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Abstract—Malicious calls, i.e., telephony spams and scams,
have been a long-standing challenging issue that causes billions
of dollars of annual financial loss worldwide. This work presents
the first machine learning-based solution without relying on any
particular assumptions on the underlying telephony network
infrastructures.

The main challenge of this decade-long problem is that it is
unclear how to construct effective features without the access to
the telephony networks’ infrastructures. We solve this problem by
combining several innovations. We first develop a TouchPal user
interface on top of a mobile App to allow users tagging malicious
calls. This allows us to maintain a large-scale call log database.
We then conduct a measurement study over three months of
call logs, including 9 billion records. We design 29 features
based on the results, so that machine learning algorithms can be
used to predict malicious calls. We extensively evaluate different
state-of-the-art machine learning approaches using the proposed
features, and the results show that the best approach can
reduce up to 90% unblocked malicious calls while maintaining a
precision over 99.99% on the benign call traffic. The results also
show the models are efficient to implement without incurring a
significant latency overhead. We also conduct ablation analysis,
which reveals that using 10 out of the 29 features can reach a
performance comparable to using all features.

I. INTRODUCTION

Spams and scams through telephony networks have caused

an annual financial loss that is worth billions of dollars all

over the world [1]–[3]. We refer to them as malicious calls.

Unfortunately, there has been no simple and effective solution

to stop them [33]. Although countries, such as US, have

established National Do Not Call Registry to mitigate the

issue, the problem is more severe in countries such as China,

where such legislation is not available.

One of the main challenge is the lack of effective in-

formation for accurate malicious calls detection. Different

from traditional email spams, malicious calls typically demand

instant responses before the content in the call has been heard.

Thus, only the header information can be used to prevent

malicious calls from causing recipients to lose time, money,

and productivity. Prior malicious call prevention techniques

mainly focus on Spam over Internet Telephony (SPIT), and

rely on server side information about the caller to predict

malicious calls [7], [11], [19], [21], [24], [31], [34], [36], [40].

However, such information is typically unavailable for the end

users on traditional telephony networks.

In this work, we focus on the malicious call prevention prob-

lem without relying on any particular underlying telephony

network infrastructure. Thus the first challenge is how to

gather effective information. The first contribution of this work

is to collect information about malicious callers in order to

build an effective prevention mechanism, using the TouchPal
user interface. The basic idea is to implement TouchPal as

a functionality of a mobile App that has a large number of

users. Then TouchPal allows its users to label a finished call

as malicious or not, and implements a simple reputation-based

black-listing prevention mechanism based on users’ tagging.

TouchPal also promptly suggests users to label suspicious

calls. This design also increases the tagged call log volume

in addition to users’ voluntary labeling through malicious

call reporting services, such as 12321. In doing so, we can

gather a large call log dataset without relying on any particular

telephony network infrastructure.

Although the simple black-listing approach is effective, it

has to observe enough call records from one malicious number

before TouchPal can black-list the number. Our next question

is: how can we build an effective mechanism to detect a
malicious call number early without answering too many calls
dialed from the number? We seek a machine learning solution.

The main obstacle is to design a set of effective features. To

this end, we rely on the data logs collected from TouchPal to

analyze which information is effective to be used as a feature.

In fact, over the past several years, TouchPal has reached over

56 million daily active users and kept track of billions of call

records monthly. Nowadays, TouchPal maintains the largest

call log databases in China with respect to both call ID volume

and call tag volume.

Using this dataset, we conduct a large scale measurement

study to understand which information is more helpful to dis-

tinguish malicious calls from benign ones. Note that there have

been several prior work providing measurement studies [15],

[22]. However, these work mainly focused on malicious call

records, and did not provide insights on how malicious call

records differ from benign ones. Also, they focused on US call

records, and it is unclear whether the same conclusions apply

to Chinese malicious call ecosystems. MobiPot [9] provides a

study to overcome these two issues; however, the study relies

on only less than 700 call records, and we show that the

observations from [9] are not robust when we increase the

samples size by 7 orders of magnitude.

Our study overcomes all these issues, and sheds new light

on the feature design, which is the core problem of this work.

Our results reveal that (1) the provincial malicious call volume

is more sensitive to the province’s Gross Domestic Product
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(GDP) than benign calls; (2) malicious calls are more likely

to happen in a workday and during working hours than benign

calls; and (3) the volume of incoming and outgoing calls from

a number is indicative to distinguish malicious calls from

benign calls. To the best of our knowledge, we are the first to

present these findings with respect to distinguishing malicious

calls from benign ones.

Inspired by our measurement study, we design 29 features

for the malicious call prediction problem to include not only

static information about the current call, but also extended

information by examining historic records about the caller of

an incoming call and by cross-referencing multiple records.

We extensively evaluate the effectiveness of these features

by using several state-of-the-art models. To this end, we

use both the standard AUC score, and design a new metric,

average first prediction (AFP). AFP is designed to evaluate

the averaged amount of malicious calls that needs be observed

before an approach can predict it as a malicious caller, without

affecting benign call traffics. Our evaluation shows that using

our proposed features, a random forest model can achieve an

AUC score of at least 0.99; further, it reduces the averaged

necessary observed malicious calls by up to 90% from a

black-listing approach, while guaranteeing that over 99.99%
of the benign calls will not be blocked. In other words, the

best random forest model using our 29 proposed features can

reduce 90% unblocked malicious calls.

Also, the evaluation shows that a neural network model can

achieve a similar accuracy performance as the best random

forest, but incurs a low latency overhead of less than 1ms.

This shows that the models in our evaluation can be efficiently

implemented on top of the current infrastructure to achieve

both high accuracy and high efficiency.

We further conduct ablation study to understand the effec-

tiveness of each proposed feature, and our evaluation shows

that only 10 features are necessary to reach a high accuracy

instead of the entire 29 features.

We summarize our contributions as follows.

1) We develop the TouchPal user interface to keep track

of malicious calls and benign calls. Using this approach,

TouchPal has maintained the largest call log database in

China with respect to call ID volume, total call record

volume, and malicious call volume;

2) We conduct a measurement study on the large scale call

logs without sensitive user information to draw insights

to design effective features for a machine learning-based

malicious call prevention approach;

3) We propose 29 features, and extensively evaluate 6 state-

of-the-art machine learning approaches. The results show

that the best random forest model can achieve an AUC

score of at least 0.99, and reduces up to 90% unblocked

malicious calls compared with a black-listing approach,

while at least 99.99% of the benign traffic will not be

blocked;

4) We evaluate the model’s runtime performance, and show

that some of the performant models incur small latency

overhead. Thus, the proposed approach can be efficiently

implemented on top of the current structure;

5) To further understand the effectiveness of the proposed

features, we conduct ablation analysis. We find that some

features are more useful than others, and in an extreme

case, using the top-10 most useful features can achieve a

comparable performance to using all 29 features.

II. OVERVIEW

In this section, we present an overview of the malicious

call prevention problem and the TouchPal solution. We will

first briefly review the malicious call status in China, and

then define the problem by providing the requirements of

malicious call prevention. We will then give an overview of

the TouchPal solution, with the highlights of our technical

development in this paper.

A. Malicious calls in China

The legislation status in China against malicious calls is

pre-mature. Services, such as National Do Not Call Registry

in US, have not been available in China. The main channel

provided by Chinese government is 12321, a dedicated service

for reporting malicious calls and SMS messages. However,

12321 mainly relies on users’ volunteer reporting; also, it is

unclear how this information is eventually used.

Two policies are enforced by Chinese government, which

may have effect on malicious calls. First, telecommunication

providers in China are required to register a real-identity with

every phone number. Second, a number dialing another in a

different province will incur a long-distance cost. These two

policies may increase the cost for a malicious caller. However,

starting from September 1st, 2017, the long-distance fee has

been canceled along with roaming cost [4].

