
Manipulating Machine Learning: Poisoning Attacks
and Countermeasures for Regression Learning

Matthew Jagielski∗, Alina Oprea∗, Battista Biggio †, Chang Liu‡, Cristina Nita-Rotaru∗, and Bo Li‡

∗Northeastern University, Boston, MA †Univ. Cagliary, Cagliary, Italy ‡UC Berkeley, Berkeley, CA

Abstract—As machine learning becomes widely used for auto-
mated decisions, attackers have strong incentives to manipulate
the results and models generated by machine learning algorithms.
In this paper, we perform the first systematic study of poisoning
attacks and their countermeasures for linear regression mod-
els. In poisoning attacks, attackers deliberately influence the
training data to manipulate the results of a predictive model.
We propose a theoretically-grounded optimization framework
specifically designed for linear regression and demonstrate its
effectiveness on a range of datasets and models. We also introduce
a fast statistical attack that requires limited knowledge of the
training process. Finally, we design a new principled defense
method that is highly resilient against all poisoning attacks. We
provide formal guarantees about its convergence and an upper
bound on the effect of poisoning attacks when the defense is
deployed. We evaluate extensively our attacks and defenses on
three realistic datasets from health care, loan assessment, and
real estate domains.

I. INTRODUCTION

As more applications with large societal impact rely on

machine learning for automated decisions, several concerns

have emerged about potential vulnerabilities introduced by ma-

chine learning algorithms. Sophisticated attackers have strong

incentives to manipulate the results and models generated

by machine learning algorithms to achieve their objectives.

For instance, attackers can deliberately influence the training

dataset to manipulate the results of a predictive model (in

poisoning attacks [5], [39]–[41], [44], [46], [54]), cause mis-

classification of new data in the testing phase (in evasion
attacks [3], [8], [20], [42], [43], [49], [50]) or infer private

information on training data (in privacy attacks [18], [19],

[47]). Several experts from academia and industry highlighted

the importance of considering these vulnerabilities in design-

ing machine learning systems in a recent hearing held by the

Senate Subcommittee on Space, Science, and Competitiveness

entitled “The Dawn of AI” [23]. The field of adversarial
machine learning studies the effect of such attacks against

machine learning models and aims to design robust defense

algorithms [25]. A comprehensive survey can be found in [6].

We consider the setting of poisoning attacks here, in which

attackers inject a small number of corrupted points in the

training process. Such poisoning attacks have been practically

demonstrated in worm signature generation [41], [44], spam

filters [39], DoS attack detection [46], PDF malware classifi-

cation [54], handwritten digit recognition [5], and sentiment

analysis [40]. We argue that these attacks become easier to

mount today as many machine learning models need to be

updated regularly to account for continuously-generated data.

Such scenarios require online training, in which machine

learning models are updated based on new incoming training

data. For instance, in cyber-security analytics, new Indicators

of Compromise (IoC) rise due to the natural evolution of

malicious threats, resulting in updates to machine learning

models for threat detection [22]. These IoCs are collected

from online platforms like VirusTotal, in which attackers can

also submit IoCs of their choice. In personalized medicine,

it is envisioned that patient treatment is adjusted in real-

time by analyzing information crowdsourced from multiple

participants [15]. By controlling a few devices, attackers can

submit fake information (e.g., sensor measurements), which

is then used for training models applied to a large set of pa-

tients. Defending against such poisoning attacks is challenging

with current techniques. Methods from robust statistics (e.g,

[17], [26]) are resilient against noise but perform poorly on

adversarially-poisoned data, and methods for sanitization of

training data operate under restrictive adversarial models [12].

One fundamental class of supervised learning is linear

regression. Regression is widely used for prediction in many

settings (e.g., insurance or loan risk estimation, personalized

medicine, market analysis). In a regression task a numerical

response variable is predicted using a number of predictor
variables, by learning a model that minimizes a loss function.

Regression is powerful as it can also be used for classification

tasks by mapping numerical predicted values into class labels.

Assessing the real impact of adversarial manipulation of

training data in linear regression, as well as determining how

to design learning algorithms resilient under strong adversarial

models is not yet well understood.

In this paper, we conduct the first systematic study of

poisoning attacks and their countermeasures for linear re-

gression models. We make the following contributions: (1)

we are the first to consider the problem of poisoning linear

regression under different adversarial models; (2) starting

from an existing baseline poisoning attack for classification,

we propose a theoretically-grounded optimization framework

specifically tuned for regression models; (3) we design a

fast statistical attack that requires minimal knowledge on

the learning process; (4) we propose a principled defense

algorithm with significantly increased robustness than known

methods against a large class of attacks; (5) we extensively

19

2018 IEEE Symposium on Security and Privacy

© 2018, Matthew Jagielski. Under license to IEEE.
DOI 10.1109/SP.2018.00057

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

evaluate our attacks and defenses on four regression models

(OLS, LASSO, ridge, and elastic net), and on several datasets

from different domains, including health care, loan assessment,

and real estate. We elaborate our contributions below.

• On the attack dimension, we are the first to consider the

problem of poisoning attacks against linear regression models.

Compared to classification poisoning, in linear regression the

response variables are continuous and their values also can be

selected by the attacker. First, we adapt an existing poisoning

attack for classification [54] into a baseline regression attack.

Second, we design an optimization framework for regression

poisoning in which the initialization strategy, the objective

function, and the optimization variables can be selected to

maximize the attack’s impact on a particular model and

dataset. Third, we introduce a fast statistical attack that is

motivated by our theoretical analysis and insights. We find

that optimization-based attacks are in general more effective

than statistical-based techniques, at the expense of higher

computational overhead and more information required by the

adversary on the training process.

• On the defense axis, we propose a principled approach to

constructing a defense algorithm called TRIM, which provides

high robustness and resilience against a large class of poi-

soning attacks. The TRIM method estimates the regression

parameters iteratively, while using a trimmed loss function

to remove points with large residuals. After few iterations,

TRIM is able to isolate most of the poisoning points and

learn a robust regression model. TRIM performs significantly

better and is much more effective in providing robustness

compared to known methods from robust statistics (Huber [26]

and RANSAC [17]), typically designed to provide resilience

against noise and outliers. In contrast to these methods, TRIM
is resilient to poisoned points with similar distribution as the

training set. TRIM also outperforms other robust regression

algorithms designed for adversarial settings (e.g., Chen et

al. [11] and RONI [39]). We provide theoretical guarantees

on the convergence of the algorithm and an upper bound on

the model Mean Squared Error (MSE) generated when a fixed

percentage of poisoned data is included in the training set.

• We evaluate our novel attacks and defenses extensively on

four linear regression models and three datasets from health

care, loan assessment, and real estate domains. First, we

demonstrate the significant improvement of our attacks over

the baseline attack of Xiao et al. in poisoning all models and

datasets. For instance, the MSEs of our attacks are increased

by a factor of 6.83 compared to the Xiao et al. attack, and

a factor of 155.7 compared to unpoisoned regression models.

In a case study health application, we find that our attacks

can cause devastating consequences. The optimization attack

causes 75% of patients’ Warfarin medicine dosages to change

by an average of 93.49%, while one tenth of these patients

have their dosages changed by 358.89%. Second, we show

that our defense TRIM is also significantly more robust than

existing methods against all the attacks we developed. TRIM
achieves MSEs within 1% of the unpoisoned model MSEs.

TRIM achieves MSEs much lower than existing methods,

improving Huber by a factor of 1295.45, RANSAC by a factor

of 75, and RONI by a factor of 71.13.

Outline. We start by providing background on regression

learning, as well as introducing our system and adversarial

model in Section II. We describe the baseline attack adapted

from Xiao et al. [54], and our new poisoning attacks in

Section III. Subsequently, we introduce our novel defense

algorithm TRIM in Section IV. Section V includes a detailed

experimental analysis of our attacks and defenses, as well as

comparison with previous methods. Finally, we present related

work in Section VI and conclude in Section VII.

II. SYSTEM AND ADVERSARIAL MODEL

Linear regression is at the basis of machine learning [24].

It is widely studied and applied in many applications due to

its efficiency, simplicity of use, and effectiveness. Other more

advanced learning methods (e.g., logistic regression, SVM,

neural networks) can be seen as generalizations or extensions

of linear regression. We systematically study the effect of

poisoning attacks and their defenses for linear regression. We

believe that our understanding of the resilience of this funda-

mental class of learning model to adversaries will enable future

research on other classes of supervised learning methods.

Problem definition. Our system model is a supervised setting

consisting of a training phase and a testing phase as shown

in Figure 1 on the left (“Ideal world”). The learning process

includes a data pre-processing stage that performs data clean-

ing and normalization, after which the training data can be

represented, without loss of generality, as Dtr = {(xi, yi)}ni=1,

where xi ∈ [0, 1]d are d-dimensional numerical predictor
variables (or feature vectors) and yi ∈ [0, 1] are numerical

response variables, for i ∈ {1, . . . , n}. After that, the learning

algorithm is applied to generate the regression model at the end

of the training phase. In the testing phase, the model is applied

to new data after pre-processing, and a numerical predicted

value is generated using the regression model learned in

training. Our model thus captures a standard multi-dimensional

regression setting applicable to different prediction tasks.

