recipient anonymity anal-

ogous to our results for sender anonymity via the same strategy

we employed in the previous sections. In this case, since

we are considering recipient anonymity, we assume only one

sender in S, and N′ users inR. Here, the adversary is naturally

not informed about the delivery of the challenge message by a

recipient, but of the sending of the challenge message by the

sender. Moreover, instead of ignoring all internally generated

messages in Claim 2 we ignore all internally terminating

messages. Note that this gives β a slightly different flavor.

Synchronized Users. We slightly tweak the user distribution

to suit the definition of recipient anonymity. We assume

that all the input messages come within N′ rounds, exactly

one message per round, following a random permutation

that assigns one round to each recipient. In a given round,

the sender sends a message to the assigned recipient. Then,

the protocol decides when to deliver the message to the

recipient, but not delaying more than � rounds. Let fRA
β (x) =

min
(
1,

(
(x+�)+(x+�)βN′

N′

))
. Then we get that no protocol Π

∈M can provide δ-recipient anonymity in the following cases:

• Without compromisation: δ < 1− fRA
β (�).

• For adversaries that compromise up to c parties:

– if c ≥ �: δ < 1− [1− (
c
�

)
/
(
K
�

)
]fRA

β (�).

– if c < �: δ < 1− [1− 1/
(
K
c

)
]fRA

β (c)− fRA
β (�− c).

Moreover, no protocol M with K ∈ poly(η) can achieve

strong recipient anonymity when � < N′ and βN′ ≥ 1 in

the following cases, where ε(η) is a non-negligible function.

• Without compromisation: if 4�β < 1− ε(η),
• For adversaries that compromise up to c parties:

– if K > c ≥ �: 4�β < 1− ε(η) OR � ∈ O(1).
– if K > � > c: 4(�− c)β < 1− ε(η).

Unsynchronized Users. Similar to the previous case, here

also we borrow the definition of user distribution from Sec-

tion VII, with minor modifications. The biased coins are now

associated with recipients instead of senders — in each round

the sender sends a message for a recipient, with probability

p. Let fRA
p (x) = min(1/2, 1− (1− p)�+x). Then we get that

no protocol Π ∈M can provide δ-recipient anonymity in the

following cases:
• Without compromisation: δ < 1− (1/2 + fRA

p (�)).
• For adversaries that compromise up to c parties:

– If c ≥ �: δ < [1− (
c
�

)
/
(
K
�

)
][1/2 + fRA

p (�)].

– If c < �: δ <
(
1− [1/2 + fRA

p (�− c)]
)

×
(
1− [1/2 + fRA

p (c)][1− 1/
(
K
c

)
]
)

.

Moreover, for p > 0, no protocol can achieve strong recipient

anonymity if 2�p < 1 − ε(η), where ε(η) is a non-negligible

function. For a detailed recipient-anonymity analysis, we refer

the readers to the extended version [33].

X. IMPLICATIONS

To put our result into perspective, we discuss whether our

trilemma excludes strong anonymity for a few AC protocols

from the literature. More precisely, this section exemplarily

applies the results from Theorem 2 and Theorem 7, i.e.,

with synchronized and unsynchronized user distributions and

a global network-level, non-compromising adversary. We use

both results since for some AC protocols (e.g., DC-nets [15])

the synchronized user distribution is more accurate and for

other protocols (e.g., Tor [10]) the unsynchronized user dis-

tribution is more accurate. Our constraints mark an area on

a 2D graph (see Figure 6) with latency overhead (x-axis)

versus bandwidth overhead (y-axis) where strong anonymity is

impossible. As the latency of some AC protocols depends on

system parameters and we want to place the protocols in a 2D

graph, we carefully choose system parameters and make a few

simplifying assumptions, which are subsequently described.

This section is solely intended to put our impossibility result

into perspective. It is not meant and not qualified to be a

performance and scalability comparison of the discussed AC

protocols. Table I in the appendix summarizes bounds on the

bandwidth β and latency overhead � (in the sense of this work).

Technically, this section considers translations of AC pro-

tocols into our protocol model. As these translations do not

provide any additional insights, we do not present the full

translated protocols but only the abstraction steps. We abstract

away the cryptographic instantiation of messages including

the bandwidth overhead they introduce over the plaintext. We

assume an upper bound on the latency of the protocol and

are oblivious to server-side noise (see Claim 2). Moreover,

recall that we are only interested in the question whether our

trilemma excludes strong anonymity for the ten AC protocols

from the literature; hence, we consider the upper bound on the

latency and bandwidth overhead for deterministic latency. For

randomized latency, such as Loopix [24], we list for simplicity

the expected delay as the latency bound.

Low-latency protocols such as Tor [10], Hornet [49], and

Herd [25] are low-latency AC protocols, i.e., they immediately

forward messages. While Tor and Hornet do not produce

asymptotically more than a constant amount of both bandwidth

overhead and latency overhead and thus cannot provide strong

anonymity, Herd produces dummy traffic linearly proportional

to the number of users (bandwidth overhead β ∈ θ(N/N)),
thus the trilemma does not exclude strong anonymity for Herd.

Riposte [50] uses secure multiparty computation and a

variant of PIR to implement an anonymous bulletin board.

Riposte operates in epochs and for each epoch the set of users

is public. Hence, Riposte is expected to be run with long

epochs to maximize the number of users that participate in

an epoch, which leads us to estimating the latency overhead

to be � ∈ θ(N). To counter traffic analysis attacks, Riposte

clients send constant dummy traffic, resulting in a bandwidth

overhead of β ∈ θ(N/N). Thus, the trilemma does not exclude

strong anonymity for Riposte.

