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ABSTRACT Segmentation of carotid intima-media (IM) borders from ultrasound images is of great
importance for predicting cardiovascular risks. In this paper, we have developed a fully automatic approach
to sequentially segment the carotid IM borders in each image throughout ultrasound sequences. First, the first
frame of an ultrasound sequence is automatically segmented using edge detectors and dynamic programming,
and then the rest frames are segmented successively under the state-space framework. Under this framework,
we developed a variant of the snake method for a precise measurement. The evaluation of our segmentation
result is done by comparison with average manual delineations of three physicians on a total of 65 sequences.
The accuracy of our method is high. (Segmentation error is 32.1 ± 37.5 µm for LI and 35.0 ± 41.5 µm
for MA.) The BA plot and the linear regression also demonstrate that our method is in agreement with the
ground truth. This paper strengthens the potential of the state-space and snake-based approach in segmenting
IM borders for clinical diagnosis by demonstrating a fully automatic scheme.

INDEX TERMS Snake, Kalman, state-space framework, carotid intima-media (IM) borders, sequence
segmentation.

I. INTRODUCTION
Atherosclerosis give rise to lethal cardiovascular illnesses,
for example, coronary heart disease and cerebral infarction,
which causes thousands of deaths each year [1]. A number
of studies show that carotid intima-media thickness (IMT)
is commonly used to predict atherosclerotic diseases [2]–[4].
It is reported that the artery is healthy when IMT is smaller
than 1.1mm, while the artery is at risk when IMT is larger
than 1.5mm [5], [6]. Ultrasound imaging is usually used
to examine the biomechanical dynamics of carotid intima-
media [7], and resultantly, IMTmeasurement can be achieved
by segmentation of ultrasound images.

Previously, segmentation of ultrasound images has been
extensively studied by different teams for assessing IMT
at the early stage of atherosclerosis [8]–[10]. A novel
multi-ethnic research recently reveals the strong relation-
ship between the IMT variation and the probability of
cardiovascular event developments [11]. The correlation of

IMT change and cardiovascular risks is still open to dis-
cussion, so the observation of IMT variation during the
cardiac cycle becomes an important issue. Thus, the task
of IM segmentation during the cardiac cycle receives more
and more recognition in recent years [3]. However, this is
still very challenging because of large observer viability,
noisy ultrasound images, and carotid plaques in ultrasound
data [12]–[14]. Also, fully automated methods for segmen-
tation of ultrasound sequences should be developed to maxi-
mally limit the workload of the users [12].

In computer-aided IM segmentation, the IM borders
(which contains the lumen-intima border and the media-
adventitia border, namely, LI and MA) are first extracted
using different kinds of edge extraction algorithms [13].
Then, the distance of the two borders can be calculated to
obtain IMT. As comprehensively reviewed in [13] and [14],
algorithms based on various frameworks have been intended
for segmentation of intima-media borders in ultrasound
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images in the past two decades. Different methods are used
for this task, such as edge detectors [9], [15], dynamic pro-
gramming [12], [16], [17], snakes [8], [16], [18]–[22], and
neural networks [23]. Among them, the snake algorithm is
able to deform the contours using external and internal forces,
which resultantly yield a smoothed curve [24]. Its tension and
stiffness are beneficial for LI/MA segmentation because these
profiles are always regular and continuous in the aspect of
physiology [21].

Since snakes are sensitive to the initial contours, it should
be initialized near to the correct IM borders when segmenting
each frame in the sequence. Based on this understanding,
the state-space approach is commonly used for the initial-
ization of the snake in consecutive frames, namely, the IM
border position is the state variable of the state-space equa-
tions, and is initialized using the results of the previous
frame when segmenting an arbitrary frame in an ultrasound
sequence [25], [26]. The Kalman filter and the H∞ filter are
common solutions of the state-space equations [27], [28].