B. Malicious call prevention

We consider the problem to prevent malicious calls on the

mobile side. That is, a malicious call preventer is implemented

on the mobile phones to provide the service to detect whether

an incoming call will be a malicious call. As we will explain

in Section III, we mainly consider harassing and phishing calls

as malicious calls. We have the following requirements.

Without the access to the underlying telephony network
infrastructure. We require the solution to be deployed on end-

users’ devices; so, it does not have access to many information

about the caller that is only available from the servers in

telecommunication providers. This eliminates most of the

existing SPIT prevention proposals. However, we emphasize

that this requirement does not prevent a solution leveraging

an server to collect and store information reported from the

mobile devices.

Light-weight for users. The prevention mechanism should

not incur many additional operations to end users. Ideally,

the users should receive a benign call or dial a number as

usual, and only need to operate the phone differently when

the incoming call is predicted as a malicious call.
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Effectiveness. The solution should not prevent users from

receiving benign calls. A majority of the benign calls (i.e.,

≥ 99.99%) should pass through the malicious call detector.

Early detection. Ideally, an effective malicious call preventer

should start blocking all malicious calls from a phone number

when as few malicious calls have been made as possible.

Efficiency. The malicious call preventer should incur a low

latency overhead on the phone side to detect whether an

incoming call is a malicious call. Ideally, the latency overhead

should be 10ms or lower.

C. Solution overview
We now present the overview of our solution to use machine

learning for malicious call prevention. We built TouchPal
(Section III) as an additional functionality on top of a mobile

App, which has hundreds of millions of users. TouchPal
provides the functionality to allow users to label a phone

call as malicious, and employs a reputation-based black-listing

malicious call prevention mechanism.
However, the black-listing approach requires the same num-

ber to be labeled multiple times before it can be marked as

a malicious caller and blocked. To mitigate this issue, we

develop a machine learning approach to predict whether a

phone number is a malicious caller before it has made too

many malicious calls.
The main challenge is how to design effective features

without tapping users call content. To this end, TouchPal
keeps a call log containing each call record about a TouchPal
user. In the call record, only less sensitive information such

as call duration and call time is stored.
Though the call log hides sensitive information, its scale

allows us to make important observations. We conduct a large

scale measurement study (Section IV) using data over a period

of three months containing 9 billion call records, and examine

which information is more helpful to distinguish malicious

callers from benign ones. Our study thus sheds light on the

design of the selection of features (Section V).
Intuitively, besides the basic set of features about the current

call, information from historic call records and information

from multiple records can be useful in detecting malicious

calls. We extensively evaluate several state-of-the-art machine

learning approaches (Section VI), including random forest,

neural networks, SVM, and logistic regression, and we observe

that most of the models can achieve a high performance. First,

the AUC scores of most models can achieve 0.99 or higher.

More importantly, we enforce the precision of benign calls to

be at least 0.99, and evaluate how many malicious calls need

be observe before the number can be detected. Our evaluation

shows that a random forest or a neural network only need to

observe 2.5 calls on average to detect a malicious caller; we

thus reduce up to 90% unblocked malicious calls using the

current black-listing approach in TouchPal.

III. TouchPal FOR MALICIOUS CALL PREVENTION

In this section, we explain the pipeline of TouchPal to

help the users to prevent malicious calls. TouchPal employs

(a) Prompt to label tags (b) Prompt to reject a scam call

Fig. 1: TouchPal UI on Android

a reputation-based black-listing approach to prevent malicious

calls. TouchPal allows users to label malicious calls. Based

on such information, TouchPal will mark a phone number as

malicious when TouchPal is confident to do so. We explain

the details in the following.

Information collection. The user interface for TouchPal
to allow users to label malicious callers are provided in

Figure 1a. When a call finishes, TouchPal employs some

simple heuristics to detect suspicious calls and prompt users

with the labeling interface. Doing so can increases the chance

that a user may label a call, since most users are reluctant to

label calls actively. The heuristics are designed so that the

prompt is shown to users only when the call is highly likely

to be labeled, so as to reduce the burden to TouchPal users.

In particular, if a number is never tagged (almost sure benign)

or already blacklisted (almost sure malicious), TouchPal will

not prompt its users; only when TouchPal is not sure about

a number, it will prompt its users for tagging. Even if the

prompt is not showing up, TouchPal still provides a button in

the call history to label a malicious call.

A TouchPal user can choose one among five pre-defined

tags to label a call. The sixth tag allows users to customize

their tags. The five built-in tags are Real Estate Agency,

Harassment (for spams), Delivery, Fraud (for scams), and

Salesperson. These categories are created based on the an

internal survey about what types of calls that TouchPal users

mostly want to block. TouchPal also provides information

about the most frequently labeled tag and its frequency. In

our analysis, we take Harassment and Fraud as malicious call

tags, and others as benign ones.

Simple reputation-based black-listing. TouchPal uses a

sophisticated and conservative policy to tag as many phone

numbers as possible, while minimizing the amount of wrong
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Field Explanation
user id TouchPal user ID

call type
A binary value indicating if this is an incoming
or an outgoing call

other phone
The anonymized phone number in this call other
than the TouchPal user

other phone md5 A unique encryption for each phone number
call date The timestamp (in seconds) of the start of the call

call duration The number of seconds the call lasts

call contact
A binary value indicating if the other number is
in the contact of the TouchPal user

call tag The tag of the call

TABLE I: The structure of data log records.

tags. Multiple information sources are used to tag a phone

number. One of the main sources is the tag provided from

users. However, it is very common that users may mislabel

some phone numbers. TouchPal imposes a threshold, which

may differ from 30 to 100, to be confident about the tag of

a phone number. For example, 10086, the service number of

China Mobile, is frequently labeled as Harassment by users,

and its threshold is thus set to be very high. Other information

sources are also used to confirm the tag. For example, real

estate agency typically provides their numbers online, and

TouchPal crawls the websites for those numbers to confirm

the tag. Note that the threshold used in TouchPal is not static,

and may vary from one number to another.

Note that the reputation from this black-listing approach

also serves the ground-truth to build our machine learning

models. Since TouchPal only allows its users to tag malicious

calls rather than benign ones, it is hard for malicious users to

taint the labels as long as there are enough benign users who

label malicious call numbers as malicious.

Malicious call prevention. TouchPal allows user to configure

the default behavior when the phone number of an incoming

call is marked with a tag. For example, the user can choose to

hang up a malicious call directly without any notification, or

choose to prompt the user. Figure 1b illustrates the interface

when an incoming call’s phone number is marked as Fraud.

Note that although TouchPal provides a functionality to record

the call content, users have to manually turn it on for each

call; also, the recording is only available on users’ devices

and never uploaded to the server.

The prevention in the current deployment is entirely based

on the phone number tag, which can be easily circumvented

by using techniques such as caller ID spoofing. We consider

this issue as an important future direction.

Other functionalities. TouchPal also provides other function-

alities such as SMS message prevention. In this work, we focus

on the malicious call prevention problem.

IV. UNDERSTANDING MALICIOUS CALLS IN CHINA

In this section, we investigate the call logs to gain insights

on malicious callers’ behaviors, and shed light on designing

machine learning-based malicious call detection algorithms.