Vuvuzela [20] is a mix-net that is tailored towards mes-

sengers. Clients communicate by deposing their encrypted

messages in one of the mix net nodes. To achieve strong

resistance against compromised servers, Vuvuzela takes a path

through all servers, resulting in a latency overhead of � ∈ θ(K)

119

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

1√
η

1

poly(η)

β

�

1

log(η)

1

Tor

log(η)
√
η poly(η)

Dissent-AT

Threshold Mix

Dicemix Vuvuzela

Hornet

VV ll
RiffleDDDiiDDii ttt AAAAAAt AAAAATTTT

DC-Net
Herd

Threshold Mix sec

1

Loopix

2�β ≤ 1− 1

poly(η)

Riposte

Fig. 6. Asymptotic latency overhead (�) and bandwidth overhead (β) together
with the “area of impossibility” where 2�β ≤ 1− ε(η). We portray protocols
as dots depending on their choices for � and β. Technically, if we use
Theorem 7, we β is replaced by p = β+p′, where p′ is the rate at which users
send messages. This graph assumes N is ca. poly(η), the number of nodes
K is ca. log η. The threshold for Threshold Mix T = 1 and for Threshold
Mixsec T = N = poly(η). In the graph, both the axes are approximately
in logarithmic scale. (For a more accurate visual representation we refer the
readers to Appendix C and [51].)

(for K servers). Additionally, Vuvuzela utilizes constant traffic,

leading to a bandwidth overhead of β ∈ θ(N/N), and has the

potential for strong anonymity.

Riffle [21] uses a verifiable mix-net. Just as Vuvuzela, Riffle

also chooses paths that traverse all K servers, leading to � ∈
θ(K) and if we assume K ∈ θ(log(η)), we get � ∈ θ(log(η)).
We assume that the clients send dummy traffic up to a constant

rate (depending on the user’s sending rate p′), so we have

β ∈ θ(N/N) and the potential for strong anonymity.

In a threshold mix net, each of the K mix servers waits

until it received up to a threshold T many messages before

relaying the messages to the next mix, resulting in � ∈ θ(T ×
K). Threshold mixes [14] do not provide strong anonymity

unless their threshold T is of the order of the number of users

N . As such a large threshold are impractical for a large number

of users, we judge it impossible to achieve strong anonymity

for practical of Threshold mixes.

Loopix [24] is a mix net that combines exponentially dis-

tributed delays at each mix-node and dummy messages from

each user. Ignoring so-called loop messages (meant to counter

active attacks), Loopix naturally enforces our unsynchronised

user distribution: the rate at which Loopix clients send mes-

sages is the sum of a dummy-message rate (β) and a payload

message rate (p′), which are system parameters. We assume

that the path lengths in Loopix’ stratified topology is
√
K

with the number of nodes K ∈ θ(log(η)). If β + p′ ≥ 1/
√
η,

and if every hop introduces an expected delay of �′ ≥
√
η√
K

,

the expected latency overhead is � =
√
K × �′, in particular

� ∈ θ(
√

(η)). We get (p′ + β)� = 1√
η ×

√
η = 1 and the

trilemma does not exclude strong anonymity for Loopix.

In AC protocols based on DC-nets [15], [18] each party

broadcasts either a dummy or real message in every round

to every other party. As our bandwidth overhead only counts

dummy-message rates, it does not capture the broadcast, thus

β ∈ θ(N/N). DC-nets use a combination operation (e.g., an

XOR) that causes dummy messages to cancel out. Then, all

parties output the resulting bitstring. If only one real message

is sent, the bitstring equals this message. As Theorem 7

assumes a synchronized user distribution, in each round only

one party sends a message, thus our model treats � as � ∈ θ(1).

The Dissent-AT [22] scheme (the AnyTrust-variant of Dis-

sent) improves on the performance of DC-nets by relying

on dedicated servers. Instead of broadcasting to every other

client, clients in Dissent-AT send these messages to at least

one of these dedicated servers. These servers then perform a

DC-net communication round. Abstracting from an initial set-

up phase and only counting the client-messages, Dissent-AT

has β ∈ θ(N/N) for the clients (assuming that each client

communicates to one server), and � ∈ θ(1).

Dicemix [16] is a peer-to-peer AC protocol that is based on

the DC-net approach. While Dicemix includes a self-healing

mechanism that leads to 4 + 2f communication rounds for

one message if f peers are malicious, this mechanism does not

kick in if all peers are honest, leading to only 4 communication

rounds, resutling in � ∈ θ(1). As every party sends a message

in every round β ∈ θ(N/N).

XI. CONCLUSION AND FUTURE WORK

This paper proves the anonymity trilemma: strong anony-

mity, low bandwidth, low latency—choose two! We derive

necessary constraints for sender anonymity and recipient ano-

nymity, and thereby presents necessary constraints that are

crucial for understanding bi-directional anonymous commu-

nication: sender anonymity for hiding the sender and recipient

anonymity for hiding the recipient of a message.

For future work, we plan to extend the work in four

natural directions: (i) derive tighter bounds by using more

sophisticated attackers, (ii) derive bounds for other anonymity

notions (e.g., unlinkability and relationship anonymity), (iii)
extend the protocol mode with a notion of a throughput

limitation, (iv) relax the requirement that messages are sent

with certainty and allow for unreliable channels. For example,

for the first direction, we plan to take the same steps as

outlined in Section II-B, i.e., to formulate an invariant, to

construct a protocol optimal w.r.t. this invariant, and then

to compute the advantage of the more sophisticated attacker

against this protocol.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. This

work has been partially supported by the Zurich Information

Security Center (ZISC), the European Commission through

H2020-DS-2014-653497 PANORAMIX, the EPSRC Grant

EP/M013-286/1, and the National Science Foundation (NSF)

under grant CNS-1719196.