Based on this strategy, we have developed an algorithm
under the state-space framework [29]. An adaptive snake
method is used to provide an accurate and robust measure-
ment. Grayscale and derivative information of the first frame
can help the snake be aware of the characteristics (image
grayscale, image noise, IM border curvature, and movement
in consecutive frames) of the sequence, so the parameters of
the algorithm do not need to be adjusted when segmenting
sequences of different characteristics. This work can accu-
rately and robustly segment ultrasound sequences providing
the first frame is properly manually segmented. The aim of
the present study is to extend our previous work to a fully
automatic scheme to segment the IM borders from ultrasound
sequences of different characteristics. Firstly, a dynamic pro-
gramming algorithm is introduced to automatically segment
the first frame of the sequence. Then, a snake algorithm
is performed to segment the remaining frames. The param-
eters of the snake are automatically adjusted according to
the segmentation results of the first frame. For any other
frame in the sequence, the a priori state estimate is used to
initialize the snake positions, and the IM border positions are
successively obtained under the state-space framework. The
performance of our method has been evaluated in 62 patients’
carotid ultrasound image sequences as well as and 3 synthetic
sequences. The parameters are kept unchanged during the
whole experiment. In order to fully evaluate our method,
we used ultrasound sequences with various characteristics.
The segmentation of the sequences is fully automatic, never-
theless, the user may choose to perform manual modification
if they prefer.

II. METHODOLOGY
A. AUTOMATIC INITIALIZATION OF THE FIRST FRAME
The pre-processing procedure of ultrasound sequences are
the same as in our previous work. The grayscale of each
frame is firstly normalized into [0, 255], and then a Gaussian

low-pass filter is applied in every frame. Then, the first image
is processed as follows:

1) COARSE CLIPPING
To approximately locate the IM borders of each column in an
image, we use the fact that carotid intima-media ultrasound
images are dark (grayscale<10) inside the carotid lumen and
bright (grayscale>180) inside the adventitia tunica [34]. For
each column, we carried out a grayscale search. If N1 (set to
be 30 in our experiments) consecutive points are found to
be dark (the grayscale of all these points are less than 10),
we would take these points as the vessel lumen. Hence,
the last point whose grayscale is less than 10 is chosen to
be the upper bond of the LI border, and the y coordinate
of this point is denoted as Ai. The actual location of LI is
intuitively thought to be near to but lower than Ai. Then,
the grayscale search continues until the brightest point is
found. If the distance from this point to Ai is smaller than a
threshold (50 in our experiments), this point is thought to be
the lower bound of theMAborder, and the y coordinate of this
point is denoted asBi. The actual location ofMA is intuitively
thought to be near to but higher thanBi. For ultrasound images
with lumen noise, there may not exist N1 consecutive points
whose grayscales are less than 10. In this case, Bi is firstly
determined using the above mentioned method, and then Ai
is set to be the y coordinate of Bi minus 50 (because the IMT
value is empirically smaller than 50 pixels). The areas upper
to Ai and lower to Bi are set to be ban zones, which means that
the front propagation of the dynamic programming (as will be
discussed later) would not pass through these zones. In this
way, the ultrasound image is coarsely clipped and the region
of interest (ROI) is located. The LI and the MA borders are
also distinguished from each other by grayscale.

2) SEED POINT GENERATION
The image gradient map is calculated in the y direction, and
then the cost map C for dynamic programming is defined to
be opposite number of the image gradient map. The values
of the points in the ban zones are modified to be large value
(for example, the general value of the gradient map in the ROI
is ∼−100, so the values in the ban zones are set to be 500)
to force the propagation path to leave these zones. After
modifying the gradient map, we searched for the minima
of the cost map for 30 columns from the left of the image.
These minima constitute a valley in the feature map. Then,
the linkage of the valley is checked from the first column.
If the y coordinate of the minima in the neighboring columns
differs by less than 2 pixels, these two columns are thought to
be connected, and the length of the valley is increased by one.
Lastly, the total length of the valley is examined. If the total
length is larger than 10, then these minima are confirmed to
be the borders, and the first minima is selected to be the seed
point. Otherwise, the outliers of these 30 minima are deleted
by setting the cost map value of these points to be large (500),
and the second smallest point of the corresponding column
is used to constitute the valley. Then the linkage is check
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FIGURE 1. The flowcharts of our method. (1) The upper part illustrates the state-space framework: the results of the previous frame
is used to initialize the snake of the current frame, and the results of the snake is considered to be the measurements. KK and Hk
are solved using the Kalman filter. Then the final segmentation of the current frame is calculated by a weight sum of the initial
estimation and the measurements. (2) The left lower part illustrates the automatic segmentation of the first frame: the first frame is
clipped by grayscale to get a rough position of the LI and MA border. Then the seed point is generated using the cost map. Lastly the
segmentation of the first frame is performed by the dynamic programming using the seed point and the cost map. (3) The right
lower part illustrates the adaptive snake algorithm.