In linear regression, the model output at the end of the

training stage is a linear function f(x,θ) = w�x+ b, which

predicts the value of y at x. This function is parametrized

by a vector θ = (w, b) ∈ R
d+1 consisting of the feature

weights w ∈ R
d and the bias b ∈ R. Note that regression is

substantially different from classification, as the y values are

numerical, rather than being a set of indices (each denoting a

different class from a predetermined set). The parameters of

f are chosen to minimize a quadratic loss function:

L(Dtr,θ) =
1
n

∑n
i=1 (f(xi,θ)− yi)

2︸ ︷︷ ︸
MSE(Dtr,θ)

+λΩ(w) , (1)

where the Mean Squared Error MSE(Dtr,θ) measures the

error in the predicted values assigned by f(·,θ) to the training

samples in Dtr as the sum of squared residuals, Ω(w) is

a regularization term penalizing large weight values, and λ

20

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: System architecture.

is the so-called regularization parameter. Regularization is

used to prevent overfitting, i.e., to preserve the ability of

the learning algorithm to generalize well on unseen (testing)

data. For regression problems, this capability, i.e., the expected

performance of the trained function f on unseen data, is

typically assessed by measuring the MSE on a separate test

set. Popular linear regression methods differ mainly in the

choice of the regularization term. In particular, we consider

four models in this paper:

1) Ordinary Least Squares (OLS), for which Ω(w) = 0
(i.e., no regularization is used);

2) Ridge regression, which uses �2-norm regularization

Ω(w) = 1
2‖w‖22;

3) LASSO, which uses �1-norm regularization Ω(w) =
‖w‖1;

4) Elastic-net regression, which uses a combination of �1-

norm and �2-norm regularization Ω(w) = ρ‖w‖1+(1−
ρ) 12‖w‖22, where ρ ∈ (0, 1) is a configurable parameter,

commonly set to 0.5 (as we do in this work).

When designing a poisoning attack, we consider two met-

rics for quantifying the effectiveness of the attack. First,

we measure the success rate of the poisoning attack by the

difference in testing set MSE of the corrupted model compared

to the legitimate model (trained without poisoning). Second,

we consider the running time of the attack.

A. Adversarial model

We provide here a detailed adversarial model for poisoning

attacks against regression algorithms, inspired from previous

work in [4], [25], [38], [54]. The model consists of defining

the adversary’s goal, knowledge of the attacked system, and

capability of manipulating the training data, to eventually

define an optimal poisoning attack strategy.

Adversary’s Goal. The goal of the attacker is to corrupt

the learning model generated in the training phase, so that

predictions on new data will be modified in the testing phase.

The attack is considered a poisoning availability attack, if

its goal is to affect prediction results indiscriminately, i.e., to

cause a denial of service. It is instead referred to as a poisoning
integrity attack, if the goal is to cause specific mis-predictions

at test time, while preserving the predictions on the other test

samples. This is a similar setting to that of backdoor poisoning

attacks recently reported in classification settings [9], [21].

Adversary’s Knowledge. We assume here two distinct attack

scenarios, referred to as white-box and black-box attacks in

the following. In white-box attacks, the attacker is assumed

to know the training data Dtr, the feature values x, the

learning algorithm L, and even the trained parameters θ.

These attacks have been widely considered in previous work,

although mainly against classification algorithms [5], [36],

[54]. In black-box attacks, the attacker has no knowledge

of the training set Dtr but can collect a substitute data set

D′tr. The feature set and learning algorithm are known, while

the trained parameters are not. However, the latter can be

estimated by optimizing L on the substitute data set D′tr. This

setting is useful to evaluate the transferability of poisoning

attacks across different training sets, as discussed in [38], [54].

Adversary’s Capability. In poisoning attacks, the attacker

injects poisoning points into the training set before the regres-

sion model is trained (see the right side of Figure 1 labeled

“Adversarial world”). The attacker’s capability is normally

limited by upper bounding the number p of poisoning points
that can be injected into the training data, whose feature values

and response variables are arbitrarily set by the attacker within

a specified range (typically, the range covered by the training

data, i.e., [0, 1] in our case) [38], [54]. The total number

of points in the poisoned training set is thus N = n + p,

with n being the number of pristine training samples. We

then define the ratio α = p/n, and the poisoning rate as the

actual fraction of the training set controlled by the attacker,

i.e., n/N = α/(1 + α). In previous work, poisoning rates

higher than 20% have been only rarely considered, as the

attacker is typically assumed to be able to control only a small
fraction of the training data. This is motivated by application

scenarios such as crowdsourcing and network traffic analysis,

in which attackers can only reasonably control a small fraction

of participants and network packets, respectively. Moreover,

learning a sufficiently-accurate regression function in the pres-

ence of higher poisoning rates would be an ill-posed task, if

not infeasible at all [5], [25], [36], [38], [53], [54].

Poisoning Attack Strategy. All the aforementioned poisoning

attack scenarios, encompassing availability and integrity vio-

lations under white-box or black-box knowledge assumptions,

can be formalized as a bilevel optimization problem [36], [38].

For white-box attacks, this can be written as:

argmaxDp
W(D′,θ�

p) , (2)

s.t. θ�
p ∈ argminθ L(Dtr ∪ Dp,θ) . (3)

The outer optimization amounts to selecting the poisoning

points Dp to maximize a loss function W on an untainted

data set D′ (e.g., a validation set which does not contain any

poisoning points), while the inner optimization corresponds to

retraining the regression algorithm on a poisoned training set

including Dp. It should be clear that θ�
p depends implicitly on

the set Dp of poisoning attack samples through the solution of

21

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

the inner optimization problem. In poisoning integrity attacks,

the attacker’s loss W can be evaluated only on the points of

interest (for which the attacker aims to cause mis-predictions at

test time), while in poisoning availability attacks it is computed

on an untainted set of data points, indiscriminately. In the

black-box setting, the poisoned regression parameters θ�
p are

estimated using the substitute training data D′tr instead of Dtr.

In the remainder of this work, we only focus on poisoning

availability attacks against regression learning, and on defend-

ing against them, as those have been mainly investigated in the

literature of poisoning attacks. We highlight anyway again that

poisoning integrity attacks can be implemented using the same

technical derivation presented in this work, and leave a more

detailed investigation of their effectiveness to future work.

III. ATTACK METHODOLOGY

In this section, we first discuss previously-proposed

gradient-based optimization approaches to solving Prob-

lem (2)-(3) in classification settings. In Sect. III-A, we discuss

how to adapt them to the case of regression learning, and

propose novel strategies to further improve their effectiveness.

Notably, since these attacks have been originally proposed

in the context of classification problems, the class label of

the attack sample is arbitrarily initialized and then kept fixed

during the optimization procedure (recall that y is a categorical

variable in classification). As we will demonstrate in the

remainder of this work, a significant improvement we propose

here to the current attack derivation is to simultaneously opti-

mize the response variable of each poisoning point along with

its feature values. We subsequently highlight some theoretical

insights on how each poisoning sample is updated during

the gradient-based optimization process. This will lead us

to develop a much faster attack, presented in Sect. III-B,

which only leverages some statistical properties of the data

and requires minimal black-box access to the targeted model.

A. Optimization-based Poisoning Attacks

Previous work has considered solving Problem (2)-(3) by

iteratively optimizing one poisoning sample at a time through

gradient ascent [5], [36], [38], [54]. An exemplary algorithm

is given as Algorithm 1. We denote with xc the feature

vector of the attack point being optimized, and with yc its

response variable (categorical for classification problems). In

particular, in each iteration, the algorithm optimizes all points

in Dp, by updating their feature vectors one at a time. As

reported in [54], the vector xc can be updated through a line

search along the direction of the gradient ∇xc
W of the outer

objective W (evaluated at the current poisoned solution) with

respect to the poisoning point xc (cf. line 7 in Algorithm 1).

Note that this update step should also enforce xc to lie within

the feasible domain (e.g., xc ∈ [0, 1]d), which can be typically

achieved through simple projection operators [5], [38], [54].

The algorithm terminates when no sensible change in the outer

objective W is observed.

Gradient Computation. The aforementioned algorithm is es-

sentially a standard gradient-ascent algorithm with line search.

Algorithm 1 Poisoning Attack Algorithm

Input: D = Dtr (white-box) or D′tr (black-box), D′, L, W ,

the initial poisoning attack samples D(0)
p = (xc, yc)

p
c=1, a

small positive constant ε.

1: i← 0 (iteration counter)

2: θ(i) ← argminθ L(D ∪D(i)
p ,θ)

3: repeat
4: w(i) ←W(D′,θ(i))
5: θ(i+1) ← θ(i)

6: for c = 1, . . . , p do
7: x

(i+1)
c ← line search

(
xc

(i),∇xc
W(D′,θ(i+1))

)
8: θ(i+1) ← argminθ L(D ∪D(i+1)

p ,θ)
9: w(i+1) ←W(D′,θ(i+1))

10: i← i+ 1
11: until |w(i) − w(i−1)| < ε

Output: the final poisoning attack samples Dp ← D(i)
p

The challenging part is understanding how to compute the

required gradient ∇xcW(D′,θ), as this has to capture the

implicit dependency of the parameters θ of the inner problem

on the poisoning point xc. Indeed, assuming that W does not

depend directly on xc, but only through θ, we can compute

∇xc
W(D′,θ) using the chain rule as:

∇xc
W = ∇xc

θ(xc)
� · ∇θW , (4)

where we have made explicit that θ depends on xc. While the

second term is simply the derivative of the outer objective with

respect to the regression parameters, the first one captures the

dependency of the solution θ of the learning problem on xc.

We focus now on the computation of the term ∇xcθ(xc).
While for bilevel optimization problems in which the inner

problem is not convex (e.g., when the learning algorithm is

a neural network) this requires efficient numerical approxi-

mations [38], when the inner learning problem is convex, the

gradient of interest can be computed in closed form. The un-

derlying trick is to replace the inner learning problem (Eq. 3)

with its Karush-Kuhn-Tucker (KKT) equilibrium conditions,

i.e., ∇θL(D′tr ∪ Dp,θ) = 0, and require such conditions to

remain valid while updating xc [5], [36], [38], [54]. To this

end, we simply impose that their derivative with respect to xc

remains at equilibrium, i.e., ∇xc (∇θL(D′tr ∪ Dp,θ)) = 0.

Now, it is clear that the function L depends explicitly on

xc in its first argument, and implicitly through the regression

parameters θ. Thus, differentiating again with the chain rule,

one yields the following linear system:

∇xc
∇θL+∇xc

θ� · ∇2
θL = 0 . (5)

Finally, solving for ∇xcθ, one yields:

∇xcθ
� =

[
∂w
∂xc

� ∂b
∂xc

�]
= −∇xc

∇θL
(∇2

θL
)−1

. (6)

For the specific form of L given in Eq. (1), it is not difficult

to see that the aforementioned derivative becomes equal to

22

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

that reported in [54] (except for a factor of 2 arising from a

different definition of the quadratic loss).