120

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “The Tor Project,” https://www.torproject.org/, accessed in Nov 2017.

[2] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get
routed: Traffic correlation on tor by realistic adversaries,” in Proc. ACM
SIGSAC conference on Computer & communications security 2013,
2013, pp. 337–348.

[3] L. Øverlier and P. F. Syverson, “Locating Hidden Servers,” in Proc. 27th
IEEE Symposium on Security and Privacy, 2006, pp. 100–114.

[4] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proc. IEEE Symposium on Security and Privacy 2005, 2005.

[5] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker,
“Low-resource routing attacks against tor,” in Proc. 6th ACM Workshop
on Privacy in the Electronic Society (WPES), 2007, pp. 11–20.

[6] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “RAPTOR: Routing attacks on privacy in Tor,” in Proc. 24th
USENIX Security Symposium, 2015.

[7] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the Tor network,” in
Proc. Network and Distributed Security Symposium - NDSS ’14, 2014.

[8] Y. Gilad and A. Herzberg, “Spying in the Dark: TCP and Tor Traffic
Analysis,” in Proc. 12th Privacy Enhancing Technologies Symposium
(PETS 2012), 2012.

[9] The Tor Blog, “One cell is enough to break Tor’s anonymity,”
https://blog.torproject.org/blog/one-cell-enough, accessed Nov 2017.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proc. 13th USENIX Security Symposium
(USENIX), 2004, pp. 303–320.

[11] S. Chakravarty, M. V. Barbera, G. Portokalidis, M. Polychronakis,
and A. D. Keromytis, “On the effectiveness of traffic analysis against
anonymity networks using flow records,” in Proc. 15th International
Conference on Passive and Active Measurement, 2014, pp. 247–257.

[12] N. Gelernter and A. Herzberg, “On the limits of provable anonymity,”
in Proc. Workshop on Privacy in the Electronic Society (WPES 2013),
2013, pp. 225–236.

[13] A. Hevia and D. Micciancio, “An indistinguishability-based characteriza-
tion of anonymous channels,” in Proc. Eighth International Symposium
on Privacy Enhancing Technologies (PETS 2008), N. Borisov and
I. Goldberg, Eds., 2008, pp. 24–43.

[14] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a
flood: Active attacks on several mix types,” in 5th Information Hiding
Workshop (IH 2002), 2003, pp. 36–52.

[15] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, vol. 1, no. 1, pp.
65–75, 1988.

[16] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P Mixing and Unlink-
able Bitcoin Transactions,” in Proc. 25th Annual Network & Distributed
System Security Symposium (NDSS), 2017.

[17] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable Anonymous
Group Messaging,” in Proc. 17th ACM Conference on Computer and
Communication Security (CCS), 2010, pp. 340–350.

[18] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proc. of
Eurocrypt 2004, 2004.

[19] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proactively Account-
able Anonymous Messaging in Verdict,” in Proc. 22nd USENIX Security
Symposium, 2013, pp. 147–162.

[20] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
Scalable private messaging resistant to traffic analysis,” in Proc. 25th
ACM Symposium on Operating Systems Principles (SOSP 2015), 2015.

[21] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An Efficient
Communication System With Strong Anonymity,” in Proc. Privacy
Enhancing Technologies Symposium (PETS 2016), 2016, pp. 115–134.

[22] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent
in Numbers: Making Strong Anonymity Scale,” in 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12),
2012, pp. 179–182.

[23] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and
P. Francis, “Towards Efficient Traffic-analysis Resistant Anonymity
Networks,” in Proc. ACM SIGCOMM 2013, 2013, pp. 303–314.

[24] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The
loopix anonymity system,” in Proc. 26th USENIX Security Symposium,
2017.

[25] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt,
“Herd: A Scalable, Traffic Analysis Resistant Anonymity Network for
VoIP Systems,” in Proc. ACM Conference on Special Interest Group on
Data Communication (SIGCOMM 2015), 2015, pp. 639–652.

[26] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“AnoA: A Framework For Analyzing Anonymous Communication Pro-
tocols,” in Proc. 26th IEEE Computer Security Foundations Symposium
(CSF 2013), 2013, pp. 163–178.

[27] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“AnoA: A Framework For Analyzing Anonymous Communication Pro-
tocols,” Journal of Privacy and Confidentiality (JPC), vol. 7(2), no. 5,
2016.

[28] K. Jensen, Colored Petri Nets. Basic Concepts, Analysis Methods and
Practical Use., 1997, vol. 3.

[29] W. Reisig, Primer in Petri Net Design, 1st ed., 1992.

[30] L. M. Kristensen, S. Christensen, and K. Jensen, “The practitioners
guide to coloured petri nets,” International Journal on Software Tools
for Technology Transfer (STTT), vol. 2, no. 2, pp. 98–132, 1998.

[31] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms,” Distributed Computing, vol. 2,
no. 2, pp. 80–94, 1987.

[32] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fact-track
multiparty computations with applications to threshold cryptography,”
in Proc. ACM PODC, 1998, pp. 101–111.

[33] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anony-
mity trilemma: Strong anonymity, low bandwidth, low latency—
choose two,” Cryptology ePrint Archive, Report 2017/954, 2017,
https://eprint.iacr.org/2017/954.

[34] J. Feigenbaum, A. Johnson, and P. Syverson, “A probabilistic analysis
of onion routing in a black-box model,” in Proc. Workshop on Privacy
in the Electronic Society (WPES 2007), 2007.

[35] D. Wikström, “A Universally Composable Mix-Net,” in Proc. 1st Theory
of Cryptography Conference (TCC), 2004, pp. 317–335.