In the following, we first present the structure of the call

log, and some basic statistics. Then, we study the distribution

Oct Nov Dec Total
Call records 3,043 2,959 3,001 9,002

Benign call records 3,017 2,933 2,979 8,929
Malicious call records 26 25 22 73

Distinct callers 256 248 248 447
Distinct callees 299 288 287 519

Distinct TouchPal users 24 24 24 35
Distinct malicious call numbers 0.6 0.5 0.5 0.8

Distinct other numbers 348 338 335 583

TABLE II: Statistics of data log (million) from October to

December 2016

of TouchPal users, malicious calls, and other numbers along

several dimensions: (1) provinces; (2) call time; (3) whether

caller is a TouchPal user and/or in the callee’s contact; (4)

incoming and outgoing call volume; and (5) activeness. For

the majority of the analysis, we use call logs spanning three

months from October to December 2016. For the liveness

analysis, we use all call logs of the entire year of 2016.

A. Data log description

The structure of each data log record is presented in Table I.

When a TouchPal user makes or receives a call, a log record

will be generated. The call type field records whether the user

receives the call or makes the call. The other number in the call

is anonymized by removing all digits except the first few digits

which are similar to the area code in US numbers. These digits

contain only the provincial information about the number. The

salted MD5 of the entire number is also recorded so that it

is possible to distinguish between different numbers for our

analysis. In doing so, we break the link from data log to the

actual phone numbers to maintain the anonymity. Note that the

mapping from a user ID to a phone MD5 is highly confidential.

We avoid touching this mapping in all our analysis.

The record contains three types of information about the

call: (1) the timestamp, which includes both the date and

the time; (2) duration in seconds; and (3) whether the other

number is in the contact of the TouchPal user. They can

be used for predicting malicious calls. Each call record also

contains a call tag field recording whether the call belongs to

one of the 6 categories (i.e., normal or one of the five tags).

This field is used as the ground truth of our malicious call

prediction task.

In our entire work, we use two other tables which provide

more information: (1) the province that each TouchPal user

belongs to; and (2) the set of all MD5 hash values of TouchPal
users.

We compute the basic statistics of the data log from October

to December 2016, and report them in Table II. Note that

each call between two TouchPal users generates two records:

one for incoming call and another for outgoing call. We can

observe over 9 billion call records and over 500 million distinct

phone numbers in the period of consideration. The scale of the

dataset is sufficiently large for us to draw interesting conclu-

sions. We observe that malicious call records are relatively

few with respect to the total records, as expected. There are

over 73 million malicious call records with around 800,000
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Fig. 2: The histogram of callers from different provinces. The amount of malicious callers, benign callers, and their ratio are

computed for each province. The provinces on the x-axis are listed in the descending order of their total amount of calls.

(a) benign calls (b) malicious calls

Fig. 3: The histogram of the number of benign calls and

malicious calls in October 2016. We include call records from

all provinces in the results.

(a) benign calls (b) malicious calls

Fig. 4: Histogram of hourly distribution for benign call and

malicious calls. We include call records from all provinces in

the results.

numbers used to make malicious calls. In other words, out

of every 100 calls, there will be almost one malicious call,

showing that the malicious call problem is severe in China.

On average, each malicious call numbers makes 91 malicious

calls . Thus identifying a malicious call number earlier (e.g.,

before it has been used to make 10 malicious calls) can help

to prevent a significant amount of malicious calls.

Validating the ground truth. In this study, we mainly rely on

user taggings to compute the ground truth. To validate whether

this is accurate, we randomly sample a subset of malicious call

numbers, and call them back. We observe that most of the

numbers are not answered albeit multiple attempts in different

time. We confirm such numbers as malicious, which constitute

the majority. However, there is also a small portion of the

numbers that are indeed answered. We find that they belong

to personal phone numbers of sales-related professionals (e.g.,

bankers). Note, although TouchPal provides a specific tag,

most Chinese users still consider cold calls from sales-related

professionals as malicious. So far, we are unable to distinguish

such numbers from other malicious calls in a large scale, but

we consider them as future work.

Ethical remarks. TouchPal users have to agree on the

Terms of Use to access to the full functionality of TouchPal.
TouchPal notifies its users about data collection through the

Terms of Use. Also, TouchPal users have the opt-out option,

so that their call history will not be collected, at the cost

that the functionality they can use is limited. Our study only

touches the users who have agreed to the Terms of Use.

B. Call distribution across different provinces

We calculate the histogram of the amounts of malicious

call records and all call records, and their ratio for different

provinces, and present the results in Figure 2. In the figure,

the provinces are listed in descending order based on the

total number of calls in the province. We observe that the

distribution is very skewed, and a province with a high volume

of calls does not imply that it must also have a high volume

of malicious calls.

We also make some interesting observations. First, the

amount of malicious callers is partially co-related with the

Gross Domestic Product (GDP) for each province. For exam-

ple, among the top-8 provinces with the maximal amounts of

malicious callers, 6 of them are also ranked the top-6 based
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on their GDP in 2016 [23], and the other two are Beijing and

Shanghai, i.e., the two largest municipalities in China. This

implies that malicious calls in an area may be associated with

its economic activities. Second, the amount of total calls may

not be associated with the GDP. For example, Shanxi is ranked

at 7 based on their total amount of calls, but their GDP ranking

is among the bottom 10.

C. Call distribution across different dates and time

In this section, we study the distributions of malicious calls

and benign calls with respect to (1) dates in a year; (2) days

in a week; and (3) hours in a day.

We plot the histogram of benign calls and malicious calls

for each day in October 2016 in Figure 3. We observe that

the amount of malicious call records during October 1st to

October 7th is significantly smaller than other days. This

period coincides with the observances of National Day of

China when most of the workers were on vacation, and we

attribute the observation to this reason. Also, we observe that

the malicious call records are reduced significantly three times

later, i.e., 15th-16th, 22nd-23rd, and 29th-30th. These three

periods are all weekends. We observe similar phenomenon

for November and December (see Figure 12 and Figure 13

in the appendix). Therefore, we conclude that the number of

malicious calls are associated with whether or not the date of

the call is a working day.

On the other hand, however, the correlation between the

benign call volume and working days is not as strong as the

malicious call volume. We observe a drop of call volume

between October 2nd and October 7th, but the amount of

benign calls on the 1st is larger than all other days in October.

One potential reason may be due to Chinese social convention

to make greeting calls at the beginning of a vocation. We

lack information to further analyze the reason behind this

observation, but this can be of independent interests to some

social science disciplines.

We continue to analyze the hourly pattern of benign calls

and malicious calls. The histograms are presented in Figure 4.

We observe the similar phenomenon: the amount of malicious

calls is significantly higher during working hours than off-

hours. Also, the malicious calls from noon to 1pm, which is

the typical lunch time, are fewer than those during 9am-noon

or 1pm-5pm. These observations also confirm that the amount

of malicious calls are more correlated with the working hours

than benign calls.

Note that our observations are very different than the ones

shown in [9], which also aims to understand Chinese malicious

calling behaviors. We attribute this to the fact that only less

than 700 call records are collected in [9], and thus the results

in [9] may not be statistically robust. On the other hand, similar

observations have been made based on US’s data [15], though

some details are different. For example, the hourly call volume

histogram from [15] looks more similar to Figure 4a for benign

calls than Figure 4b for malicious calls.

(a) Incoming calls (b) Outgoing calls

Fig. 5: Distribution of phone numbers based on their incoming

and outgoing call volume.

All above observations suggest that the call time may be

a useful indicator to distinguish malicious calls from benign

ones.

D. TouchPal users may be unlikely to make malicious calls,
but may store malicious callers in their contact

Now we investigate whether TouchPal users will use their

registered phone numbers to make malicious calls. We hypoth-

esize that TouchPal users may unlikely use their registered

numbers to make malicious calls because they understand

the mechanism how TouchPal prevents malicious calls. We

observe that this is indeed the case. Out of the 73 million ma-

licious call records, we identify 103, 673 (i.e., 0.14%) records

whose callers are TouchPal users. Among these records, we

find 2, 541 distinct TouchPal users (i.e., 0.007% of 35 million

TouchPal users or 0.32% of 0.8 million malicious callers).