∇xc
θ� = − 2

n

[
M w

] [Σ+ λg μ
μ� 1

]−1

, (7)

where Σ = 1
n

∑
i xix

�
i , μ = 1

n

∑
i xi, and M = xcw

� +
(f(xc)− yc) Id. As in [54], the term g is zero for OLS and

LASSO, the identity matrix Id for ridge regression, and (1−
ρ)Id for the elastic net.

Objective Functions. In previous work, the main objective

used for W has been typically a loss function computed on

an untainted validation set Dval = {(x′i, y′i)}mi=1 [5], [36],

[38]. Notably, only Xiao et al. [54] have used a regularized

loss function computed on the training data (excluding the

poisoning points) as a proxy to estimate the generalization

error on unseen data. The rationale was to avoid the attacker

to collect an additional set of points. In our experiments, we

consider both possibilities, always using the MSE as the loss

function:

Wtr(Dtr,θ) =
1
n

∑n
i=1 (f(xi,θ)− yi)

2
+ λΩ(w) , (8)

Wval(Dval,θ) =
1
m

∑m
j=1

(
f(x′j ,θ)− y′j

)2
. (9)

The complete gradient ∇xc
W (Eq. 4) for these two objectives

can thus be computed by multiplying Eq. (7) respectively to:

∇θWtr =

[∇wWtr

∇bWtr

]
(10)

=

[
2
n

∑n
i=1(f(xi)− yi)xi + λ ∂Ω

∂w

�
2
n

∑n
i=1(f(xi)− yi)

]
, (11)

∇θWval =

[∇wWval

∇bWval

]
=

[2
m

∑m
j=1(f(xj)− yj)xj

2
m

∑m
j=1(f(xj)− yj)

]
.

(12)

Initialization strategies. We discuss here how to select the

initial set Dp of poisoning points to be passed as input to the

gradient-based optimization algorithm (Algorithm 1). Previous

work on poisoning attacks has only dealt with classification

problems [5], [36], [38], [54]. For this reason, the initialization

strategy used in all previously-proposed approaches has been

to randomly clone a subset of the training data and flip their

labels. Dealing with regression opens up different avenues. We

therefore consider two initialization strategies in this work. In

both cases, we still select a set of points at random from the

training set Dtr, but then we set the new response value yc of

each poisoning point in one of two ways: (i) setting yc = 1−y,

and (ii) setting yc = round(1 − y), where round rounds to

the nearest 0 or 1 value (recall that the response variables are

in [0, 1]). We call the first technique Inverse Flipping (InvFlip)

and the second Boundary Flipping (BFlip). Worth remarking,

we experimented with many techniques for selecting the

feature values before running gradient descent, and found that

surprisingly they do not have significant improvement over a

simple uniform random choice. We thus report results only for

the two aforementioned initialization strategies.

Baseline Gradient Descent (BGD) Attack. We are now in

a position to define a baseline attack against which we will

compare our improved attacks. In particular, as no poisoning

attack has ever been considered in regression settings, we

define as the baseline poisoning attack an adaptation from

the attack by Xiao et al. [54]. In particular, as in Xiao et

al. [54], we select Wtr as the outer objective. To simulate label

flips in the context of regression, we initialize the response

variables of the poisoning points with the InvFlip strategy.

We nevertheless test all the remaining three combinations of

initialization strategies and outer objectives in our experiments.

Response Variable Optimization. This work is the first to

consider poisoning attacks in regression settings. Within this

context, it is worth remarking that response variables take on

continuous values rather than categorical ones. Based on this

observation, we propose here the first poisoning attack that

jointly optimizes the feature values xc of poisoning attacks

and their associated response variable yc. To this end, we

extend the previous gradient-based attack by considering the

optimization of zc = (xc, yc) instead of only considering xc.

This means that all previous equations remain valid provided

that we substitute ∇zc
to ∇xc

. This clearly requires expanding

∇xc
θ by also considering derivatives with respect to yc:

∇zc
θ =

[
∂w
∂xc

∂w
∂yc

∂b
∂xc

∂b
∂yc

]
, (13)

and, accordingly, modify Eq. (7) as

∇zcθ
� = − 2

n

[
M w
−x�c −1

] [
Σ+ λg μ
μ� 1

]−1

. (14)

The derivatives given in Eqs. (10)-(12) remain clearly un-

changed, and can be pre-multiplied by Eq. (14) to obtain

the final gradient ∇zc
W . Algorithm 1 can still be used to

implement this attack, provided that both xc and yc are

updated along the gradient ∇zcW (cf. Algorithm 1, line 7).

Theoretical Insights. We discuss here some theoretical in-

sights on the bilevel optimization of Eqs. (2)-(3), which

will help us to derive the basis behind the statistical attack

introduced in the next section. To this end, let us first consider

as the outer objective a non-regularized version of Wtr, which

can be obtained by setting λ = 0 in Eq. (8). As we will see,

in this case it is possible to compute simplified closed forms

for the required gradients. Let us further consider another

objective denoted with W ′
tr, which, instead of optimizing the

loss, optimizes the difference in predictions from the original,

unpoisoned model θ′:

W ′
tr =

1
n

∑n
i=1(f(xi,θ)− f(xi,θ

′))2.

In Appendix A, we show that Wtr and W ′
tr are inter-

changeable for our bilevel optimization problem. In particular,

differentiating W ′
tr with respect to zc = (xc, yc) gives:

∂W ′
tr

∂xc
= 2

n (f(xc,θ)− f(xc,θ
′))(w0 − 2w)� (15)

∂W ′
tr

∂yc
= 2

n (f(xc,θ)− f(xc,θ
′)). (16)

23

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

The update rules defined by these gradients have nice inter-

pretation. We see that
∂W′

tr

∂yc
will update yc to be further away

from the original line than it was in the previous iteration.

This is intuitive, as a higher distance from the line will push

the line further in that direction. The update for xc is slightly

more difficult to understand, but by separating (w0−2w) into

(−w)+(w0−w), we see that the xc value is being updated in

two directions summed together. The first is perpendicularly

away from the regression line (like the yc update step, the

poison point should be as far as possible from the regression

line). The second is parallel to the difference between the

original regression line and the poisoned regression line (it

should keep pushing in the direction it has been going). This

gives us an intuition for how the poisoning points are being

updated, and what an optimal poisoning point looks like.

B. Statistical-based Poisoning Attack (StatP)

Motivated by the aforementioned theoretical insights, we

design a fast statistical attack that produces poisoned points

with similar distribution as the training data. In StatP, we

simply sample from a multivariate normal distribution with

the mean and covariance estimated from the training data.

Once we have generated these points, we round the feature

values to the corners, exploiting the observation that the most

effective poisoning points are near corners. Finally, we select

the response variable’s value at the boundary (either 0 or 1)

to maximize the loss.

Note that, importantly, the StatP attack requires only black-

box access to the model, as it needs to query the model to

find the response variable (before performing the boundary

rounding). It also needs minimal information to be able to

sample points from the training set distribution. In particular,

StatP requires an estimate of the mean and co-variance of

the training data. However, StatP is agnostic to the exact

regression algorithm, its parameters, and training set. Thus,

it requires much less information on the training process than

the optimization-based attacks. It is significantly faster than

optimization-based attacks, though slightly less effective.

IV. DEFENSE ALGORITHMS

In this section, we describe existing defense proposals

against poisoning attacks, and explain why they may not be

effective under adversarial corruption in the training data. Then

we present a new approach called TRIM, specifically designed

to increase robustness against a range of poisoning attacks.

A. Existing defense proposals

Existing defense proposals can be classified into two cate-

gories: noise-resilient regression algorithms and adversarially-

resilient defenses. We discuss these approaches below.

Noise-resilient regression. Robust regression has been exten-

sively studied in statistics as a method to provide resilience

against noise and outliers [26], [27], [51], [55]. The main idea

behind these approaches is to identify and remove outliers
from a dataset. For example, Huber [26] uses an outlier-robust

loss function. RANSAC [17] iteratively trains a model to fit a

Fig. 2: Several iterations of the TRIM algorithm. Initial

poisoned data is in blue in top left graph. The top right graph

shows in red the initial randomly selected points removed

from the optimization objective. In the following two iterations

(bottom left and right graphs) the set of high-residual points

is refined and the model becomes more robust.

subset of samples selected at random, and identifies a training

sample as an outlier if the error when fitting the model to the

sample is higher than a threshold.

While these methods provide robustness guarantees against

noise and outliers, an adversary can still generate poisoning

data that affects the trained model. In particular, an attacker

can generate poisoning points that are very similar to the true

data distribution (these are called inliers), but can still mislead

the model. Our new attacks discussed in Section III generate

poisoning data points which are akin to the pristine ones.

For example, in StatP the poisoned points are chosen from a

distribution that is similar to that of the training data (has the

same mean and co-variance). It turns out that these existing

regression methods are not robust against inlier attack points

chosen to maximally mislead the estimated regression model.

Adversarially-resilient regression. Previously proposed

adversarially-resilient regression algorithms typically provide

guarantees under strong assumptions about data and noise

distribution. For instance, Chen et al. [10], [11] assume that

the feature set matrix satisfies XTX = I and data has sub-

Gaussian distribution. Feng et al. [16] assume that the data

and noise satisfy the sub-Gaussian assumption. Liu et al. [33]

design robust linear regression algorithms robust under the

assumption that the feature matrix has low rank and can be

projected to a lower dimensional space. All these methods

have provable robustness guarantees, but the assumptions on

which they rely are not usually satisfied in practice.

B. TRIM algorithm

In this section, we propose a novel defense algorithm

called TRIM with the goal of training a regression model

with poisoned data. At an intuitive level, rather than sim-

ply removing outliers from the training set, TRIM takes a

24

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 [TRIM algorithm]

1: Input: Training data D = Dtr ∪ Dp with |D| = N ;

number of attack points p = α · n.