[36] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Proc. CRYPTO 2005, 2005, pp. 169–187.

[37] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-flow Attacks
Against Network Flow Watermarking Schemes,” in Proc. 17th USENIX
Security Symposium, 2008.

[38] S. Oya, C. Troncoso, and F. Pérez-González, “Do dummies pay off?
limits of dummy traffic protection in anonymous communications,” in
Proc. 14th Privacy Enhancing Technologies Symposium (PETS 2014),
2014.

[39] G. Danezis, “Statistical disclosure attacks: Traffic confirmation in open
environments,” in Proc. Security and Privacy in the Age of Uncertainty,
(SEC2003), 2003, pp. 421–426.

[40] G. Danezis and A. Serjantov, “Statistical disclosure or intersection at-
tacks on anonymity systems,” in Proc. 6th Information Hiding Workshop
(IH 2004), 2004.

[41] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Proc. EUROCRYPT 2004, 2004.

[42] F. Pérez-González and C. Troncoso, “Understanding statistical disclo-
sure: A least squares approach,” in Proc. 12th Privacy Enhancing
Technologies Symposium (PETS 2012), 2012, pp. 38–57.

[43] M. Backes, P. Manoharan, and E. Mohammadi, “TUC: Time-
sensitive and Modular Analysis of Anonymous Communication,”
IACR ePrint Archive Report 2013/664, 2013, http://www.infsec.cs.uni-
saarland.de/ mohammadi/paper/tuc.pdf.

[44] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. 13th USENIX Security Symposium,
2004.

[45] D. Dolev, R. Reischuk, and H. R. Strong, “Early stopping in byzantine
agreement,” J. ACM, vol. 37, no. 4, pp. 720–741, 1990.

[46] D. Kesdogan, J. Egner, and R. Büschkes, “Stop-and-go MIXes: Provid-
ing probabilistic anonymity in an open system,” in Proc. Information
Hiding Workshop (IH 1998), 1998.

[47] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie, “Drac: An architecture
for anonymous low-volume communications,” in Proc. 10th Privacy
Enhancing Technologies Symposium (PETS 2010), 2010.

[48] P. Mittal, M. Wright, and N. Borisov, “Pisces: Anonymous communi-
cation using social networks,” in Proc. 20th Network and Distributed
System Security Symposium (NDSS 2013), 2013.

[49] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HOR-
NET: High-speed onion routing at the network layer,” in Proc. ACM

121

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

Conference on Computer and Communications Security (CCS), 2015,
pp. 1441–1454.

[50] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in Proc. 36th IEEE
Symposium on Security and Privacy (S&P 2015), 2015, pp. 321–338.

[51] Anonymity Trilemma Project Webpage, “Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency overhead—choose
two,” https://freedom.cs.purdue.edu/projects/anonymity/trilemma/.

TABLE I
Latency vs. bandwidth vs. strong anonymity of AC protocols, with the

number of protocol-nodes K, number of clients N, and message-threshold
T , expected latency �′ per node, dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity
Tor [10] θ(1) θ(1/N) impossible
Hornet [49] θ(1) θ(1/N) impossible
Herd [25] θ(1) θ(N/N) possible
Riposte [50] θ(N) θ(N/N) possible
Vuvuzula [20] θ(K) θ(N/N) possible
Riffle [21] θ(K) θ(N/N) possible
Threshold mix [14] θ(TK) θ(1/N) impossible∗

Loopix [24] θ(
√
K�′) θ(β) possible

DC-Net [15], [18] θ(1) θ(N/N) possible
Dissent-AT [22] θ(1) θ(N/N) possible
DiceMix [16] θ(1) θ(N/N) possible
∗ if T in o(poly(η))

APPENDIX A

PROTOCOL MODEL REVISITED

A. Validity of the Protocol Model (Contd.)

Lemma 2. Let Π be a protocol ∈ M with K parties with
parameters β and �. Then: 1) Messages are delivered within
� steps. 2) The protocol adds (for the unsynchronised case on
average) a maximum of β noise messages per user per round.
3) Whenever a party in S ∪ P sends a message to another
party in P∪R, the adversary learns that and in which round
this happens. 4) For every message that leaves the network
(received by R), the adversary additionally learns whether
the message is the target message. 5) For every compromised
party, the adversary learns the mapping between the input
messages and the output messages.

Proof. Let Π be a protocol ∈ M with K parties with param-

eters β and �. Part (2) of the Lemma holds, since we restrict

the user distributions accordingly and since the none of the

transitions in the petri-net can create more tokens within the

network than it consumes from its input place.

We show the part (1) of the lemma via structural induction

over fired transitions of the petri net. We additionally add to

the induction invariant that all tokens that are not in S have a

timestamp for their next transition of ts = 1 and a remaining

time of tr > 0 and there are at least tr rounds left in which

the token can be delivered.

Induction base: The protocol is initialized and no transi-

tions have happened. Thus, no messages have been sent so far,

i.e., there is no message that has not been delivered within �
steps. The only transition that can fire is TS and for � > 0,

the message introduced into the network in this way does not

need to be delivered already (0 < tr = �). Moreover, TS sets

the timestamp of this message token to ts = 1

Induction step: Let tr be any execution trace s.t. the

induction invariant is satisfied and let t be an arbitrary possible

transition that extends tr to tr :: t.
We distinguish two cases for t: In case t is TS , it consumes

a token from PS and puts this token into a place Pi and, by

definition we have tr > 0 and ts = 1. Otherwise, the transition

is TPi for some i and consumes a token from Pi accordingly.