Note that our data labeling is not perfect, and it is also

possible that some of these numbers are mislabeled. Therefore,

we conclude that TouchPal users are unlikely to use their

registered phone numbers to make malicious calls.

We further analyze whether a TouchPal user’s contact may

be a robocaller. Conceptually, the owners of phone numbers

stored in a TouchPal user’s contact list likely have social

relationship with the user, and thus it is unlikely that they

are malicious callers. However, we observe the opposite.

Among all 73 million malicious call records, we observe 9.9
million of them (i.e., 13.56%) whose caller is in the contact

list of the callee. We conjecture the reason to be that our

malicious dataset may contain personal numbers of sales-

related professionals. Some TouchPal users who choose to

do business with these professionals may keep their numbers

in the contact list, while others may label the numbers as

malicious.

E. Phone number distributions based on incoming call volume
and outgoing call volume

For each phone number, we can compute the volume of

its incoming calls. For each n, we can compute how many

malicious call numbers receive n incoming calls, and then

compute their percentage among all malicious call numbers.

We plot these percentage values by varying n from [1, 600]
as a line in Figure 5a. Similarly, the two other lines are

drawn by considering incoming calls of TouchPal users and

all benign users. From the figure, we observe a long tail

distribution, which is consistent with earlier reports using a
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Fig. 6: The distribution of active time

smaller dataset [15]. However, we observe that the tails of

malicious call numbers and TouchPal users are significantly

higher than benign phone numbers. This shows that there is

a higher percentage of malicious call users that are making

more calls than benign phone users. Therefore, the volume of

incoming calls metric of a number in the call log may be an

effective indicator for malicious calls.

Note that it is non-typical that a non-negligible portion of

malicious callers receive a large amount of incoming calls.

We conjecture that this is due to our labeled malicious callers

may contain sales-related professionals’ personal numbers as

explained above.

We further create similar plots for outgoing call data in

Figure 5b. We observe similar phenomenons: malicious callers

tend to make more calls than both TouchPal users and benign

phone numbers. Thus this information can be leveraged for

malicious call prediction.

F. Phone number Distribution of active time

We compute the total amount of days that a number is

actively used by computing the interval between its first call

and its last call in the log. For the analysis to be more

informative, we incorporate the data log of the entire 2016. We

then compute the distribution in a similar way as for incoming

and outgoing call volume analysis, and plot the results in

Figure 6.

We observe a “horseshoe”-shaped curve: there is a sharp

drop at the beginning, and then gradually grows up at the

end. We attribute this to the fact that a user may either stop

using a number after a short period of trial, or continue

using the number for a long-term. This phenomenon is more

significant on the plot for TouchPal users, for whom we have

the complete information in the call log.

Surprisingly, there is a much higher percentage of malicious

call numbers that are used through the entire year of 2016

than benign numbers or TouchPal users. The bottom of the

percentage plot for malicious call numbers appear around

200 days, and its percentage is also lower than both the

corresponding values for TouchPal users or benign numbers.

This phenomenon is somehow contradicting to the analysis

on spammers in other domains, in which a spam account’s

lifetime is very short. We also conjecture that the reason may

be due to our malicious dataset contains not only spam/scam

calls, but also sales-related calls. In this case, sales-related

numbers will be used for a longer time, since they are some

personal phone numbers. We plan to investigate them further

in the future.

V. MALICIOUS CALL PREVENTION USING MACHINE

LEARNING

In this section, we present our design of machine learning-

based prediction algorithm. In particular, we consider that

when a TouchPal user A receives a call from B, TouchPal
needs to predict whether this will be a malicious call. In the

following, we will first discuss the design of features, and

then present our choices of machine learning models. Since

TouchPal users are unlikely to make malicious calls, in this

work, we focus on non-TouchPal users, and leave handling

TouchPal malicious callers as a future direction.

A. Features

As we have discussed earlier, the most challenging problem

of malicious call detection is to design a set of informative

features. The set of features that we use are listed in Table III.

Intuitively, the basic set of features about a call include (1)

whether the caller is in the contact of the callee (is in contact);

(2) the date and time of the call (weekday and hour); and

(3) whether the caller is in the same province as the callee

(same location). However, this basic set of features is not

very informative for the detection model to be accurate. We

thus extend it in two orthogonal dimensions to extract further

information from the call log: historic information and cross-
referencing information. We explain them below.

Historic information. The basic features use only information

about the current call record. One dimension is to extend to

consider all relevant records in the call log. In particular, we

retrieve all records involving the current caller, which can

be either incoming or outgoing. For each of the records, we

can compute a set of features, and thus historic information

constitutes a sequence of features vectors.

For basic features, in additional to the basic set of features

explained above, there are two additional features that can be

computed for each historic record: (1) the call type indicating

whether the record is an incoming call or an outgoing call; and

(2) the duration of the call. Note that the call type feature is

excluded from static features, since in the current call, its value

is always “incoming call”. The duration of the current call is

unavailable before the call is answered.

Note that different callers may have different amount of

historic records, but a machine learning model typically takes

a fixed-length feature vector as input. We will explain how

to aggregate all historic feature vectors when discussing the

concrete machine learning models.

Cross-referencing information. For each call record, either

the current one or a historic one, static features considered so

far are computed using the information from one record only.
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Category Feature Current Historic Value Description

S
ta

ti
c

is in contact Binary
Whether the other phone number is in the contact of the TouchPal user
(call log field)

call type Binary Whether the call is an incoming call or an outgoing call (call log field)
duration Numeric The total amount of seconds that a call last (call log field)
weekday Numeric The day in a week when the call starts

hour Numeric The hour in a day when the call starts
same location Binary Whether the caller and callee are in the same province

C
ro

ss
-r

ef
er

en
ci

n
g

caller outs Numeric How many outgoing calls that the caller made before the record
caller ins Numeric How many incoming calls that the caller received before the record

caller outdegree Numeric
How many different phone numbers have been called by the caller before
the record in consideration

caller indegree Numeric
How many different phone numbers have called the caller before
the record in consideration

callee outs Numeric
The same as caller outs, caller ins, caller outdegree, caller indegree,

callee ins Numeric
but the statistics are computed based on the callee in the considered

callee outdegree Numeric
record rather than the caller

callee indegree Numeric
n call Numeric n, where the record is the n-th call made by the callee in the record

is redial Binary Whether the current caller’s last call was with the same number as the current one

gap to next Numeric
The interval (in seconds) between the considered record and the next record
made by the same callee

TABLE III: All 29 input features. For the value type, binary indicates that the feature takes a value from {0, 1}. Numeric

indicates the feature takes an integer value. This value is either used directly as a one-dimensional feature, or converted into

a one-hot encoding vector. The vectors for all features are concatenated to form the entire input feature vector.

In addition, we also consider cross-referencing features which

are computed by accessing multiple call records in the log.

First, we consider the call log as a stream of records, and

thus given any point in the stream, we can take a snapshot

to contain only records before the point. In particular, given

any record, we can compute the following information of each

user based on the record’s snapshot: (1) how many incoming

calls (ins); (2) how many outgoing calls (outs); (3) how many

unique incoming call numbers (indegree); and (4) how many

unique outgoing call numbers (outdegree). For each call record

(either the current one or a historic one), we can compute these

four features for both the caller and the callee in the record.

They form the first 8 types of cross-referencing features. As we

have observed in Section IV, these statistics are very helpful

to distinguish malicious callers from benign callers.

Second, we consider that the current call is the n-th call

received by the TouchPal user A from the same caller B. Then

n call feature takes value n. Intuitively, when a TouchPal user

A has finished many calls with the caller B, it is less likely

that B is a malicious caller. Thus, we think n call can be a

useful feature.