2: Output: θ.

3: I(0) ← a random subset with size n of {1, ..., N}
4: θ(0) ← argminθ L(I

(0)

,θ) /* Initial estimation of θ*/

5: i← 0 /* Iteration count */

6: repeat
7: i← i+ 1;

8: I(i) ← subset of size n that min. L(DI(i)

,θ(i−1))

9: θ(i) ← argminθ L(DI
(i)

,θ) /* Current estimator */

10: R(i) = L(DI(i)

,θ(i)) /* Current loss */

11: until i > 1 ∧R(i) = R(i−1) /* Convergence condition*/

12: return θ(i) /* Final estimator */.

principled approach. TRIM iteratively estimates the regression

parameters, while at the same time training on a subset of

points with lowest residuals in each iteration. In essence,

TRIM uses a trimmed loss function computed on a different

subset of residuals in each iteration. Our method is inspired

by techniques from robust statistics that use trimmed versions

of the loss function for robustness. Our main contribution

is to apply trimmed optimization techniques for regularized

linear regression in adversarial settings, and demonstrate their

effectiveness compared to other defenses on a range of models

and real-world datasets.

As in Section II, assume that the original training set is Dtr

of size n, the attacker injects p = α · n poisoned samples

Dp, and the poisoned training set D = Dtr ∪ Dp is of size

N = (1 + α)n. We require that α < 1 to ensure that the

majority of training data is pristine (unpoisoned).

Our main observation is the following: we can train a linear

regression model only using a subset of training points of

size n. In the ideal case, we would like to identify all p
poisoning points and train the regression model based on the

remaining n legitimate points. However, the true distribution

of the legitimate training data is clearly unknown, and it is

thus difficult to separate legitimate and attack points precisely.

To alleviate this, our proposed defense tries to identify a

set of training points with lowest residuals relative to the

regression model (these might include attack points as well,

but only those that are “close” to the legitimate points and

do not contribute much to poisoning the model). In essence,

our TRIM algorithm provides a solution to the following

optimization problem:

min
θ,I

L(DI ,θ) s.t. I ⊂ [1, . . . , N] ∧ |I| = n . (17)

We use the notation DI to indicate the data samples

{(xi, yi) ∈ D}i∈I . Thus, we optimize the parameter θ of

the regression model and the subset I of points with smallest

residuals at the same time. It turns out though that solving

this optimization problem efficiently is quite challenging. A

simple algorithm that enumerates all subsets I of size n of

the training set is computationally inefficient. On the other

hand, if the true model parameters θ = (w, b) were known,

then we could simply select points in set I that have lowest

residual relative to θ. However, what makes this optimization

problem difficult to solve is the fact that θ is not known, and

we do not make any assumptions on the true data distribution

or the attack points.

To address these issues, our TRIM algorithm learns param-

eter θ and distinguishes points with lowest residuals from

training set alternately. We employ an iterative algorithm

inspired by techniques such as alternating minimization or

expectation maximization [13]. At the beginning of iteration

i, we have an estimate of parameter θ(i). We use this estimate

as a discriminator to identify all inliers, whose residual values

are the n smallest ones. We do not consider points with large

residuals (as they increase MSE), but use only the inliers

to estimate a new parameter θ(i+1). This process terminates

when the estimation converges and the loss function reaches a

minimum. The detailed algorithm is presented in Algorithm 2.

A graphical representation of three iterations of our algorithm

is given in Figure 2. As observed in the figure, the algorithm

iteratively finds the direction of the regression model that fits

the true data distribution, and identifies points that are outliers.

We provide provable guarantees on the convergence of

Algorithm 2 and the estimation accuracy of the regression

model it outputs. First, Algorithm 2 is guaranteed to converge

and thus it terminates in finite number of iterations, as stated

in the following theorem.

Theorem 1. Algorithm 2 terminates in a finite number of
iterations.

We do not explicitly provide a bound on the number of iter-

ations needed for convergence, but it is always upper bounded

by
(
N
n

)
. However, our empirical evaluation demonstrates that

Algorithm 2 converges within few dozens of iterations at most.

We are next interested in analyzing the quality of the

estimated model computed from Algorithm 2 (adversarial
world) and how it relates to the pristine data (ideal world).

However, relating these two models directly is challenging

due to the iterative minimization used by Algorithm 2. We

overcome this by observing that Algorithm 2 finds a local
minimum to the optimization problem from (17). There is no

efficient algorithm for solving (17) that guarantees the solution

to be the global minimum of the optimization problem.

It turns out that we can provide a guarantee about the

global minimum θ̂ of (17) on poisoned data (under worst-

case adversaries) in relation to the parameter θ� learned by

the original model on pristine data. In particular, Theorem 2

shows that θ̂ “fits well” to at least (1 − α) · n pristine data

samples. Notably, it does not require any assumptions on how

poisoned data is generated, thus it provides guarantees under

worst-case adversaries.

Theorem 2. Let Dtr denote the original training data, θ̂ the
global optimum for (17), and θ� = argminθ L(Dtr,θ) the
estimator in the ideal world on pristine data. Assuming α < 1,
there exist a subset D′ ⊂ Dtr of (1−α)·n pristine data samples

25

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

such that

MSE(D′, θ̂) ≤
(
1 +

α

1− α

)
L(Dtr,θ

�) . (18)

Note that the above theorem is stated without any assump-

tions on the training data distribution. This is one of the

main difference from prior work [11], [16], which assume

the knowledge of the mean and covariance of the legitimate

data. In practice, such information on training data is typically

unavailable. Moreover, an adaptive attacker can also inject

poisoning samples to modify the mean and covariance of

training data. Thus, our results are stronger than prior work in

relying on fewer assumptions.
We now give an intuitive explanation about the above

theorem, especially inequality (18). Since Dtr is assumed

to be the pristine dataset, and D′ is a subset of Dtr of

size (1 − α)n, we know all data in D′ is also pristine

(not corrupted by the adversary). Therefore, the stationary

assumption on pristine data distribution, which underpins all

machine learning algorithms, guarantees that MSE(Dtr,θ) is

close to MSE(D′,θ) regardless of the choices of θ and D′,
as long as α is small enough.

Next, we explain the left-hand side of inequality (18).

This is the MSE of a subset of pristine samples D′ using

θ̂ computed by the TRIM algorithm in the adversarial world.

Based on the discussion above, the left-hand side is close to the

MSE of the pristine data Dtr using the adversarially learned

estimator θ̂. Thus, inequality (18) essentially provides an upper

bound on the worst-case MSE using the estimator θ̂ output by

Algorithm 2 from the poisoned data.
To understand what upper bound Theorem 2 guarantees, we

need to understand the right-hand side of inequality (18). We

use OLS regression (without regularization) as an example to

explain the intuition of the right-hand side. In OLS we have

L(Dtr,θ
�) = MSE(Dtr,θ

�), which is the MSE using the

“best-case” estimator computed in the ideal world. Therefore,

the right-hand side of inequality (18) is proportional to the

ideal world MSE, with a factor of (1+ α
1−α). When α ≤ 20%,

we notice that this factor is at most 1.25×.
Therefore, informally, Theorem 2 essentially guarantees

that, the ratio of the worst-case MSE by solving (18) computed

in the adversarial world over best-case MSE computed in ideal

world for a linear model is at most 1.25. Note that since

Algorithm 2 may not always find the global minimum of (17),

we empirically examine this ratio of the worst-case to best-

case MSEs. Our empirical evaluation shows that in most of

our experiments, this ratio for TRIM is less than 1.01×, which

is much smaller than all existing defenses.
For other models whose loss function includes the regular-

izer term (Lasso, ridge, and elastic net), the right-hand side

of (18) includes the same term as well. This may allow the

blowup of the worst-case MSE in the adversarial world with

respect to the best-case MSE to be larger; however, we are

not aware of any technique to trigger this worst-case scenario,

and our empirical evaluation shows that the blowup is typically

less than 1% as mentioned above.

The proofs of Theorem 1 and 2 can be found in Appendix B.

V. EXPERIMENTAL EVALUATION

We implemented our attack and defense algorithms in

Python, using the numpy and sklearn packages. Our code is

available at https://github.com/jagielski/manip-ml. We ran our

experiments on four 32 core Intel(R) Xeon(R) CPU E5-2440

v2 @ 1.90GHz machines. We parallelize our optimization-

based attack implementations to take advantage of the multi-

core capabilities. We use the standard cross-validation method

to split the datasets into 1/3 for training, 1/3 for testing, and

1/3 for validation, and report results as averages over 5 runs.

We use two main metrics for evaluating our algorithms: MSE

for the effectiveness of the attacks and defenses, and running

time for their cost.

We describe the datasets we used for our experiments in

Section V-A. We then systematically analyze the performance

of the new attacks and compare them against the baseline

attack algorithm in Section V-B. Finally, we present the results

of our new TRIM algorithm and compare it with previous

methods from robust statistics in Section V-C.

A. Datasets

We used three public regression datasets in our experimental

evaluation. We present some details and statistics about each

of them below.

Health care dataset. This dataset includes 5700 patients,

where the goal is to predict the dosage of anticoagulant drug

Warfarin using demographic information, indication for War-

farin use, individual VKORC1 and CYP2C9 genotypic data,

and use of other medications affected by related VKORC1

and CYP2C9 polymorphisms [45]. As is standard practice for

studies using this dataset (see [19]), we only select patients

with INR values between 2 and 3. The INR is a ratio that

represents the amount of time it takes for blood to clot, with a

therapeutic range of 2-3 for most patients taking Warfarin. The

dataset includes 67 features, resulting in 167 features after one-

hot encoding categorical features and normalizing numerical

features as above.

Loan dataset. This dataset contains information regarding

loans made on the Lending Club peer-to-peer lending platform

[29]. The predictor variables describe the loan attributes,

including information such as total loan size, interest rate,

and amount of principal paid off, as well as the borrower’s

information, such as number of lines of credit, and state of

residence. The response variable is the interest rate of a loan.