By the induction invariant, the token has tr > 0. If this token

has tr−1 = 0, the transition delivers the token to R. Otherwise,

t decreases tr by one (thus fulfilling the condition that there

are at least tr rounds left in which the token can be delivered)

and sets ts = 1. Since every token in any place Pi needs to be

consumed in every round, the protocol delivers every message

in at most � steps.

Other parts of the lemma: By definition of our petri net,

whenever a transition fires, an element (t, r) is placed into

Tokens, containing the public fields of t, such as t.prev and

t.next, as well as the current round number r, which fulfills

part (3). Moreover, whenever the transition places the token

in R, the adversary can additionally see the field t.msg and no

transition can change the field msg, which allows the adversary

to effectively tag and recognize the challenge message and thus

fulfills part (4). Finally, if any party Pi is compromised, Pi

does not modify the unique (and otherwise freshly sampled)

field t.IDt, which allows the adversary to map incoming and

outgoing messages.

Since the transitions discussed here are the only way for

messages to be sent to a recipient, the model correctly enforces

the conditions from the lemma.

B. Expressing Protocols in the petri net model

Modeling DC net. Here we show how to model an actual

DC net type protocol using our petri net model M as defined

in Section IV. Specifically we pick up the short DC net
protocol proposed by Golle and Juels [18], and present MDC

which models the aforementioned protocol.

We model a DC net protocol with N participants, where

S = P, |S| = |P| = N. We denote the parties with P1, . . . , PN .

The protocol can be denoted by ΠDC ={paramgen, keydist,

post, verify, extract}7 - as described below.

• paramgen: In protDC , paramgen is executed by a trusted

entity and the output is published. Since we are mainly

interested in the anonymity game, we consider that paramgen
step is executed by our honest challenger and happens outside

the protocol run, and the output is globally known (to all the

transitions TPi
).

• keydist: using the output of paramgen, this step yields for

each party Pi a private key xi and a corresponding public key

yi. In protDC , the above key generation part is done by a

trusted entity, and hence we consider that it is done by our

honest challenger and for each party Pi the public-private

keypair xi, yi is already known to the corresponding transition

7Since we are mainly interested in the anonymity property, we don’t need
to model the part of the protocol where the protocol parties reconstructs the
keys in case of a failure. But it is easy to extend MDC to include that step
by adding one more round to the current model.

122

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

function TPi
. As part of protocol each party Pi publishes its

public key yi. Additionally, each party Pj receives from Pi

a share of private key xi,j and a share of public key yi,j ,

where the keys are shared in a (k,N) threshold manner for a

parameter k ≤ N.

• post: Each player Pi generates a vector of random pads

Wi = {Wi(1),Wi(2), . . . ,Wi(N)}8 using xi. ΠDC does not

handle collisions, instead assumes that the players decide

their positions by a consensus protocol. Similarly our model

assumes that each party Pi knows its position, and assume

the position is qi (but not known to the adversary). Then each

player Pi computes the vector Vi such that Vi(w) = Wi(w)
for all w �= i and Vi(w) = Wi(w) ⊕mi for w = qi, where

mi is the message of Pi. Also, each player Pi computes

σi = {σi(1), σi(2), . . . , σi(N)}, where σi includes the identity

of player Pi and a proof of valid formatting of Vi. Then Pi

publishes both the vectors Vi and σi. Our model assumes the

pair (Vi(w), σi(w)) for each position w as a single message,

where Vi(w) is a message content and σi(w) becomes a part

of meta field. For each position w player Pi generates one

such message, and publishes the message to all other players.

• verify and extract are local computations after a party Pi

receives messages from all other parties.

Although the protocol model assumes that the adversary can

not read the contents of any message, here we shall model

ΠDC along with its cryptographic primitives to demonstrate

the expressiveness of our model. Alternatively, to get rid of

all the cryptographic primitives, the parties can send a dummy

message (= 0) whenever Vi(w) = Wi(w), and the actual

message mi whenever Vi(w) �= Wi(w).
As per our anonymity definition in Section III, we assume

that up to (N−2) users can be compromised, which necessarily

makes up to (N − 2) protocol parties compromised. The

adversary chooses two challenge users, and one of them sends

the challenge message depending on the challenge bit b. All

other (N − 1) users send dummy messages.

In MDC we model ΠDC as a two round protocol. The

challenger sets the initial configuration of the petri-net with the

messages to be sent by each party. In the first round, each party

Pi sends two kinds messages: (1) publishes the public key

message yi and (2) sends share of the public-private keypair

(xi,j , yi,j) to Pj for all j �= i. Here, one party can publish a

message to (N −1) other parties by sending (N −1) separate

messages. In the second round, each party Pi publishes N
messages: one message for each position, only one of them

contains his own message. After second round, every party

receives messages from every other party, and then does local

computations to verify and extract the original messages.

For ΠDC , we do not actually need a separate recipient R
in ΠDC , if we make R = P. But, to be consistent with M ,

in MDC we keep a separate recipient. In the second round

whenever a party Pi publishes a message, Pi also sends a

copy to R. This easily models the fact that the adversary knows

8The anonymity game does not include multiple sessions. Also, in our
model all the N players participate in a protocol run.

whenever a message is published, but avoids the complication

of modeling a subset of compromised recipients.

The meta fields of the tokens contains the following sub-

fields: (1) stage, (2) position, (3) sigma. stage can have three

possible values identifying three possible cases: (1) public

key distribution, (2) share of the public-private keypair, (3)

message. Using stage subfield, any party in the protocol

recognizes if the message is part of keydist messages, or part

of post messages. When the value of stage is message, the

user posts Vi(w), and position takes the value of w. sigma
includes the identity of the sender and a proof of computation

whenever necessary. sigma fields helps in the verify stage, we

avoid the details here.

If we want to analyze the user distribution for ΠDC , we do

not count the first round since it is used only for key exchange.