anew until the valley is long enough and the seed point is
determined. The y coordinate of the seed point is denoted
as y0, so the coordinates of this point is (1, y0).

3) DYNAMIC PROGRAMMING
A front propagation scheme is performed from the seed point
to build a cumulative cost map Cc. The initial cost map is set
to be the cost map value of the seed point:

Cc(1, y0) = C(1, y0) (1)

Then, the cumulative cost map Cc is iteratively built from left
(the seed point) to right for each column using the following
equation (where x denotes the x coordinate of a point) [30]:

Cc(x, yj) = min
i=−2,−1,0,1,2

{Cc(x − 1, yj+i)+ C(x − 1, yj+i)}

(2)

Equation (2) means that the cumulative cost map of the jth

point of the x th column is the minimum of the cumula-
tive cost map of the neighboring points (which means that
the difference of y coordinate is less than 2) of its previ-
ous column plus the cost map of the corresponding points
(which is similar to the partial path cost). Because the cost
map reaches its minimum where the image gradient is the
strongest, the cumulative cost map also reaches its minimum
where the total image gradient along the propagation path is
strongest. Moreover, in order to keep the smoothness of the
segmented borders, the maximum deviation of y coordinate
between two consecutive columns is set to be 2. Finally,
when the propagation reaches the right side of the image,
the point whose cumulative cost map is smallest is found and
the minimal path is determined by back-tracking the points
from the right side of the image to the seed point. The points
on the minimal path are then thought to be the IM borders of

the ultrasound images. The automatic initialization procedure
is shown in the left lower part of Fig. 1.

B. THE SPACE-STATE FRAMEWORK FOR IMAGE
SEQUENCE SEGMENTATION
The state-space approach is used to leverage the tempo-
ral consistency for image sequence segmentation. The fun-
damental of the state-space approach is the space-state
equations (3):

xn = Fn−1xn−1 + qn−1
yn = Hn−1xn−1 + rn−1 (3)

with the frame index n, the state variable xn, observation
variable yn, system noise qn−1, observation noise rn−1 and
the coefficient matrices Fn−1 andHn−1. The goal of the state-
space approach is to use the noisy observation yn (which is
the result of the snake algorithm) and the state variable xn−1
(which is the IM border positions of the previous frame) in
the previous instant to determine its optimal estimate in the
current instant. Since the purpose of this work is to make the
segmentation framework automatic, we use Kalman filter to
solve the state-space equations for speeding up computation.
In Kalman filter, the state variable xn of the current instant
can be calculated by that of the previous instant xn−1 as well
as the observation variable yn using equations (4).

xn,prior = Fn−1xn−1
Pn,prior = Hn−1Pn−1Hn−1

T
+Qn−1

Kn = Pn,priorHn
T (HnPn,priorHn

T )−1 + Rn−1

xn = xn,prior +Kn(yn −Hnxn,prior)

Pn = (I−KnHn)Pn,prior (4)
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FIGURE 2. The segmentation results of some sample images in the sequences. The red lines represent the reference contours
segmented by the physician, and the green lines represent the results of our segmentation method. The borders in (a)(b)(d) are
comparatively clear, but those in (c)(e) are blurred. Moreover, the borders in (e) are slanted. It can be seen that the deviation of the
segmentation results from the ground truth is small in all these figures.