Categorical features, such as the purpose of the loan, are one-

hot encoded, and numerical features are normalized into [0,1].

The dataset contains 887,383 loans, with 75 features before

pre-processing, and 89 after. Due to its large scale, we sampled

a set of 5000 records for our poisoning attacks.

House pricing dataset. This dataset is used to predict house

sale prices as a function of predictor variables such as square

footage, number of rooms, and location [28]. In total, it

26

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Model Dataset Init Argument Objective

Ridge Health BFlip (x, y) Wtr

Loan BFlip x Wval

House BFlip (x, y) Wtr

LASSO Health BFlip (x, y) Wtr

Loan BFlip (x, y) Wval

House InvFlip (x, y) Wval

TABLE I: Best performing optimization attack OptP for Ridge

and LASSO regression.

includes 1460 houses and 81 features. We preprocess by one-

hot encoding all categorical features and normalize numerical

features, resulting in 275 total features.

B. New poisoning attacks

In this section, we perform experiments on the three regres-

sion datasets (health care, loan, and house pricing) to evaluate

the newly proposed attacks, and compare them against the

baseline BGD [54] for four regression models. For each dataset

we select a subset of 1400 records (this is the size of the house

dataset, and we wanted to use the same number of records

for all datasets). We use MSE as the metric for assessing

the effectiveness of an attack, and also measure the attacks’

running times. We vary the poisoning rate between 4% and

20% at intervals of 4% with the goal of inferring the trend in

attack success. More details about hyperparameter setting are

presented in Appendix C.

Figures 3 and 4 show the MSE of each attack for ridge

and LASSO regression. We picked these two models as they

are the most popular linear regression models. We plot the

baseline attack BGD, statistical attack StatP, as well as our

best performing optimization attack (called OptP). Details on

OptP are given in Table I. Additional results for the Contagio

PDF classification dataset are given in Appendix C.

Below we pose several research questions to elucidate the

benefits, and in some cases limitations, of these attacks.

1) Question 1: Which optimization strategies are most ef-
fective for poisoning regression?: Our results confirm that the

optimization framework we design is effective at poisoning

different models and datasets. Our new optimization attack

OptP improves upon the baseline BGD attack by a factor of

6.83 in the best case. The OptP attack could achieve MSEs

by a factor of 155.7 higher than the original models.

As discussed in Section III, our optimization framework

has several instantiations, depending on: (1) The initialization

strategy (InvFlip or BFlip); (2) The optimization variable (x
or (x, y)); and (3) The objective of the optimization (Wtr

or Wval). For instance, BGD is given by (InvFlip, x, Wtr).

We show that each of these dimensions has an important

effect in generating successful attacks. Table I shows the best

optimization attack for each model and dataset, while Tables II

and III provide examples of different optimization attacks for

LASSO on the loan and house datasets, respectively.

We highlight several interesting observations. First, bound-

ary flip BFlip is the preferred initialization method, with

only one case (LASSO regression on house dataset) in which

InvFlip performs better in combination with optimizing (x, y)

Init Argument Objective Poisoning rates
12% 16% 20%

InvFlip x Wtr 0.026 0.027 0.027
BFlip x Wtr 0.028 0.032 0.033
InvFlip (x, y) Wtr 0.026 0.027 0.029
BFlip (x, y) Wtr 0.029 0.0316 0.032
BFlip (x, y) Wval 0.030 0.0338 0.0376

TABLE II: MSEs of optimization attacks for LASSO on loan

data. BGD is the first row.

Init Argument Objective Poisoning rates
12% 16% 20%

InvFlip x Wtr 0.034 0.047 0.054
BFlip x Wtr 0.08 0.145 0.172
InvFlip (x, y) Wtr 0.04 0.047 0.052
InvFlip (x, y) Wval 0.369 0.369 0.369
BFlip (x, y) Wtr 0.08 0.145 0.172

TABLE III: MSEs of optimization attacks for LASSO on

house data. BGD is the first row.

under objective Wval. For instance, in LASSO on house

dataset, BFlip alone can achieve a factor of 3.18 higher MSE

than BGD using InvFlip. In some cases the optimization by

y can achieve higher MSEs even starting with non-optimal

y values as the gradient ascent procedure is very effective

(see for example the attack (InvFlip, (x, y),Wval) in Table III).

However, the combination of optimization by x with InvFlip
initialization (as used by BGD) is outperformed in all cases

by either BFlip or (x, y) optimization.

Second, using both (x, y) as optimization arguments is most

effective compared to simply optimizing by x as in BGD. Due

to the continuous response variables in regression, optimizing

by y plays a large role in making the attacks more effective.

For instance, optimizing by (x, y) with BFlip initialization and

Wval achieves a factor of 6.83 improvement in MSE compared

to BGD on house dataset with LASSO regression.

Third, the choice of the optimization objective is equally

important for each dataset and model. Wval can improve over

Wtr by a factor of 7.09 (on house for LASSO), by 17.5% (on

loan for LASSO), and by 30.4% (on loan for ridge) when the

initialization points and optimization arguments are the same.

Thus, all three dimensions in our optimization framework

are influential in improving the success of the attack. The

optimal choices are dependent on the data distribution, such

as feature types, sparsity of the data, ratio of records over data

dimension, and data linearity. In particular, we noticed that for

non-linear datasets (such as loan), the original MSE is already

high before the attack and all the attacks that we tested perform

worse than in cases when the legitimate data fits a linear model

(i.e., it is close to the regression hyperplane). The reason may

be that, in the latter case, poisoning samples may be shifted

farther away from the legitimate data (i.e., from the regression

hyperplane), and thus have a greater impact than in the former

case, when the legitimate data is already more evenly and non-

linearly distributed in feature space. Nevertheless, our attacks

are able to successfully poison a range of models and datasets.

2) Question 2: How do optimization and statistical at-
tacks compare in effectiveness and performance?: In general,

27

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

(a) Health Care Dataset (b) Loan Dataset (c) House Price Dataset

Fig. 3: MSE of attacks on ridge regression on the three datasets. Our new optimization (OptP) and statistical (StatP) attacks

are more effective than the baseline. OptP is best optimization attack according to Table I.

(a) Health Care Dataset (b) Loan Dataset (c) House Price Dataset

Fig. 4: MSE of attacks on LASSO on the three datasets. As for ridge, we find that StatP and OptP are able to poison the

dataset very effectively, outperforming the baseline (BGD). OptP is best optimization attack according to Table I.

optimization-based attacks (BGD and OptP) outperform the

statistical-based attack StatP in effectiveness. This is not

surprising to us, as StatP uses much less information about the

training process to determine the attack points. Interestingly,

we have one case (LASSO regression on loan dataset) in which

StatP outperforms the best optimization attack OptP by 11%.

There are also two instances on ridge regression (health and

loan datasets) in which StatP and OptP perform similarly.

These cases show that StatP is a reasonable attack when the

attacker has limited knowledge about the learning system.

The running time of optimization attacks is proportional

to the number of iterations required for convergence. On

the highest-dimensional dataset, house prices, we observe

OptP taking about 337 seconds to complete for ridge and

408 seconds for LASSO. On the loan dataset, OptP finishes

LASSO poisoning in 160 seconds on average. As expected,

the statistical attack is extremely fast, with running times on

the order of a tenth of a second on the house dataset and a

hundredth of a second on the loan dataset to generate the same

number of points as OptP. Therefore, our attacks exhibit clear

tradeoffs between effectiveness and running times, with opti-

mization attacks being more effective than statistical attacks,

at the expense of higher computational overhead.

3) Question 3: What is the potential damage of poisoning
in real applications?: We are interested in understanding the

effect of poisoning attacks in real applications, and perform a

case study on the health-care dataset. Specifically, we translate

the MSE results obtained with our attacks into application

specific parameters. In the health care application, the goal

is to predict medicine dosage for the anticoagulant drug

Warfarin. In Table IV, we show first statistics on the medicine

dosage predicted by the original regression models (without

poisoning), and then the absolute difference in the amount of

dosage prescribed after the OptP poisoning attack. We find

that all linear regression models are vulnerable to poisoning,

with 75% of patients having their dosage changed by 93.49%,

and half of patients having their dosage changed by 139.31%

on LASSO. For 10% of patients, the increase in MSE is

devastating to a maximum of 359% achieved for LASSO

regression. These results are for 20% poisoning rate, but it

turns out that the attacks are also effective at smaller poisoning

rates. For instance, at 8% poisoning rate, the change in dosage

is 75.06% for half of patients.

Thus, the results demonstrate the effectiveness of our new

poisoning attacks that induce significant changes to the dosage

of most patients with a small percentage of poisoned points

added by the attacker.

4) Question 4: What are the transferability properties of
our attacks?: Our transferability analysis for poisoning attacks

is based on the black-box scenario discussed in Sect. II, in

28

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Quantile Initial Ridge LASSO
Dosage Diff Diff

0.1 15.5 31.54% 37.20%
0.25 21 87.50% 93.49%
0.5 30 150.99% 139.31%
0.75 41.53 274.18% 224.08%
0.9 52.5 459.63% 358.89%

TABLE IV: Initial dosage distribution (mg/wk) and percentage

difference between original and predicted dosage after OptP
attack at 20% poisoning rate (health care dataset).

which the attacker uses a substitute training set D′tr to craft

the poisoning samples, and then tests them against the targeted

model (trained on Dtr). Our results, averaged on 5 runs,

are detailed in Table V, which presents the ratio between

transferred and original attacks. Note that the effectiveness

of transferred attacks is very similar to that of the original

attacks, with some outliers on the house dataset. For instance,

the statistical attack StatP achieves transferred MSEs within

11.4% of the original ones. The transferred OptP attacks have

lower MSEs by 3% than the original attack on LASSO. At

the same time, transferred attacks could also improve the

effectiveness of the original attacks: by 30% for ridge, and

78% for LASSO. We conclude that, interestingly, our most

effective poisoning attacks (OptP and StatP) tend to have

good transferability properties. There are some exceptions

(ridge on house dataset), which deserve further investigation

in future work. In most cases the MSEs obtained when using

a different training set for both attacks is comparable to MSEs

obtained when the attack is mounted on the actual training set.