Note that, if we get rid of the cryptographic primitives, we do

not require the first round.

Modeling Tor. Since Tor does not operate in rounds, em-

bedding it into our model is not straight forward. Suppose, a

Tor node takes at least x milliseconds to process a message

when it receives a message, and it takes at least y milliseconds

for a message to travel from one node to the next node over a

network link. Then we define one round as x+y milliseconds.

We assume a perfect condition where each node takes exactly

equal computation time for one message, and each link has

exactly same delay. In the real world, delays and computation

times are less stable, but can be estimated by an adversary.

Instead of analyzing this, we instead allow the messages to

remain within the node for the respective time.

Tor nodes and recipients are separate entities and hence, S,

P and R are mutually exclusive. Whenever a Tor node receives

a message, the node immediately processes and forwards that

message to the next node or recipient. We can either model

the latency overhead � of Tor by estimating the time messages

spend within the network that exceeds the (minimal) round

length x+y from above, or we set it to the number of hops, i.e.,

� = 3. In either case, we assume that � does not increase with

η and thus get a latency overhead � ∈ O(1). For analyzing Tor

with a variable number h of hops, we can instead set � = h.

When a party Pi receives a message, TPi
can retrieve the next

hop from the meta field of the message. Since Tor does not

add any noise messages, the bandwidth overhead is β = 0.

APPENDIX B

DELAYED PROOFS

Proof of Claim 1. If the set T is empty, then S1−b is empty as

well. However, by construction of our protocol mode, the set

Sb is always non-empty. Consequently, the adversary Apaths

will output b and thus win with probability 1. If T is not

empty, the following cases can occur:

1) The challenge message never passes through an honest

node: In this case, the field IDt of the message never changes

for the tokens. Thus, Sb will have exactly one element, and

S1−b will be an empty set, and consequently Apaths wins.

2) The challenge message passes through one or more

honest nodes at times t′, such that t′ < min(T), but not

123

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

afterwards. Following the same reasoning as above, we see

that paths before min(T) can be ambiguous, but none of them

leads to u1−b. Hence, Sb can have multiple elements, but S1−b

will still be an empty set. Thus, Apaths wins.
3) The challenge message passes through an honest node

at time t′ with t′ ≥ min(T). In this case, the invariant is true.
In all of the above mentioned cases either the invariant is

true, or the adversary wins with probability 1.

Proof of Claim 2. Let u0, u1 be the challenge users and let

b be the challenge bit and let r be the round in which the

challenge message is delivered to the recipient. We discuss

both parts of the invariant separately:
(i) The set T is not empty. Since by definition, T is the set

of messages sent by u1−b, messages originating in any party

not in S do not influence T . Moreover, any message sent by

u1−b in a round previous to r− � does not influence T either.

Thus, noise messages staying in the protocol for more than �
rounds, do not improve the probability of T being not empty.

(ii) The challenge message passes through at least one hon-

est node at some time t′ such that, t′ ∈ {min(T), . . . , r − 1}.
Obviously this second part of the invariant does not depend

on any noise message.

Proof of Claim 3. We want to prove our claim by contradic-

tion. Suppose, Πideal is not the best protocol. That means,

there exists a protocol Πnew, which satisfies Invariant 1 with

a higher probability than Πideal, against the adversary Apaths.
Now we construct a new protocol Πhybrid, which exactly

follows the strategy of Πideal with one exception: for a given

message Πhybrid selects the time delay t same as Πnew,

instead of querying it from oracle O. Suppose, the challenge

message is delivered to the recipient at round r. Given the

set {min(T), . . . , r − 1}, the ideal strategy for ensuring that

at least one honest party is on the path of the challenge

message is to ensure that as many distinct parties as possible

are on this path. Also, given the time delay t, the value of

min(T) is independent of the protocol, since protocols in M
are oblivious to the challenge users and the challenge message.

Hence, Πhybrid has a probability of satisfying Invariant 1 at

least as high as Πnew.
Now, if we compare Πhybrid and Πideal: they follow the

same strategy. But Πideal picks the time delay t for any

message from oracle O (except for messages from u1−b) such

that t is optimal. The time delay t can be picked for each

message independent of the time delays of other messages.

Hence, the value of t received from oracle O for the challenge

message is optimal. Hence, Πideal satisfies Invariant 1 with

probability at least as high as Πhybrid. Thus, Πnew does not

satisfy Invariant 1 with a higher probability than Πideal.

Proof of Claim 4. If the Invariant is true, the challenge mes-

sage passes through an honest party at t′, such that t′ >
min(T). Hence, there is at least one message (noise or

original message) from u1−i which visits the same honest

party together with the challenge message (Πideal ensures that

all messages are always kept together until they are delivered).

That ensures that in addition to Sb �= ∅, we also have S1−b �= ∅
and thus Apaths outputs a random bit (and has an advantage

of zero).

Proof of Theorem 2. For strong anonymity, we require:

δ(η) = neg(η), and we know that for Πideal we have:

δ(η) ≥ 1−fβ(�) =
(

N−�−βN�
N−1

)
≥

(
N−�−βN�

N

)
≥ 1− �

N −β�.

We assume for contradiction that there is a protocol limited

by � and β such that 2�β < 1− ε(η) that still achieves strong

anonymity. Since δ(η) = neg(η), we know that ε(η) > δ(η).

ε(η) > δ(η) =⇒ ε(η) > 1− �

N
− β�

=⇒ ε(η) > 1− �

N
− 1

2
(1− ε(η))

⇐⇒ 2� > N (1− ε(η))
Nβ≥1
=⇒ 2�β > 1− ε(η)

The above contradicts the assumption that 2�β < 1− ε(η).
Note: In case βN < 1, no noise messages are allowed per

round (i.e., β = 0) and thus δ(η) ≥ 1 − �/N, which is not

negligible unless � = N, since N = poly(η).