Third, we consider whether the caller B just finishes a call

with the same TouchPal user A in his last call. This call can

be in either direction: from A to B or vice versa. If this is the

case, it is likely a redial, and thus less likely a malicious call.

We compute it as a binary feature is redial.

Fourth, the gap to next feature considers for each historic

record from the callee B, the gap (in seconds) between the

record and the next one. In fact, we hypothesize that the

malicious callers’ call pattern may be more prominent than

benign users’. Thus it is more likely to identify patterns based

on gap to next features.

Remarks. We want to further remark on the difference be-

tween the cross-referencing dimension and the historic di-

mension. Intuitively, historic features construct a sequence of
feature vectors as input; and each cross-referencing feature

only adds one additional dimension to each feature vector.

Therefore, these two are orthogonal dimensions of the feature

space.

We also remark on the novelty of our features. Previous

works have considered several features such as duration [41]

and call types and time [20]. However, most of existing

works propose ad hoc features grounded on an intuition. In

our work, in contrast, the features are designed under the

guidance of a large scale measurement study, and proposed

systematically following the two general dimensions discussed

above. In addition, several features, such as is in contact,

same location, and all cross-referencing features are newly

proposed in this work.

B. Machine learning models

The malicious call prediction problem is a standard binary

classification problem: classifying an input into either positive

(malicious) or negative (benign). We employ several state-

of-the-art machine learning models for this problem: neural

networks; random forest models [10]; Support Vector Machine

(SVM) models [13]; and logistic regression models [14].

We want to emphasize that while non-historic features

have fixed dimension, historic ones form a sequence of input

vectors. Therefore, we need to convert the sequence into a

fixed size input vector. For the above mentioned approaches,

we simply take the average of all the vectors in the sequence.

In addition, however, we can also employ a recurrent neural
network [16], which is designed to compute one embedding
vector from a sequence of input vectors. Due to the space

limitation, we explain the model details in the appendix.

We also want to remark that all considered models will

emit a score p, indicating the probability of the prediction is

positive. Therefore, we can set a model threshold τ , so that

60

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 12:41:43 UTC from IEEE Xplore.  Restrictions apply. 



the model will predict malicious when p ≥ τ , and benign vice

versa. By adjusting τ , a model can make a tradeoff between

its precision and recall.

VI. EVALUATION

In this section, we evaluate different machine learning

approaches with respect to their effectiveness to prevent mali-

cious call numbers in comparison with the simple black-listing

approach. In the following, we will first explain the experiment

setup. Then we will examine different models’ performance

(1) when trained and tested using data from the same province;

(2) when trained on one province and tested on another; and

(3) their overall latency. In the next section, we understand the

effectiveness of different features by an ablation analysis and

examining the features selected by a well-performing model,

which is a random forest.

A. Setup

In this section, we explain the experiment setup. We will

begin with implementation details of different models followed

by different metrics used to evaluate a model. In the end, we

present the details about training and test set construction.

Model implementation details. For vanilla neural network,

SVM, and logistic regression, we use their built-in implemen-

tations from sklearn [26]. We refer to them as NN, SVM, and

LR respectively. We implement the LSTM-based RNN model

in Tensorflow [5]. We refer to it as RNN. For the random

forest models, we use two implementations, one from sklearn,

and the other from XGBoost [12]. We refer to these two as

RF and XGBoost respectively.

Evaluation metrics. We employ two metrics in our evaluation.

One is the AUC score, which is a standard metric to evaluate a

machine learning model’s performance. Note we prefer AUC

score over other standard metrics such as precision, recall,

and F-1 scores, since AUC score is more robust to the data

skew (i.e., in our case, negative examples are 100× more than

positive ones).

Note that our desired properties of the model are: (1) most

of the benign calls should not be predicted as malicious

calls; and (2) a model should identify a new malicious call

number by observing the minimal number of malicious calls.

To examine how well a model can achieve these two goals

compared to the black-listing approach, we design a new

metric, first prediction at label threshold M and precision
p, or FP@(M,p) for short. M is the label threshold. That is, a

phone number is labeled as a malicious call number once it is

labeled at least M times by TouchPal users. In our evaluation,

we consider a simplified setting that every malicious call will

be labeled so, and thus a black-listing approach will pass at

least M malicious calls before the number can be prevented.

We also enforce that the model can achieve a precision ≥ p
on benign calls. In fact, we can always increase the model

threshold τ to increase the precision of a model. For example,

in the extreme case, we can always set τ = +∞, so that almost

all calls are predicted as benign calls to reach a precision of

Model Beijing Sichuan Guangdong Shanghai Zhejiang
RF 0.9985 0.9984 0.9978 0.9978 0.9981

XGBoost 0.9979 0.9981 0.9972 0.9969 0.9977
NN 0.9978 0.9972 0.9961 0.9966 0.9976

RNN 0.9972 0.9962 0.9957 0.9965 0.9975
SVM 0.9914 0.9927 0.9895 0.9892 0.9930
LR 0.9846 0.9822 0.9770 0.9807 0.9848

TABLE IV: AUC scores of different models. Each model is

trained and tested using data from the same province. The

training data uses records between October and November

2016, and the test data uses records in December 2016.

100%. However, in this case, τ is set too high to capture any

malicious calls. Thus, we define τ(p) to be the minimal τ so

that the model’s precision on the benign calls is at least p.

Given a model with τ(p) and a malicious call number, we

are interested in how many call records need be observed

before this number can be predicted as malicious. This value is

then defined as FP@(M,p). Formally, given a number, whose

call records are R1, ..., Rn, FP@(M,p) is defined to be the

smallest i such that the model with τ(p) predicts a input

generated from R1, ..., Ri to be a malicious call. If i > M
or none of such i exists, then FP@(M,p) is defined to be

(M + 1). Given a set of malicious call numbers, we thus can

define averaged FP@(M,p) (or AFP@(M,p) for short) to

be the average of all FP@(M,p) values for the malicious call

numbers in the set.

We want to comment that in the FP (and AFP) metric, we

include the parameter M for soundness. That is, for some

cases, the model will never predict a malicious call number

as malicious. In this case, its FP value would be +∞ without

providing a value M , and thus the AFP metric, which would

be +∞, is not indicative. We mitigate this issue by including

the parameter M in the metric.

Data construction. Given a period of time and a province,

we construct the training data by selecting all malicious

call records from the given province and during the given

period. Since there are much more benign call records than

malicious call records, we sample a subset of all benign calls

which contains the same amount of benign phone numbers as

malicious ones to maintain the balance of positive and negative

samples in the training set. In each of our experiment, we re-

sample the training set 5 times and average their results to

make them robust to the sampling procedure.

Similarly, the test set is constructed in the same way. When

computing the AFP@p metric, however, we use all benign

call records from the given province and in the given period

of time. This is because AFP@p is not sensitive to the ratio

of positive and negative samples.

B. Accuracy experiments

In this section, we evaluate different machine learning

models in terms of their generalizability. We will first examine

the generalizability along the time, and then examine the

generalizability to different provinces. We present the details

below.
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Fig. 7: The ROC curve of different models trained using

Beijing’s call log records during October and November 2016,

and tested on Beijing’s call log records during December 2016

1) Generalizability along the time: Intuitively, we hope a

model trained on the current data logs can serve well in the

future. We call this property the generalizability along the
time. We choose the top-5 provinces with the most amount

of malicious calls. For each province, we train a model using

the data from this province during October and November, and

test it using the data from the same province during December.

AUC scores. The AUC results are presented in Table IV. From

the table, we can observe almost all methods on any province

can achieve an AUC score of 0.985 or higher. This shows

that the model is very accurate on predicting malicious calls.

Different models are listed in the table in the decreasing order

of their performance, from top to bottom. We can observe

that for each province, this order is identical to each other.