Where the variables with subscript prior means the a priori
variables at instant n, Qn−1 is the covariance matrices of
the process noise qn−1, Rn is the covariance matrices of
the process noise rn. Using these equations, the dynamics
of variable x (IM border positions) and error covariance
matrix Pwith respect to time (frame index) can be solved iter-
atively. The state-space framework is shown in the upper part
of Fig. 1.

C. THE ACQUISITION OF MEASUREMENTS
The observation variable yn is obtained using the snake algo-
rithm. The snake is a set of points geometrically represented
by the spatial coordinates u (u means the x or y coordinate of
one point in the snake). The snake is pushed to the regions
with strong image gradient by minimizing the snake energy,
which is defined as:

Esnake =
N∑
i=1

G(ui)+
N∑
i=1

[
αi

2
(ui − ui−1)2

+
βi

2
(ui+1 − 2ui + ui−1)2

]
(5)

where subscript i means the ith point of the snake, αi and βi
indicate the weight factors of lines, edges, elasticity and
rigidity of the snake.G is the external energy field, a weighted
sum of energies of lines and edges. If the initial snake ui,0
is properly defined, then the snake can conform to the local
minima of G (the edges of the images), achieving the seg-
mentation of one figure.

In order to deal with speckle noise and large movements
between successive frames, the snake algorithm is adjusted
using the grayscale and derivative information of the neigh-
boring points of each point in the snake. The main idea is to
maintain a relatively constant grayscale and derivative. If the
grayscale and derivative changes too much, an additional
external force is added to push the snake back to the correct
position, as detailed in [29].

FIGURE 3. The segmentation of the first frame(red and blue lines for
LI and MA) compared with the ground truth (pink and cyan lines for
LI and MA). (a) before smoothing using Savitzky-Golay filter, (b) after
smoothing using Savitzky-Golay filter.

III. EXPERIMENTS AND RESULTS
A total of 3 synthetic models and 62 subjects are enrolled
in our study. The synthetic sequences are generated from
the toolbox for in silico evaluation of motion estimators for
the arterial wall, developed by the BioSim Laboratory of the
National Technical University of Athens [31]. For the real
subjects, an ultrasound physician collected all the carotid
ultrasound data by using one ultrasound system iU22 (Philips
Ultrasound, Bothell, WA, USA) with a 7.5MHz liner array
transducer.We ran our program onMatlab 2015B in a desktop
computer with Intel(R) Core(TM) i5-5200U CPU (2.20GHz)
and 8GB RAM.

The manual segmentation results of every frame in all
the 65 sequences are performed by 3 ultrasound physicians
blinded to the other results. Specifically, the first physician
performed the manual delineation twice with a time interval
of 1 month. The average of the 4 results are considered as
the ground truth. Four criteria are used for accuracy and
robustness evaluation of our segmentation method.

A. THE MEAN ABSOLUTE ERROR (MAE)
Fig. 2 is the segmentation results for different image
sequences. Fig. 2(a)∼(c) represents images from the
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FIGURE 4. Bland-Altman plot for LI(a) and MA(b) segmentation. The blue lines represent the mean discrepancy of our results and
the manually delineated results. The intervals between cyan lines are the 95% confidence interval. The linear fittings of the points in
the BA plot are shown by the red dashed lines, which shows that the difference of our approach and the ground truth is
independent of their average. These results prove that the accuracy of our method is high.

synthetic models, while Fig. 2(d)∼(e) represents those from
the clinical models. It is illustrated that when the borders
are clear, our segmentation results nearly coincide with the
ground truth (Fig. 2(a), (b), (d)). Even for synthetic or real
images that are blurred (Fig. 2(c)) or effected with noise
(Fig. 2(e)), the segmentation error is rather small. The mean
error for the 3 synthetic models are: (LI) 0.586± 0.694 pixel,
(MA) 0.569 ± 0.745 pixel. The mean error for the 62 real
sequences are: (LI) 0.615 ± 0.720 pixel (32.1 ± 37.5µm),
(MA) 0.672 ± 0.796 pixel (35.0 ± 41.5µm).