Proof of Theorem 4. When c > �: δ ≥ 1−
[
1− (c�)

(K�)

]
fβ(�).

For δ to become neg(η), we need both [1 − (
c
�

)
/
(
K
�

)
]

and fβ(�) to become overwhelming. From Theorem 2 and

Theorem 1, we know that 2�β > 1− neg(η) is a necessary

condition for fβ(�) to become overwhelming. Now, we are left

with the factor [1− (
c
�

)
/
(
K
�

)
]. This can become overwhelming

iff [
(
c
�

)
/
(
K
�

)
] becomes negligible. We know that K > c ≥ �

and K ∈ poly(η). Hence, for some constant x,

c− �

K− �
>

1

ηx
⇐⇒

(
c− �

K− �

)�

>

(
1

ηx

)�

=⇒ c(c− 1) . . . (c− �)

K(K− 1) . . . (K− �)
>

(
c− �

K− �

)�

>

(
1

ηx

)�

⇐⇒
(
c
�

)
(
K
�

) >

(
1

ηx

)�

.

For any � ∈ O(1), (1/ηx)
�

is non-negligible.

Proof of Theorem 5. When c < �:

δ ≥ 1−
[
1− 1/

(
K
c

)]
fβ(c)− fβ(�− c).

First consider the factor [1 − 1/
(
K
c

)
]. Since K = poly(η)

and c = constant, [1/
(
K
c

)
] can never be negligible. And thus,

[1− 1/
(
K
c

)
] can never be overwhelming. So, [1− 1/

(
K
c

)
]fβ(c)

can never be overwhelming as well, since fβ(c) ≤ 1.

Now, let’s consider fβ(� − c) and fβ(c) . Note that, these

two factors represent the probabilities of two dependent but

mutually exclusive events, and hence fβ(c) + fβ(� − c) ≤ 1.

And we already know that [1 − 1/
(
K
c

)
] can never be over-

whelming. Thus, the only way δ can become negligible is if

fβ(�− c) becomes overwhelming. Note that, if a+ b ≤ 1 and

c < 1, the only way ac+ b = 1 is possible if b = 1.

Now we can follow exactly the same procedure as in

the proof of Theorem 2 to say: fβ(� − c) can not become

overwhelming if 2(�− c)β < 1− ε(η).

124

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

Proof of Theorem 7. We know 0 ≤ E ≤ 1/2. When 2μ ≤ N,

δ ≥(1− E) (1− 2fp(�)) ≥ 1/2
(
2 (1− p)

� − 1
)

≥1/2 (2 (1− �p)− 1) = 1/2 (1− 2�p) .

Thus, if 2�p < 1− ε(η),

2�p < 1− ε(η) ⇐⇒ 1− 2�p > ε(η)

=⇒ δ > 1/2× ε(η) = non-negligible.

Thus, when 2μ ≤ N, a necessary condition for δ to become

negligible is 2�p > 1− neg(η).
When 2μ > N, using μ = N(1− (1− p)

�
) we get:

2N(1− (1− p)
�
) > N =⇒ (1− p)

�
< 1/2

=⇒ 1− p� < 1/2 ⇐⇒ 2p� > 1.

Proof of Theorem 8. Let X(i)(x) and X(x) be defined as in

the proof for Theorem 6, where we replace the fixed length �
of the slice by a variable x. Using the Chernoff Bound on the

random variable X(x) calculate Pr [X(x)− μ(x) ≥ Na] ≤
exp(−2a2N), and for a = μ(x)

N , we define E(x) as :

E(x) = Pr [X(x) ≥ 2μ(x)] ≤ exp (−2μ(x)2/N2 × N)

≤ exp
(−2(1− (1− p)x)2N

)
.

Note that, similar to X(i)(x) and X(x), μ(x) is also defined

as in the proof for Theorem 6, but for a slice of variable

length x. We denote the event that sender u1−b sends at least

one message in an interval of size x by Y (x) and since all

users are acting independently from each other we get for j ∈
{0, . . . ,N}, Pr [Y (x)|X(x) = j] = 1 − Pr [¬Y |X(x) = j] =
j
N . Moreover, for any value of x with 2μ(x) ≤ N,

Pr [Y (x)] = Pr [X(x) ≥ 2μ(x)]× Pr [Y (x)|X(x) ≥ 2μ(x)]

+ Pr [X(x) < 2μ(x)]× Pr [Y (x)|X(x) < 2μ(x)]

≤ Pr [X(x) ≥ 2μ(x)]× Pr [Y (x)|X(x) = N]

+ Pr [X(x) < 2μ(x)]× Pr [Y (x)|X(x) = 2μ(x)]

= E(x)Pr [Y |X(x) = N]

+ (1− E(x)) Pr [Y |X(x) = 2μ(x)]

= E(x) (N/N) + (1− E(x)) (2μ(x)/N)

= 1− (1− E(x))
(
1− 2

(
1− (1− p)x

))
.

If 2μ(x) > N, we get with f(x) = min
(
1
2 , 1− (1− p)x

)
:

Pr [Y (x)] ≤ E(x) + (1− E(x))× 1 ≤ 1

≤ 1− (1− E(x)) (1− 2f(x)) .

Now, we calculate the probability of Invariant 1 being true,

under our protocol Πideal and as in the proof for Theorem 3.

We distinguish two cases depending on c and �:
Case 1): c > �

Pr [Invariant 1 is true]

≤ Pr [¬Cmpr(�)]× Pr [u1−b.sent(r − �, r − 1)]

= Pr [¬Cmpr(�)]× Pr [Y (�)]

≤
[
1− (

c

�

)
/
(
K

�

)] [
1−

(
1− E(�)

)(
1− 2fp(�)

)]
.