RF (i.e., from the sklearn implementation) achieves the best

AUC scores on all provinces, and its AUC performance is at

least 0.9978. Also, the XGBoost implementation can achieve

similar though slightly lower AUC scores.

The two neural network approaches followed the random

forest approaches. Several potential reasons may cause this:

(1) the model’s capacity is not big enough; (2) the problem

has a low-dimension input space, for which a neural network

approach may not always be the best; and (3) random forest

essentially is an ensemble approach, while we do not use

ensemble for our NN approaches. We leave the cause for

further investigation. Surprisingly, the RNN’s performance is

not as good as NN. This may be partialy due to the fact that

the performance gain from historic features is not very big.

We will further examine this hypothesis in Section VII.

The other two traditional approaches, i.e., SVM and logistic

regression, are not as performant as other alternatives. This is

reasonable, since both implementations are essentially linear

classifiers, which may not be expressive enough to handle the

problem.

ROC curve. To better understand the AUC scores, we plot

the ROC curve for model trained and tested on Beijing’s data

in Figure 7. From the figure, we can observe that the areas

under the curves are almost occupying the entire plot —- and

thus the AUC scores are close to 1. This shows that for most

models, the threshold τ can be properly tuned to achieve a

very high recall (i.e., the y-axis value reaches to 1) while very

few benign numbers are predicted as malicious (i.e., the x-axis

value is close to 0). Therefore, the ROC curve further confirms

the effectiveness of our approach.

Averaged first predictions. We now present the results using

the AFP@(M,p) metric for M = 10, 20, 30. The results are

presented in Figure 8. From the figure, we observe that XG-

Boost and NN outperform RF slightly, and the AFP@(M,p)
scores of all these three models are always under 5.5. On the

other hand, for the other three models, i.e., RNN, SVM, and

LR, their AFP@(M,p) scores are close to M , when p is set

to be large, i.e., 99.99%. The reason is that these models are

very hard to achieve a high precision on the benign data to

meet the precision requirement, and thus they tend to label

any call as benign. In this case, the models are not effective

on predicting malicious calls. The random forest models and

the non-recurrent neural network do not suffer this issue.

By varying M from 10 to 30, we observe that the

AFP@(M,p) score of each of the three best models increases

slightly. For example, the score of the best model, XGBoost,

raises from 3.57 to 3.90. This is because these models can

predict a phone number as malicious call number far earlier

before the threshold M is reached.

We consider the total amount of malicious calls that are

not blocked by a black-listing approach and our best machine

learning approach, XGBoost. Assume there are N different

malicious call numbers, then the black-listing approach can-

not prevent N · M malicious calls before it starts to be

effective; using XGBoost, on the other hand, this amount is

N · (AFP@(M,p) − 1). Therefore, XGBoost can reduce the

amount of unprevented malicious calls by 1− AFP@(M,p)−1
M .

In our evaluation, XGBoost can achieve a unblocked-call

reduction rate from 75.3% (i.e., M = 10) to 90.3% (i.e.,

M = 30).

We further investigate the first predictions. In particular, we

set each model’s τ to achieve a precision ≥ p. Then, for each

n ∈ {1, ..., 30}, we construct the test data by keeping only

the first n call records of a number. In this test set, we can

compute the malicious call recall as the percentage of correctly

predicted malicious call numbers using only their first n call

records. We call this metric as MR@(n, p), and it provides

finer-grained information than AFP@(M,p). By setting p =
99.99%, we plot the MR@(n, p) curve in Figure 9.

We observe that XGBoost and NN can reach a malicious

call recall higher than 80% by observing 6 or less calls, but

it is hard for any models to reach a malicious call recall

higher than 92%. By closely examining the curves, we observe

that the NN’s recall remains low, and then NN surpasses all

other approaches after n = 7. XGBoost’s recall almost always

remains the best until it is surpassed by NN. This shows

that NN needs to observe more call records to make effective

predictions, while XGBoost requires fewer. We conclude that

the best machine learning approaches, XGBoost and NN, can

capture most of the malicious calls by observing far fewer call

records than a black-listing approach.
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(a) AFP@(10, p) (b) AFP@(20, p) (c) AFP@(30, p)

Fig. 8: The AFP@(M,p) of different models trained using Beijing’s call log records during October and November 2016, and

tested on Beijing’s call log records during December 2016.

.

Fig. 9: The MR@(n, 0.9999) of different models trained using

Beijing’s call log records during October and November 2016,

and tested on Beijing’s call log records during December 2016

2) Generalizability to other locations: In this section, we

evaluate whether the model trained on data from one province

can generalize to another. We conduct this experiment for

two purposes. First, since the sets of phone numbers from

different provinces are strictly disjoint from each other, this

experiment can give us further insights on whether the model

can generalize to unseen models. Second, some area may have

too few call records to train an effective model, especially at an

early stage of business development in that area. In this case,

using a model trained with data from a different province is

a promising solution. This experiment is helpful to shed new

light on such applications.

We train a model using call logs from Beijing, and eval-

uate it on data from other provinces. We observe the same

phenomenon on the performance of different models in terms

of both AUC scores and the AFP@(M,P ) values. Due to

space limitation, we defer the details of the experiments to the

appendix. We also experiment with the models trained using

data from different provinces. Our observations are consistent

across all experiments. Therefore, we conclude that the model

trained on one province with a large call volume can generalize

to unseen numbers from another province.

C. Runtime evaluation

In this subsection, we evaluate the runtime efficiency for

different models. The experiments are run on a server equipped

with an Intel i7-6900K CPU with 15 cores running at 3.20GHz

and 96GB memory. In our evaluation, all data are pre-loaded

into the memory to eliminate the I/O latency. We repeat each

Fig. 10: Runtime of different models

experiment 5 times and compute the average of different runs

as the result.

For each model, we prepare a sequence of historic features

and the features for the current record. We compute the

model prediction latency from processing raw feature sequence

till the prediction is made. Note that to retrieve the raw

feature sequence, we can leverage the existing key-value store

infrastructure deployed in the TouchPal production pipeline,

which typically takes 1ms to 10ms to retrieve and update a

single record. Thus, an efficient model should not incur a

significant overhead on top of it.

For each model, we feed n = 1, ..., 5 historic records to

construct the inputs to examine the effectiveness of the length

of historic features on the model prediction latency. The results

are presented in Figure 10. We can observe that random forest

models have a high runtime latency ranging from 20ms to

over 100ms. This is because the complexity of the model.

Note each random forest contains 100 decision trees and each

decision tree has three levels. The computation involved in

the prediction process of a random forest is much larger than

other models.

We observe that for all other models, the runtime latency is

less than 2ms, which is a reasonable overhead. In particular, we

find that the model NN, which achieves the third best AUC and

AFP@(M,p) results, also achieves the second lowest model

prediction latency. This is largely due to the simplicity of the

model. Therefore, in the scenario when a tradeoff needs to be

made between the accuracy and the runtime latency, a non-

recurrent neural network may be the best choice in practice.

Further, we observe that when the length of historic feature

sequence increases, the model prediction latency for NN,
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RF XGBoost NN RNN SVM LR
All 0.9984 0.9979 0.9977 0.9974 0.9913 0.9846
-His 0.9978 0.9978 0.9961 0.9934 0.9890 0.9730
-CR 0.9444 0.9482 0.9524 0.9556 0.9350 0.9302

Basic 0.9079 0.9112 0.9094 0.9084 0.9023 0.8976

TABLE V: Ablation analysis results. “All” indicates all fea-

tures are used; “-CR” indicates excluding all cross-referencing

features from the input; “-His” excluding all historic features

from the input; “Basic” is equivalent to “-CR-His”. Each cell

(i, j) indicates the AUC scores of a model at column j trained

with data using input feature set corresponding to the row i.