Summary of poisoning attack results.
• We introduce a new optimization framework for poison-

ing regression, which manages to improve upon BGD by

a factor of 6.83. The best OptP attack selects the initial-

ization strategy, optimization argument, and optimization

objective to achieve maximum MSEs.

• We find that our statistical-based attack (StatP) works

reasonably well in poisoning all datasets and models, is

efficient in running time, and needs minimal information

on the model. Our optimization-based attack OptP takes

longer to run, needs more information on the model, but

can be more effective in poisoning than StatP if properly

configured.

• In a health care case study, we find that our OptP attack

can cause half of patients’ Warfarin dosages to change

by an average of 139.31%. One tenth of these patients

can have their dosages changed by 359%, demonstrating

the devastating consequences of poisoning.

• We find that both our statistical and optimization attacks

have good transferability properties, and still perform

well with minimal difference in accuracy, when applied

to different training sets.

C. Defense algorithms

In this section, we evaluate our proposed TRIM defense and

other existing defenses from the literature (Huber, RANSAC,

Dataset Attack LASSO Ridge

Health OptP 1.092 1.301
StatP 0.971 0.927

Loan OptP 1.028 1.100
StatP 1.110 0.989

House OptP 1.779 0.479
StatP 1.034 0.886

TABLE V: Transferability of OptP and StatP attacks. Pre-

sented are the ratio of the MSE obtained with transferred

attacks over original attacks. Values below 1 represent original

attacks outperforming transferred attacks, while values above

1 represent transferred attacks outperforming original attacks.

Chen, and RONI) against the best performing optimization

attacks from the previous section (OptP). We test two well-

known methods from robust statistics: Huber regression [26]

and RANSAC [17], available as implementations in Python’s

sklearn package. Huber regression modifies the loss function

from the standard MSE to reduce the impact of outliers. It does

this by using quadratic terms in the loss function for points

with small residuals and linear terms for points with large

residuals. The threshold where linear terms start being used is

tuned by a parameter ε > 1, which we set by selecting the best

of 5 different values: {1.1, 1.25, 1.35, 1.5, 2}. RANSAC builds

a model on a random sample of the dataset, and computes the

number of points that are outliers from that model. If there are

too many outliers, the model is rejected and a new model is

computed on a different random dataset sample. The size of

the initial random sample is a parameter that requires tuning

- we select 5 different values, linearly interpolating from 25

to the total number of clean data, and select the value which

has the lowest MSE. If the number of outliers is smaller than

the number of poisoning points, we retain the model.

We also compare against our own implementation of the

robust regression method by Chen et al. [11] from the machine

learning community, and the RONI method from the security

community [39]. Chen picks the features of highest influence

using an outlier resilient dot product computation. We vary

the number of features selected by Chen (the only parameter

in the algorithm) between 1 and 9 and pick the best results.

We find that Chen has highly variable performance, having

MSE increases of up to a factor of 63,087 over the no defense

models, and we decided to not include it in our graphs. The

poor performance of Chen is due to the strong assumptions

of the technique (sub-Gaussian feature distribution and covari-

ance matrix XTX = I.), that are not met by our real world

datasets. While we were able to remove the assumption that

all features had unit variance through robust scaling (using

the robust dot product provided by their work), removing

the covariance terms would require a robust matrix inversion,

which we consider beyond the scope of our work.

RONI (Reject On Negative Impact) was proposed in the

context of spam filters and attempts to identify outliers by

observing the performance of a model trained with and without

each point. If the performance degrades too much on a sampled

validation set (which may itself contain outliers), the point is

29

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

(a) Health Care Dataset (b) Loan Dataset (c) House Price Dataset

Fig. 5: MSE of defenses on ridge on the three datasets. We exclude Chen from the graphs due to its large variability. Defenses

are evaluated against the OptP attack. The only defense that consistently performs well in these situations is our proposed

TRIM defense, with RANSAC, Huber, and RONI actually performing worse than the undefended model in some cases.

(a) Health Care Dataset (b) Loan Dataset (c) House Price Dataset

Fig. 6: MSE of defenses on LASSO. We exclude Chen from the graphs due to its large variability. Defenses are evaluated

against the most effective attack OptP. As with ridge, the only defense that consistently performs well is our TRIM defense.

identified as an outlier and not included in the model. This

method has some success in the spam scenario due to the

ability of an adversary to send a single spam email with all

words in dictionary, but is not applicable in other settings in

which the impact of each point is small. We set the size of

the validation set to 50, and pick the best points on average

from 5 trials, as in the original paper. The size of the training

dataset is selected from the same values as RANSAC’s initial

sample size.

We show in Figures 5 and 6 MSEs for ridge and LASSO

regression for the original model (no defense), the TRIM al-

gorithm, as well as the Huber, RANSAC, and RONI methods.

We pose three research questions next:
1) Question 1: Are known methods effective at defending

against poisoning attacks?: As seen in Figures 5 and 6,

existing techniques (Huber regression, RANSAC, and RONI),

are not consistently effective at defending against our pre-

sented attacks. For instance, for ridge models, the OptP attack

increases MSE over unpoisoned models by a factor of 60.22

(on the house dataset). Rather than decreasing the MSE, Huber

regression in fact increases the MSE over undefended ridge

models by a factor of 3.28. RONI also increases the MSE of

undefended models by 18.11%. RANSAC is able to reduce

MSE, but it is still greater by a factor of 4.66 than that of the

original model. The reason for this poor performance is that

robust statistics methods are designed to remove or reduce

the effect of outliers from the data, while RONI can only

identify outliers with high impact on the trained models. Our

attacks generate inlier points that have similar distribution as

the training data, making these previous defenses ineffective.

2) Question 2: What is the robustness of the new defense
TRIM compared to known methods?: Our TRIM technique

is much more effective at defending against all attacks than

the existing techniques are. For ridge and LASSO regression,

TRIM’s MSE is within 1% of the original models in all cases.

Interestingly, on the house price dataset the MSE of TRIM is

lower by 6.42% compared to unpoisoned models for LASSO

regression. TRIM achieves MSEs much lower than existing

methods, improving Huber by a factor of 1295.45, RANSAC

by a factor of 75, and RONI by a factor of 71.13. This demon-

strates that the TRIM technique is a significant improvement

over prior work at defending against these poisoning attacks.

3) Question 3: What is the performance of various defense
algorithms?: All of the defenses we evaluated ran in a

reasonable amount of time, but TRIM is the fastest. For

example, on the house dataset, TRIM took an average of 0.02

seconds, RANSAC took an average of 0.33 seconds, Huber

took an average of 7.86 seconds, RONI took an average of

15.69 seconds and Chen took an average of 0.83 seconds. On

the health care dataset, TRIM took an average of 0.02 seconds,

30

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

RANSAC took an average of 0.30 seconds, Huber took an

average of 0.37 seconds, RONI took an average of 14.80

seconds, and Chen took an average of 0.66 seconds. There

is some variance depending on the dataset and the number of

iterations to convergence, but TRIM is consistently faster than

other methods.

Summary of defense results.
• We find that previous defenses (RANSAC, Huber, Chen,

and RONI) do not work very well against our poisoning

attacks. As seen in Figures 5-6, previous defenses can in

some cases increase the MSEs over unpoisoned models.

• Our proposed defense, TRIM, works very well and

significantly improves the MSEs compared to existing

defenses. For all attacks, models, and datasets, the MSEs

of TRIM are within 1% of the unpoisoned model MSEs.

In some cases TRIM achieves lower MSEs than those of

unpoisoned models (by 6.42%).

• All of the defenses we tested ran reasonably quickly.

TRIM was the fastest, running in an average of 0.02

seconds on the house price dataset.

VI. RELATED WORK

The security of machine learning has received a lot of

attention in different communities (e.g., [2], [4], [14], [25],

[34]. Different types of attacks against machine learning al-

gorithms have been designed and analyzed, including evasion
attacks (e.g., [3], [8], [20], [42], [43], [49], [50]), and privacy
attacks (e.g., [18], [19], [47]). In poisoning attacks the attacker

manipulates or injects malicious data during training to cause

either availability attacks (inducing an effect on the trained

model) or targeted attacks (inducing an effect on specific data

points) [5], [25], [36], [38], [54].

In the security community, practical poisoning attacks have

been demonstrated in worm signature generation [41], [44],

spam filters [39], network traffic analysis systems for detec-

tion of DoS attacks [46], sentiment analysis on social net-

works [40], crowdsourcing [53], and health-care [37]. In super-

vised learning settings, Newsome et al. [41] have proposed red
herring attacks that add spurious words (features) to reduce the

maliciousness score of an instance. These attacks work against

conjunctive and Bayes learners for worm signature generation.

Perdisci et al. [44] practically demonstrate how an attacker

can inject noise in the form of suspicious flows to mislead

worm signature classification. Nelson et al. [39] present both

availability and targeted poisoning attacks against the public

SpamBayes spam classifier. Venkataraman et al. [52] analyze

the theoretical limits of poisoning attacks against signature

generation algorithms by proving bounds on false positives

and false negatives for certain adversarial capabilities.

In unsupervised settings, Rubinstein et al. [46] examined

how an attacker can systematically inject traffic to mislead

a PCA anomaly detection system for DoS attacks. Kloft

and Laskov [31] demonstrated boiling frog attacks on cen-

troid anomaly detection that involve incremental contamina-

tion of systems using retraining. Theoretical online centroid

anomaly detection analysis has been discussed in [31]. Cio-

carlie et al. [12] discuss sanitization methods against time-

based anomaly detectors in which multiple micro-models are

built and compared over time to identify poisoned data. The

assumption in their system is that the attacker only controls

data generated during a limited time window.