B. MAE OF THE FIRST FRAME
In order to test the results for automatic segmentation, we also
calculated the MAE of the first frame. The mean error
for the 3 synthetic models are: (LI) 0.591 ± 0.732 pixel,
(MA) 0.608 ± 0.813 pixel. The mean error for the 62 real
sequences are: (LI) 0.631 ± 0.746 pixel (32.9 ± 38.8µm),
(MA) 0.704 ± 0.826 pixel (36.7 ± 43.0µm). The MAE of
the first frame is slightly larger than that of all images. This is
probably because the results of the dynamic programming is
not as smooth as that of the snake. Although the results can be
smoothed using various filters (such as average filter, median
filter, and Savitzky-Golay filter), the smoothing procedure
causes the segmented results to move in the y direction. This
may result in a slightly larger error in the first frame (as shown
in Fig. 3). Luckily, as demonstrated in [29], slight deviation
of the initial contour from the ground truth does not severely
affect the results of the segmentation of the following frames.

C. THE BLAND-ALTMAN PLOTS
As shown in Fig. 4, the plot consists of over 40000 points
from over 2900 frames in 62 sequences, and illustrates the
deviation between our approach and the ground truth to be
−1.45µm for LI and −0.38µm for MA. The 95 % con-
fidence intervals (dark cyan lines) are 141µm for LI and
139µm for MA. Also, the scattered points are linearly fit-
ted, and the absolute value of the slopes of the fitted lines

(black dotted lines) is less than 0.002 for LI and MA. This
shows that the average discrepancies of our results and the
manually delineated results do not rely on their average.

D. LINEAR REGRESSION ANALYSIS
The estimated IMT is also compared with reference tracings.
For all the sequences, the linear regression analysis is per-
formed to evaluate the relation of the estimated IMT with the
ground truth. It can be seen in Fig. 5 that the IMTs that are
obtained by our method is consistent with that of the ground
truth. The R2 value of the linear regression is 0.954.

FIGURE 5. Linear regression of the IMT estimated by our method and the
manual reference. The high R2 value of the linear regression
demonstrates the accuracy our segmentation method.

E. COMPARISON WITH OTHER METHODS
Our approach is compared with recent studies [32], [33].
These studies are respectively based on the dynamic program-
ming method and the Chan-Vese method. Also, our results
are compared with the inter-observer error between the first
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and second physician, the inter-observer error between the
first and third physician, and the intra-observer error of the
first physician. It is shown in Fig. 6 that the accuracy of
our method is higher than those of the other methods, and
the average MAE of our method is on the same order of
magnitude as the inter- and intra-observer error.

FIGURE 6. Comparative results of the segmentation error between our
method, the dynamic programming method, the Chan-Vese method,
the inter-observer errors, and the intra-observer error.

F. LIMITATIONS
The limitation of this work is that the Dynamic Programming
method cannot deal with ultrasound images with plaques.
This is because the nature of Dynamic Programming limits
the difference of the y coordinates in consecutive columns.
In this paper, we set the maximum difference to be 2 pixel.
On one hand, this configuration prevents the effect of lumen
noise, on the other hand, however, it causes error when the
difference is really larger than 2 pixel (which may happen in
sequences with plagues). However, if the difference tolerance
is increased, sequences without plagues can be affected by
lumen noise, resulting in a lower accuracy.

IV. CONCLUSION
In this paper, we propose a fully automatic method aiming at
segmenting the IM borders from ultrasound image sequences.
Firstly, the first frame of the sequence is segmented based
on the dynamic programming approach, and the rest frames
are segmented using the state-space framework with the help
of the grayscale-derivative constraint snake. The evaluation
of our method is performed using a total of 65 sequences.
The MAE, BA plot, and the linear regression of the IMT esti-
mated by our method and the manual reference show that our
method can achieve high accuracy. Also, our method outper-
formed similar work using the popular dynamic programing
and lever set algorithm. These results show the potential of
our method for clinical usage.
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