RNN, SVM, LR increases slightly. For the RF and XGBoost

implementations, however, the model prediction latencies for

different sequence lengths do not exhibit an observable differ-

ence. This is because the sequence length only determines

the time to construct the input features, while the model

prediction latency for random forest models is dominated by

the prediction time after the input has been pre-processed.

Note that XGBoost incurs an overhead of 20ms. Therefore,

for practical usage, a neural network approach may be more

suitable since it achieves comparable effectiveness, but re-

quires much less inference time. However, more optimizations

are possible to further accelerate a random forest imple-

mentation. We conclude that most machine learning models

proposed in Section V incur a reasonably small overhead to

be deployed in a real production pipeline.

VII. UNDERSTANDING THE EFFECTIVENESS OF FEATURES.

In this section, we analyze the effectiveness of the proposed

features. We will first perform an ablation study to under-

stand whether adding historic features and/or cross-referencing

features indeed helps to improve the performance. We will

then analyze one of the most performant decision trees to

examine which features are important during the decision

making process.

A. Ablation analysis

In this section, we present an ablation analysis by removing

the historic features and/or cross-referencing features. We

create training data by using Beijing’s October and November

call logs, and test data by using Beijing’s December call logs.

The results are presented in Table V. We observe that the AUC

scores of any model using only the basic set of features are

very low, i.e., around 0.9. Thus using more features from the

call logs are necessary to achieve a better performance.

We further observe that adding any sets of features al-

ways improves the performance, though the improvements are

different. We observe that adding cross-referencing features

(-His) onto basic features can improve the AUC scores by

10%; by adding historic features (-CR), on the other hand, the

improvement is only around 4%− 5%.

Using all features is the most accurate approach, but we

observe that the improvement from adding historic features on

top of cross-referencing features is very small (i.e., < 0.001).

When we want to achieve better efficiency without sacrificing

Fig. 11: The histogram of features based on their frequency

used in the most performant random forest. The features are

listed from left to right in the descending order of their

frequencies. We also show three plots based on the frequency

of each feature appearing at different level of decision trees

in the forest.

the accuracy, however, it can be more efficient by using only

cross-referencing features.

B. Understanding the features used by a well-performing
random forest

We now analyze which of the 29 features are more heavily

used by a well-performing model, and examine which features

are the most representative to interpret the performance of

machine learning models. To do this, we select one the most

performant random forest model trained using XGBoost. It

contains 100 decision trees with each having 3 layers. We

visualize one decision tree in the appendix (see Figure 15).

Each decision tree uses 7 features to reach a leaf (note

features used by lower levels may be duplicate). We thus

compute the frequency of each feature being used among

all 100 decision trees. We plot the histogram based on this

frequency in Figure 11. We can observe a long tail distribution.

In this model, the top-3 features, namely n call, caller outs

of the current call, and caller ins of the current call, are much

more frequently used than other features. The most frequently

used historic feature in this random forest is is in contact, and

it is used by less than 25 decision trees. This observation is

consistent with our ablation analysis.

Note that features at a higher level will be examined more

frequently than the ones at a lower level. We thus analyze

the feature distribution at different levels. We plot three lines

corresponding to the three levels in Figure 11. We observe

that the total frequency of a feature is generally aligned with

the each level’s frequency. For example, the most frequently

used feature in the model, n call, is frequently used in all

three levels. However, there are a few exceptions. For example,

the second frequent feature, caller outs of the current call, is
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RF XGBoost NN RNN SVM LR
All 0.9984 0.9979 0.9977 0.9974 0.9913 0.9846

Top-10 0.9965 0.9979 0.9967 0.9803 0.9905 0.9784

TABLE VI: Different models’ AUC scores by using all fea-

tures and only the top-10 features from Figure 11.

used more on the third level, but less on the top level. Such

exceptions are very few.

We observe that only 21 out of the 29 features (i.e., 70%)

are used in the random forest model. If we cut the long tail by

using only features that are used more than 10 times, then only

the top-10 features are necessary. We now examine whether

this top-10 features used in the random forest is indicative

enough for the malicious call prediction problem. In particular,

we use the same setup as our ablation analysis, and evaluate

different models’ performance using only these 10 features.

The results are presented in Table VI. We can observe that, the

XGBoost implementation’s performance does not change at

all. This is particularly because the top-10 features are chosen

to flavor the XGBoost implementation. We observe that all

other models’ AUC scores degrades by 0.001 to 0.01. Such

a degradation is not significant, and the 3 best approaches’

AUC scores are still above 0.9965. Therefore, we conclude

that by analyzing a random forest model, we can find the

most representative features to interpret the performance of

machine learning models.

VIII. DISCUSSION

One limitation of our work is that it cannot effectively

handle caller spoofing. This is a result as we have been

focusing on blacklisting approaches to block malicious calls

based on the numbers. We consider mitigating this issue as an

important future direction.

Also, as mentioned earlier, our system currently cannot

distinguish very well between scam or spam callers and sales-

related callers. As shown in our study, the active time and

whether a number is stored in a TouchPal user’s contact may

potentially be used as features to make such a distinction. We

plan to investigate related issues in the future.

However, our approach is not subject to attackers who

may want to white-list a particular malicious call number.

As explained in Section III, TouchPal employs a blacklisting

mechanism, and thus as long as there are enough benign users

tagging a specific malicious call number, it will be labeled as

malicious regardless of the effort from the attackers. Therefore,

our approach is not subject to data poisoning attackers, who

try to manipulate training data to make the model predict a

malicious call number as benign.

Nevertheless, our machine learning approach may still be

subject to two types of machine learning attackers. First, al-

though attackers cannot white-list malicious call numbers, they

may use poisoning attacks to black-list benign numbers by

setting up a farm to tag benign numbers as malicious. Second,

our proposed machine learning approach may be vulnerable

to evasion attackers, who manipulate the test data during

model serving time. In particular, there are several features,

such as gap to next, that can be intentionally manipulated by

the attacker to mimic a benign caller’s behavior. We consider

mitigating these issues in the future.

IX. RELATED WORKS

A. Existing malicious call detection techniques

There have been many prior works discussing malicious

call detection, such as white/black-listing [17], [25], [35], [39]

and caller’s domain reputation [25], [32]. Our work employs

machine learning approaches to achieve an accurate solution.

Existing works also design machine learning-based mali-

cious call detection approach, relying on caller behavior [30],

[35], recipient behavior [20], [39], social connections [6], [8],

[21], [27], [28], and customer feedbacks [17], [18], [32], [37]–

[39], [41]. However, all these works assume a server in the

telephony network can provide more information about the

caller. In contrast, our work is the first machine learning-

based approach without relying on any assumptions about the

underlying telephony networks.

B. Telephony malicious call analysis

There have been a variety of systematic studies in malicious

call analysis. For example, [15] builds a honeypot with 39,696

phone numbers that are abandoned because former owners

received too many unwanted calls. The incoming calls to these

phone numbers are treated as malicious calls and analyzed. For

more targeted scam calls, such as technical support scams,

existing work [22] does a systematic study of both the scams

and the call centers behind them. These works typically require

recording and analyzing the voice content of the incoming

calls, which may break user privacy. Our analysis does not

touch users’ call content at all, and thus eliminates this privacy

concerns.

Several works describe telephone spam ecosystem and pro-

vide high level evaluation for the existing techniques [29],

[33]. These works highlight the requirements on designing

effective malicious call prevention approaches, while our work

provides a concrete solution.