By applying Markov’s inequality on the random variable

X(x), we get E(x) = Pr [X(x) ≥ 2μ(x)] ≤ 1
2 . Thus, we

derive for δ: δ ≥ 1−
[
1− (c

�

)
/
(K
�

)] [
1
2 + fp(�)

]
.

Case 2): c < �. As for the proof of Theorem 3 we split this

case into two sub-cases, depending on t and c.

Case 2a): c < t

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − �, r − c)] + Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c, r)]× Pr [¬Cmpr(c)]

= Pr [Y (�− c)] + [1− Pr [Y (�− c)]] Pr [Y (c)] Pr [¬Cmpr(c)]

≤ [1− (1− E(�− c)) (1− 2fp(�− c))]

+ [(1− E(�− c)) (1− 2fp(�− c))]

× [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(
K

c

)]
.

Thus, for the adversarial advantage δ we derive,

δ ≥ 1− Pr [Invariant 1 is true]

≥ 1− [1− (1− E(�− c)) (1− 2fp(�− c))]

− [(1− E(�− c)) (1− 2fp(�− c))]

× [1− (1− E(c)) (1− 2fp(c))]
[
1− (c

c

)
/
(K
c

)]
= [(1− E(�− c)) (1− 2fp(�− c))]

×
(
1− [1− (1− E(c)) (1− 2fp(c))]

[
1− 1/

(K
c

)])
≥ (

1− [
1
2 + fp(�− c)

]) (
1− [

1
2 + fp(c)

] [
1− 1/

(K
c

)])
.

We again use Markov’s inequality to replace E(x) by 1/2.
Case 2b): t ≤ c

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − �, r − c)]× Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c, r)]× Pr [¬Cmpr(c)]

≤ Pr [u1−b.sent(r − �, r − c)] + Pr [¬u1−b.sent(r − �, r − c)]

× Pr [u1−b.sent(r − c, r)] Pr [¬Cmpr(c)]

The above event expression is exactly same as the expression

we had in the previous case (t > c). Thus, the rest of the

calculations and bounds are exactly same as the previous case.

APPENDIX C

VISUAL 3D REPRESENTATIONS OF THE RESULTS

In the paper, we focus on lower-bound results for strong

anonymity (or negligible δ values). However, our key Theo-

rems 1, 3, 6 and 8 also offer lower bounds for non-negligilable

δ values, which can be of interest to several AC protocols.

On our project webpage [51], we visualize these lower

bounds using interactive 3D surface plots. In particular, we

plot the adversarial advantage δ ∈ [0, 1] as a function of β
and �. We encourage the readers to interact with these plots

to better understand our results for non-negligilbe δ values.

Here, in Figures 7 to 10, we present and analyze four

snapshots of those lower bound plots for the number of users

N = 10000. The x-axis represents latency � (ranging from 0
to 200), and the y-axis bandwidth overhead β (ranging from

0.0 to 0.04). But in Figure 9 and Figure 10, the y-axis actually

represents total bandwidth p = p′ + β as in Theorem 7.

125

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Synchronized User Distribution with Non-compromising Adver-
saries. z = 1− fβ(�), where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Fig. 8. Synchronized User Distribution with Partially compromising Ad-
versaries. Total protocol parties K = 100, number of compromised parties

c = 20. z = 1−[1−(c
�

)
/
(K
�

)
]fβ(�) for � ≤ c, z = 1−[1−1/

(K
c

)
]fβ(c)−

fβ(�− c) otherwise.

Fig. 9. Unsynchronized User Distribution with Non-compromising Adver-
saries. z = 1− (

1
2
+ fp(�)

)
, where fp(x) = min(1/2, 1− (1− p)x).

Fig. 10. Unsynchronized User Distribution with Partially compromising
Adversaries. Total number of protocol parties K = 100, number of

compromised parties c = 20. z′ = 1 − [1 − (c
�

)
/
(K
�

)
][1
2
+ fp(�)] for

� ≤ c, z′ = (1 − [1 − 1/
(K
c

)
][1/2 + fp(c)]) × (1 − [1/2 + fp(� − c)])

otherwise. We set z = max(z′, 1− (1/2 + fp(�)))

A derived δ lower bound for the non-compromising adver-

sary is also a valid lower bound for a (partially) compromising

adversary. For some edge cases (e.g., when � is close to N
and β is close to 0), due to some approximations employed in

the compromising adversaries scenario, the non-compromising

adversary lower bound is actually tighter than the compromis-

ing adversaries lower bound. Therefore, in Figure 10, while

plotting the 3D graph for a partially compromising adversary

scenario, we have used the maximum of the lower bounds on δ
for compromising adversary and non-compromising adversary.

In each plot, the dark blue region indicates the possibility

of obtaining strong anonymity. For any point (x, y) outside

those regions, strong anonymity is not possible. For example,

as shown in Figure 7, for � = 100 the bandwidth overhead β
has to be at least 0.01 to expect strong anonymity.

For the chosen c and K, the plots in Figures 7 and 8 are

almost identical as the � and β factors contribute more to

anonymity than the compromised parties can affect it. If we

instead compare Figure 9 with Figure 10, the effect of com-

promisation is noticeable: the dark blue region in Figure 10 is

much smaller than that in Figure 9. Also, we can see a steep

wall in Figure 10 for � ≤ c = 20, demonstrating that providing

anonymity becomes difficult when � < c; however, for � > c,

the effect of compromisation is less noticeable.

126

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:12:11 UTC from IEEE Xplore. Restrictions apply.