In the machine learning and statistics communities, earliest

treatments consider the robustness of learning to noise, includ-

ing the extension of the PAC model by Kearns and Li [30],

as well as work on robust statistics [7], [27], [51], [55]. In

adversarial settings, robust methods for dealing with arbitrary

corruptions of data have been proposed in the context of

linear regression [11], high-dimensional sparse regression [10],

logistic regression [16], and linear regression with low rank

feature matrix [33]. These methods are based on assumptions

on training data such as sub-Gaussian distribution, independent

features, and low-rank feature space. Biggio et al. [5] pio-

neered the research of optimizing poisoning attacks for kernel-

based learning algorithms such as SVM. Similar techniques

were later generalized to optimize data poisoning attacks for

several other important learning algorithms, such as feature

selection for classification [54], topic modeling [35], autore-

gressive models [1], collaborative filtering [32], and simple

neural network architectures [38].

VII. CONCLUSIONS

We perform the first systematic study on poisoning attacks

and their countermeasures for linear regression models. We

propose a new optimization framework for poisoning attacks

and a fast statistical attack that requires minimal knowledge

of the training process. We also take a principled approach

in designing a new robust defense algorithm that largely out-

performs existing robust regression methods. We extensively

evaluate our proposed attack and defense algorithms on several

datasets from health care, loan assessment, and real estate

domains. We demonstrate the real implications of poisoning

attacks in a case study health application. We finally believe

that our work will inspire future research towards developing

more secure learning algorithms against poisoning attacks.

ACKNOWLEDGEMENTS

We thank Ambra Demontis for confirming the attack results

on ridge regression, and Tina Eliassi-Rad, Jonathan Ullman,

and Huy Le Nguyen for discussing poisoning attacks. We also

thank the anonymous reviewers for all the extensive feedback

received during the review process.

This work was supported in part by FORCES (Foundations

Of Resilient CybEr-Physical Systems), which receives support

from the National Science Foundation (NSF award numbers

CNS-1238959, CNS-1238962, CNS-1239054, CNS-1239166),

DARPA under grant no. FA8750-17-2-0091, Berkeley Deep

Drive, and Center for Long-Term Cybersecurity.

This work was also partly supported by the EU H2020

project ALOHA, under the European Union’s Horizon 2020

research and innovation programme (grant no. 780788).

31

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Alfeld, X. Zhu, and P. Barford. Data poisoning attacks against
autoregressive models. In AAAI, 2016.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security,
pages 16–25. ACM, 2006.

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning at
test time. In H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, editors,
Machine Learning and Knowledge Discovery in Databases (ECML
PKDD), Part III, volume 8190 of LNCS, pages 387–402. Springer Berlin
Heidelberg, 2013.

[4] B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern
classifiers under attack. IEEE Transactions on Knowledge and Data
Engineering, 26(4):984–996, April 2014.

[5] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support
vector machines. In ICML, 2012.

[6] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. ArXiv e-prints, 2018.

[7] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis. Journal of the ACM, 58(3), 2011.

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In Proc. IEEE Security and Privacy Symposium, S&P, 2017.

[9] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor
attacks on deep learning systems using data poisoning. ArXiv e-prints,
abs/1712.05526, 2017.

[10] Y. Chen, C. Caramanis, and S. Mannor. Robust high dimensional sparse
regression and matching pursuit. arXiv:1301.2725, 2013.

[11] Y. Chen, C. Caramanis, and S. Mannor. Robust sparse regression under
adversarial corruption. In Proc. International Conference on Machine
Learning, ICML, 2013.

[12] G. F. Cretu-Ciocarlie, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D.
Keromytis. Casting out demons: Sanitizing training data for anomaly
sensors. In Proc. IEEE Security and Privacy Symposium, S&P, 2008.

[13] I. Csiszar and G. Tusnady. Information geometry and alternating
minimization procedures. Statistics and Decisions, 1:205–237, 1984.

[14] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al. Adversarial
classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 99–108.
ACM, 2004.

[15] D. Faggella. Machine learning healthcare applications
– 2017 and beyond. https://www.techemergence.com/
machine-learning-healthcare-applications/, 2016.

[16] J. Feng, H. Xu, S. Mannor, , and S. Yan. Robust logistic regression and
classification. In Advances in Neural Information Processing Systems,
NIPS, 2014.

[17] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[18] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceed-
ings of the 22nd ACM Conference on Computer and Communications
Security, CCS, 2015.

[19] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart.
Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing. In USENIX Security, pages 17–32, 2014.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv:1412.6572, 2014.

[21] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities
in the machine learning model supply chain. In NIPS Workshop on
Machine Learning and Computer Security, volume abs/1708.06733,
2017.

[22] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and N. Feamster. PREDA-
TOR: Proactive recognition and elimination of domain abuse at time-of-
registration. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security, CCS, 2016.

[23] P. Harsha. Senate committee examines the “dawn of artificial intelli-
gence”. Computing Research Policy Blog. http://cra.org/govaffairs/blog/
2016/11/senate-committee-examines-dawn-artificial-intelligence/, 2016.

[24] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[25] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop
on Security and artificial intelligence, pages 43–58. ACM, 2011.

[26] P. J. Huber. Robust estimation of a location parameter. Annals of
Statistics, 53(1):73–101, 1964.

[27] P. J. Huber. Robust statistics. Springer, 2011.
[28] Kaggle. House Prices: Advanced Regression Techniques. https://www.

kaggle.com/c/house-prices-advanced-regression-techniques. Online; ac-
cessed 8 May 2017.

[29] W. Kan. Lending Club Loan Data. https://www.kaggle.com/wendykan/
lending-club-loan-data, 2013. Online; accessed 8 May 2017.

[30] M. Kearns and M. Li. Learning in the presence of malicious errors.
SIAM Journal on Computing, 22(4):807–837, 1993.

[31] M. Kloft and P. Laskov. Security analysis of online centroid anomaly
detection. The Journal of Machine Learning Research, 13(1):3681–3724,
2012.

[32] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik. Data poisoning attacks
on factorization-based collaborative filtering. In Advances In Neural
Information Processing Systems, pages 1885–1893, 2016.

[33] C. Liu, B. Li, Y. Vorobeychik, and A. Oprea. Robust linear regres-
sion against training data poisoning. In Proc. Workshop on Artificial
Intelligence and Security, AISec, 2017.

[34] D. Lowd and C. Meek. Adversarial learning. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 641–647. ACM, 2005.

[35] S. Mei and X. Zhu. The security of latent dirichlet allocation. In
AISTATS, 2015.

[36] S. Mei and X. Zhu. Using machine teaching to identify optimal
training-set attacks on machine learners. In 29th AAAI Conf. Artificial
Intelligence (AAAI ’15), 2015.

[37] M. Mozaffari Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha.
Systematic poisoning attacks on and defenses for machine learning
in healthcare. IEEE Journal of Biomedical and Health Informatics,
19(6):1893–1905, 2014.

[38] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli. Towards poisoning of deep learning
algorithms with back-gradient optimization. In B. M. Thuraisingham,
B. Biggio, D. M. Freeman, B. Miller, and A. Sinha, editors, 10th ACM
Workshop on Artificial Intelligence and Security, AISec ’17, pages 27–
38, New York, NY, USA, 2017. ACM.

[39] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. Sutton, J. Tygar, and K. Xia. Exploiting machine learning to subvert
your spam filter. In Proc. First USENIX Workshop on Large-Scale
Exploits and Emergent Threats, LEET, 2008.

[40] A. Newell, R. Potharaju, L. Xiang, and C. Nita-Rotaru. On the
practicality of integrity attacks on document-level sentiment analysis.
In Proc. Workshop on Artificial Intelligence and Security, AISec, 2014.

[41] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature
learning by training maliciously. In Recent advances in intrusion
detection, pages 81–105. Springer, 2006.

[42] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. The limitations of deep learning in adversarial settings.
In Proc. IEEE European Security and Privacy Symposium, Euro S&P,
2017.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation
as a defense to adversarial perturbations against deep neural networks.
In Proc. IEEE Security and Privacy Symposium, S&P, 2016.

[44] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading
worm signature generators using deliberate noise injection. In Proc.
IEEE Security and Privacy Symposium, S&P, 2006.

[45] PharmGKB. Downloads - IWPC Data. https://www.pharmgkb.org/
downloads/, 2014. Online; accessed 8 May 2017.

[46] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. hon Lau,
S. Rao, N. Taft, and J. D. Tygar. ANTIDOTE: Understanding and
defending against poisoning of anomaly detectors. In Proc. 9th Internet
Measurement Conference, IMC, 2009.

[47] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership
inference attacks against machine learning models. In Proc. IEEE
Security and Privacy Symposium, S&P, 2017.

[48] N. Srndic and P. Laskov. Mimicus - Contagio Dataset. https://github.
com/srndic/mimicus, 2009. Online; accessed 8 May 2017.

[49] N. Srndic and P. Laskov. Practical evasion of a learning-based classifier:
A case study. In Proc. IEEE Security and Privacy Symposium, S&P,
2014.

32

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

[50] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks.
arXiv:1312.6199, 2014.

[51] D. E. Tyler. Robust statistics: Theory and methods. Journal of the
American Statistical Association, 103(482):888–889, 2008.

[52] S. Venkataraman, A. Blum, and D. Song. Limits of learning-based
signature generation with adversaries. In Network and Distributed
System Security Symposium, NDSS. Internet Society, 2008.

[53] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao. Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers. In
23rd USENIX Security Symposium (USENIX Security 14), San Diego,
CA, 2014. USENIX Association.

[54] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is
feature selection secure against training data poisoning? In Proc. 32nd
International Conference on Machine Learning, volume 37 of ICML,
pages 1689–1698, 2015.

[55] H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso.
IEEE Transactions on Information Theory, 56(7):3561–3574, 2010.

APPENDIX A

THEORETICAL ANALYSIS OF LINEAR REGRESSION

We prove the equivalence of Wtr and W ′
tr with the follow-

ing theorem.