X. CONCLUSION

In this work, we present the first machine learning-based

solution without relying on any particular assumptions on

the underlying telephony network infrastructures. We propose

several techniques to achieve the goal. We first design a

TouchPal user interface as a component of a mobile App to

allow phone users to label malicious calls. We then conduct

a large scale measurement study over three months of call

logs, including 9 billion records, and design features based on

the results. We extensively evaluate different state-of-the-art

machine learning approaches using the proposed 29 features,

and the results show that the best approach can reduce up

to 90% unpreventable malicious calls while maintaining a

precision over 99.99% over benign call traffic. The results also

show the models can efficiently make the predictions, and thus

can be practically deployed.
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APPENDIX

The daily call volume distributions in November and De-

cember 2016 are presented in Figure 12 and Figure 13

respectively.

(a) Normal calls

(b) Malicious calls

Fig. 12: Histogram of normal calls and malicious calls in

November 2016.

Explanation to neural network models.
We start with the simple case when historic features are

not used. We employ a two-layer feed-forward network. Note

all numeric features are encoded as one-hot vectors. That is,

for a feature taking value v, assuming the feature’s range is

[0,max], then its one hot vector is a (max+1)-dimensional

vector, in which the (v + 1)-th dimension is 1 and all other

dimension is 0. One hot encoding the input numeric feature

is a common practice when using neural networks.

The hidden states contain 20 neurons. The output, which is

a two-dimension vector, is connected with a softmax operator

to compute the final prediction. Formally, the prediction can

be written as

p = softmax
(
W1 × ReLU(W2 × x)

)

where W1 is a 2× 20 matrix, W2 is a 20× n matrix, ReLU
is the standard rectifier function, and n is the input feature

dimension. p is a two-dimensional vector, where p1 indicates

(a) Normal calls

(b) Malicious calls

Fig. 13: Histogram of normal calls and malicious calls in

December 2016.

the probability that the incoming call is a malicious call, and

p0 + p1 = 1 accordingly to the property of softmax. By

setting a model threshold τ , the machine learning model can

predict if the incoming call is a malicious call by checking

p1 ≥ τ . By adjusting the model threshold τ , one trained model

can make a tradeoff between its precision and recall.

To take the historic features into account, one straightfor-

ward way is to treat each record’s features as a vector, and

compute the average of the feature vectors for all historic

records as one fix-length historic feature vector. This historic

feature vector is then concatenated with the feature vector

for the current call, which becomes the input to the neural

network. We refer to this approach as the vanilla NN approach.

However, taking the average may not be the most efficient

way to leverage information from the call log. We can consider

the historic call records from the callee as a sequence with

a variable length. Thus, we can employ a recurrent-neural

network (RNN) [16] to convert the sequence into a fix-length

embedding. In particular, we employ an LSTM [16] with a

hidden state size 16 to compute the embedding, which is then

concatenated with the feature vector for the current call. The

combined feature is then fed into the neural network above to

make the prediction. We refer to this approach as an RNN-

based approach.

Explanation to non-neural network machine learning al-
gorithm.

Although neural network approaches have achieved signif-

icant advancements to handle high-dimensional data, some
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RF XGBoost NN RNN SVM LR

Large Provinces

Guangdong 0.9979 0.9970 0.9969 0.9961 0.9893 0.9776

Shanghai 0.9979 0.9969 0.9969 0.9961 0.9892 0.9793

Sichuan 0.9987 0.9983 0.9982 0.9978 0.9926 0.9866

Zhejiang 0.9984 0.9978 0.9976 0.9972 0.9922 0.9847

Small Provinces

Jilin 0.9973 0.9964 0.9961 0.9955 0.9874 0.9713

Guizhou 0.9987 0.9982 0.9981 0.9979 0.9941 0.9865

Anhui 0.9986 0.9979 0.9978 0.9975 0.9927 0.9845

TABLE VII: This table presents the AUC scores of different models when trained on Beijing’s call log from October to

November, and tested on different provinces’ December’s call log. “Large provinces” indicate that the top-5 provinces with

the largest amount of malicious calls; “Small provinces” indicate the three provinces with the least amount of malicious calls.

(a) Test data: Zhejiang (b) Test data: Guizhou

Fig. 14: AFP@(30, p) results for different models trained using Beijing’s call logs.

non-neural network approaches are still more effective in han-

dling low-dimensional inputs. In particular, our inputs include

only 29 features, and thus we want to examine whether these

non-neural network approaches are more effective than neural

network ones. In particular, we are interested in (1) random

forest models [10]; (2) Support Vector Machine (SVM) mod-

els [13]; and (3) logistic regression models [14]. We briefly

explain these models below.

Random forest models. A random forest is a collection of

decision trees. Each decision tree is a tree whose each internal

node labels a feature and a threshold. When making prediction,

a decision tree model traverses the tree from the root to a leaf

and determines to move left or right depending on whether

the value of the input feature labeled on the node is smaller

than the threshold or not. Each leaf is associated with a real

value, and the value on the leaf at the end of the traversal

is returned as its output. A random forest model makes the

decision by averaging all values computed from each decision

tree in the forest to receive a final value p. Again, the decision

can be made by setting a threshold τ , in a similar manner as

the neural network approaches explained earlier.

SVM models. The SVM model is designed to handle the

problem when the training data is not linearly separable. In

particular, it employs a mapping φ specified by the user to map

the input feature into a high-dimensional space, and then train

a model y = w ·φ(x)+ b, such that the decision plane defined

by w and b maximizes the margin, while allowing a few

training data to be misclassified. Typically, the φ is provided

as a kernel function κ, such that κ(x, x′) = φ(x) · φ(x′). The

prediction is also made by using the κ function directly. In our

case, we employ the linear kernel function to train the SVM

model. Note that SVM also emits a real value, which can be

used for prediction.

Logistic models. The logistic model can be considered as

a one-layer neural network: p = σ(wx + b), where σ is

the sigmoid function. This model is commonly applied in

industrial applications due to its simplicity and efficiency.

However, it may not be as efficient as other alternatives. The

output p can be used to make predictions.

Note that all these models take a fix-length input. Thus,

we employ the same method in the vanilla NN approach to

compute one historic embedding for all historic records.

Detailed evaluation results for generalizability to other
locations.

In particular, we construct the training data using Beijing’s

October and November 2016’s call logs. We choose 7 other

provinces, 4 with large call volumes and 3 with small ones,

and use their December 2016’s call logs to construct 7 test sets

respectively. We train the model using the same training set,

and evaluate them on the 7 different test sets respectively. The

AUC results are reported in Table VII. We observe that the

performance of different models are consistent with previous
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Fig. 15: One example decision tree in the best random forest

model trained using XGBoost. Each internal node indicates

one feature to be examined. One of its down-going edge is

labeled with a checking condition, while the other is labeled

with “else”. Each leaf node is associated with a value.

experiments. Each model trained using Beijing’s data can

achieve a comparable AUC performance to the model trained

using the test province itself, which shows that the model can

indeed generalize to unseen numbers from a different location.

By taking a close look, interestingly, we observe that when

the model is trained using data from Beijing, its AUC score on

another province is even slightly higher than the model trained

using the data from the tested province itself. For example, the

AUC score of RF on Guangdong is 0.9979 when trained using

Beijing’s data, while the value is 0.9978 when the model is

trained using Guangdong’s data. Since Beijing has the largest

amount of malicious call records, this shows that a larger

training set may help to improve the performance.

We present the AFP@(M,p) results for M = 30 and the

test sets constructed using call log records from Zhejiang

(large call volume) and from Guizhou (small call volume)

in Figure 14. We make similar observations as previous

experiments: (1) the ranks of different models with respect

to the AFP@(M,p) are in general consistent with previous

observations; (2) random forest models and the NN model’s

AFP@p values are all below 5.

Visualization of a decision tree. In Figure 15, we visualize

one decision tree in the random forest trained using XGBoost

on October and November’s data in Guangzhou.
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