Theorem 3. Consider OLS regression. Let Dtr = {X, Y }
be the original dataset, θ0 = (w0, b0) the parameters of the
original OLS model, and D′tr = {X, Y ′} the dataset where Y ′

consists of predicted values from θ0 on X. Let Dp = {Xp, Yp}
be a set of poisoning points. Then

argminθ L(Dtr ∪ Dp,θ) = argminθ L(D′tr ∪ Dp,θ)

Furthermore, we have ∂Wtr

∂z =
∂W′

tr

∂z , where z = (xc, yc).
Then the optimization problem for the adversary, and the
gradient steps the adversary takes, are the same whether Wtr

or W ′
tr is used.

Proof. We begin by showing that

argminθ L(Dtr,θ) = argminθ L(D′tr,θ).
By definition, we have θ0 = argminθ L(Dtr,θ). In Y ′,
y′i = f(xi,θ0), so L(D′tr,θ0) = 0. But L ≥ 0, so

θ0 = argminθ L(D′tr,θ).

We can use this to show that XTY = XTY ′. Recall that the

closed form expression for OLS regression trained on X, Y is

θ = (XTX)−1XTY . Because θ0 is the OLS model for both

Dtr,D′tr , we have

(XTX)−1(XTY) = (XTX)−1(XTY ′),

but (XTX)−1 is invertible, so XTY = XTY ′. We can use

this to show that argminθ L(Dtr∪Dp,θ) = argminθ L(D′tr∪
Dp,θ) for any Dp. Consider the closed form expression for

the model learned on Dtr ∪ Dp:

(XTX+XT
p Xp)

−1(XTY +XT
p Yp) = (XTX+XT

p Xp)
−1 ·

(XTY ′ +XT
p Yp)

which is exactly the model learned on D′tr∪Dp. So the learned

models for the two poisoned datasets are the same. Note that

this also holds for ridge regression, where the Hessian has a

λI term added, so it is also invertible.

We proceed to use XTY = XTY ′ again to show that
∂Wtr

∂z =
∂W′

tr

∂z .

∂Wtr

∂z
=

2

n
(Xθ − Y)TX

∂θ

∂z

∂W ′
tr

∂z
=

2

n
(Xθ − Y ′)TX

∂θ

∂z

So the difference between the gradients is

∂W ′
tr

∂z
− ∂Wtr

∂z
=

2

n
(Y − Y ′)TX

∂θ

∂z
= 0.

Then both the learned parameters and the gradients of the

objectives are the same regardless of the poisoned data added.

We can now perform the derivation of the exact form of the

gradient of W ′
tr. We have:

∂W ′
tr

∂z
=

2

n

n∑
i=1

((w −w0)
Txi + (b− b0))

(
xT
i

∂w

∂z
+

∂b

∂z

)
.

The right hand side can be rearranged to

(w −w0)
T

(
Σ
∂w

∂z
+ μ

∂b

∂z

)
+ (b− b0)

(
μT ∂w

∂z
+

∂b

∂z

)
,

but the terms with gradients can be evaluated using the matrix

equations derived from the KKT conditions from Equation 14,

which allows us to derive the following:

∂W ′
tr

∂xc
=

2

n
((w0 −w)TM + (b0 − b)wT

=
2

n
(f(xc,θ)− f(xc,θ0))(w0 − 2w)T

∂W ′
tr

∂yc
=

2

n
(f(xc,θ)− f(xc,θ0)).

APPENDIX B

ANALYSIS OF TRIM ALGORITHM

We present here an analysis on the convergence and esti-

mation properties of the TRIM algorithm.

Convergence. First, Algorithm 2 can be proven to always

terminate by the following theorem.

Theorem 1. Algorithm 2 terminates in a finite number of
iterations.

Proof. We first prove that for each iteration i that does not

terminate the loop, we have R(i) < R(i−1). Since each subset

of {1, ..., n} with size n−p uniquely corresponds to one value

R, there is only a finite number of possible R during training.

If the algorithm does not terminate, then there will be an

infinite long sequence of R(i), contradicting that the set of

all possible R is finite.

We only need to show R(i) ≤ R(i−1), as the algorithm

terminates when R(i) = R(i−1). In fact, we have

R(i) = L(DI(i)

,θ(i−1)) ≤ L(DI(i−1)

,θ(i−1))

≤ L(DI(i−1)

,θ(i−2)) = R(i−1).

33

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Parameter Purpose Values
η Line Search Learning Rate {0.01, 0.03, 0.05, 0.1,
— — 0.3, 0.5, 1.0}
β Line Search Learning Rate Decay {0.75}
ε Attack Stopping Condition 10−5

λ Regularization Parameter Set with Cross Validation

TABLE VI: Description of Parameters for Algorithm 1.

The first inequality is because of the definition of I(i) (line 8),

while the second is due to the definition of θ(i) (line 9).

Estimation bound. We now prove Theorem 2. We restate it

below.

Theorem 2. Let Dtr denote the original training data, θ̂ the
global optimum for (17), and θ� = argminθ L(Dtr,θ) the
estimator in the ideal world on pristine data. Assuming α < 1,
there exist a subset D′ ⊂ Dtr of (1−α)·n pristine data samples
such that

MSE(D′, θ̂) ≤
(
1 +

α

1− α

)
L(Dtr,θ

�) (19)

Proof. Assume θ̂ = (ŵ, b̂), Î optimize (17). We have:

L(DÎ , θ̂) ≤ L(Dtr,θ
�). (20)

Since the adversary can poison at most α · n data points,

there exists a subset I ′ ⊆ Î containing (1 − α)n indexes

corresponding to pristine data points. We define D′ = DI′
.

Thus, we have

L(D′, θ̂) =
1

(1− α)n

∑
(x,y)∈D′

(ŵTx+ b̂− y)2 + λΩ(θ̂)

≤ 1

(1− α)n

∑
(x,y)∈DI

(ŵTx+ b̂− y)2 + λΩ(θ̂)

=
1

1− α
L(DÎ , θ̂)− 1

1− α
· λΩ(θ̂) + λΩ(θ̂)

≤ 1

1− α
L(Dtr,θ

�)− α

1− α
· λΩ(θ̂)

≤
(
1 +

α

1− α

)
L(Dtr,θ

�). (21)

Notice that in the second step, we apply the fact below:∑
(x,y)∈DI

(ŵTx+ b̂− y)2 = n[L(DI , θ̂)− λΩ(θ̂)]

The second to last step is derived by applying Inequality (20),

and the last step comes from

λΩ(θ̂) ≥ 0.

Further, we have

MSE(D′, θ̂) ≤ L(D′, θ̂) (22)

By combining (21) and (22), we can get our conclusion.

APPENDIX C

BASELINE ATTACK

In this section, we discuss parameter setting for the baseline

attack by Xiao et al. [54]. We perform experiments on the

same dataset used by Xiao et al. [54] to test and optimize the

baseline attack.

PDF dataset. The PDF malware dataset is a classification

dataset containing 5000 benign and 5000 malicious PDF

files [48], [49]. It includes 137 features, describing infor-

mation such as size, author, keyword counts, and various

timestamps. We pre-process the data by removing features

that were irrelevant (e.g., file name) or had erroneous values

(e.g., timestamps with negative values). We also use one-hot

encoding for categorical features (replacing the categorical

feature with a new binary feature for each distinct value) and

apply the logarithm function to columns with large values

(e.g., size, total pixels), resulting in 141 features. Each feature

is normalized by subtracting the minimum value, and dividing

by its range, so that all these features are in [0,1].

Hyperparameters. In order to analyze the baseline attack,

we perform an experiment that reproduces exactly the setting

from Xiao et al. [54]. We choose a random subset of 300

files for training and a non-overlapping subset of 5000 points

for testing the models. To take advantage of our multi-core

machines, we parallelize the code by allowing each core to

run different instances of the for loop body starting on line 6

in Algorithm 1.

There are 3 hyperparameters that control the gradient step

and convergence of the iterative search procedure in the

algorithm (η, β, and ε). The η parameter controls the step

size taken in the direction of the gradient. We selected from

7 different values in a wide range, by testing each on 20%

poisoning and identifying the value with the largest MSE

increase. The β parameter controls the decay of the learning

rate, so we take smaller steps as we get closer to the optimal

value. We fixed this value to 0.75 and decayed (set η ← η ∗β)

when a step did not make progress. We found this setting

to work well on many problems. We fixed the ε parameter

for attack stopping condition at 0.00001, and choose the λ
regularization parameter for the regression model with cross

validation. Our parameter settings are detailed in Table VI).

Fig. 7: Attack MSE on Contagio dataset for ridge.

34

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Attack MSE on Contagio dataset for Lasso.

Attack effectiveness. We ran our OptP and StatP attacks on

this dataset, in addition to BGD. We expect OptP to be very

similar in terms of poisoning to BGD because it is run in the

classification setting. Our proposed optimization framework is

specific to regression. For instance, in classification settings

optimizing by both x and y variables is exactly the same

as optimizing only by x. For the initialization strategies,

InvFlip and BFlip are exactly the same in the classification

setting. In our framework we are exploiting the continuous

response variables of regression for designing more effective

optimization-based poisoning attacks. The only modification

to BGD might come from using Wval as an optimization

objective, but we expect that in isolation that will not produce

significant changes. We showed in Section V-B that Wval is

most likely to be effective when optimization by (x, y) is used.

Our graphs from Figures 7 and 8 confirm this expectation,

and indeed OptP and BGD are very similar in the attack

MSEs. The effectiveness of the BGD attack is similar to that

reported by Xiao et al. [54] and we have confidence that our

implementation and choice of hyper-parameters are accurate.

Interestingly, the StatP attack outperforms BGD and OptP by

40% for ridge regression. We believe that pushing the feature

values to the boundary as done by StatP has higher effect

as a poisoning strategy for ridge regression in which the loss

function is convex and the optimization maximum is achieved

in the corners. That is not always the case with models such

as Lasso, but still StatP is quite effective at poisoning Lasso

as well.

35

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 07:19:27 UTC from IEEE Xplore. Restrictions apply.

